[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0316573A - Element for percutaneous administration - Google Patents

Element for percutaneous administration

Info

Publication number
JPH0316573A
JPH0316573A JP15065489A JP15065489A JPH0316573A JP H0316573 A JPH0316573 A JP H0316573A JP 15065489 A JP15065489 A JP 15065489A JP 15065489 A JP15065489 A JP 15065489A JP H0316573 A JPH0316573 A JP H0316573A
Authority
JP
Japan
Prior art keywords
cathode
semiconductor
skin
conductive
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15065489A
Other languages
Japanese (ja)
Other versions
JP2797118B2 (en
Inventor
Masahisa Muroki
室木 政久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PORITORONIKUSU KK
Polytronics Inc
Original Assignee
PORITORONIKUSU KK
Polytronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PORITORONIKUSU KK, Polytronics Inc filed Critical PORITORONIKUSU KK
Priority to JP15065489A priority Critical patent/JP2797118B2/en
Publication of JPH0316573A publication Critical patent/JPH0316573A/en
Application granted granted Critical
Publication of JP2797118B2 publication Critical patent/JP2797118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrotherapy Devices (AREA)

Abstract

PURPOSE:To constitute an ideal portable power supply for iontophoresis by simultaneously bringing a semiconductor electrode lower in standard single-pole potential and a matrix containing an ionic permeable drug into contact with the skin. CONSTITUTION:A semiconductor cathode 3 is connected to an anode metal 1 by a conductor 4 to be brought to a conductive coupling state and brought into contact with the surface of the skin of a living body along with the conductive matrix 2 containing an ionic permeable drug (M<->) brought into conductive contact with the anode metal 1. As a result, a free electron (e<->) flows out toward the anode metal 1 from the semiconductor cathode 3 by the standard single-pole potential of a cathode and an anode and the conductive zone of the semiconductor cathode 3 becomes an electron insufficient state and the energy hand thereof is inclined. At this time, a Schottky potential barrier betais formed in the skin contact surface of the semiconductor cathode 3 and a depletion layer is formed but, when a low resistance oxide semiconductor cathode is used, effective electromotive force can be held stably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,イオントフォレーゼの作用を利用した経皮投
薬用素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a transdermal drug device that utilizes the action of iontophoresis.

〔従来の技術〕[Conventional technology]

生体の疾患治療に用いられる薬剤投与方法には、静脈血
流の運搬作用に頼る注射,直腸投与,経口投与法と薬剤
の局所的な拡散浸透作用に頼る経皮投与法とがある。前
者は主に全身症状や生体深奥部に原因する疾患の治療に
効果的であり、後者は主に局所疾患の治療に効果的であ
る。近年、経皮投与法の改善と共に活動中の生体に持続
的に一定濃度の薬剤を供給し,治療しつつ日常生活を送
ることが、一部の症例で可能となった。典型的なものに
,筋骨格系および結合組織の疾患治療,狭心症の発作予
防,風邪による気管支炎症の沈静化などがある。これら
経皮投薬は、通常有効或分を含む薬剤を皮接し、一定の
或分拡散速度を維持しつつ患部に一定濃度の有効戒分を
供給するものである。しかるに、疾患の治癒作用を示す
薬剤成分は一般に高分子化合物であり、かつ複雑な立体
構造をもつので、単純な濃度拡散現象にだけ頼っていて
は十分な治療効果が得られないことも多い.とくに,急
性疾や症状が重い場合には経皮投与法は不適であると指
摘されている. そこで、経皮投薬法による有効成分の生体内搬送効率を
飛躍的に高める手段として,近年イオントフォレーゼ,
すなわち電気泳動法を利用したイオン性薬剤の経皮吸収
法が脚光をあびてきた.イオントフオレーゼそのものは
既に20世紀初頭から知られており、一部で用いられて
きたが、近年顔面神経痛に効果的なイオン性薬剤や、固
定プラスター,電極材料(イオン性薬剤用マトリクスを
含む)および電気泳動可能な高性能小型可搬外部電源の
開発などによってその効用がクローズアップされてきた
Drug administration methods used to treat diseases in living organisms include injection, rectal administration, and oral administration methods that rely on the transport effect of venous blood flow, and transdermal administration methods that rely on the local diffusion and osmosis effect of drugs. The former is mainly effective in treating systemic symptoms and diseases caused deep within the body, while the latter is mainly effective in treating local diseases. In recent years, with the improvement of transdermal administration methods, it has become possible in some cases to continuously supply drugs at a constant concentration to living organisms, allowing them to continue living their daily lives while being treated. Typical uses include treating musculoskeletal and connective tissue disorders, preventing angina pectoris attacks, and calming bronchial inflammation caused by colds. These transdermal medications usually involve applying a drug containing an effective ingredient to the skin, and supplying a constant concentration of the active ingredient to the affected area while maintaining a constant diffusion rate. However, drug components that exhibit curing effects on diseases are generally polymeric compounds and have complex three-dimensional structures, so relying only on simple concentration diffusion phenomena often does not provide sufficient therapeutic effects. In particular, it has been pointed out that transdermal administration is inappropriate in cases of acute illness or severe symptoms. Therefore, in recent years, iontophoresis,
In other words, the transdermal absorption method of ionic drugs using electrophoresis has been attracting attention. Iontophoresis itself has been known since the early 20th century and has been used in some cases, but in recent years, ionic drugs effective for facial neuralgia, fixed plasters, and electrode materials (including matrices for ionic drugs) have been developed. Its effectiveness has been highlighted through the development of high-performance, compact, and portable external power supplies that are capable of electrophoresis.

イオントフォレーゼを行うには、有効成分を含むイオン
性薬剤を導電性ペーストまたは含水ガーゼなどに保持し
て患部に皮接し、その上に通電用電極(活性電極)を配
置する。この近傍に不関電極(又は接地電極)とよばれ
る対電極を皮接し,両電極間に電源を接続して通電する
。この場合、どちらの電極を正に偏倚するかは,生体に
浸透させる有効戒分の電荷に依存する。例えば,消炎鎮
痛効果をもつサリチル酸をナトリウム塩として用いるな
らば、有効或分サリチル酸は負に帯電しているので活性
電極は電源の陰極に接続し、電気的反撥力によって皮膚
内通電路にサリチル酸を泳動・浸透せしめるのである。
To perform iontophoresis, an ionic drug containing an active ingredient is held in a conductive paste or water-containing gauze and applied to the affected area, and a current-carrying electrode (active electrode) is placed on top of the ionic drug. A counter electrode called an indifferent electrode (or ground electrode) is placed in close contact with the skin, and a power source is connected between both electrodes to supply electricity. In this case, which electrode is positively biased depends on the effective precept charge to be penetrated into the living body. For example, if salicylic acid, which has an anti-inflammatory and analgesic effect, is used as a sodium salt, the active electrode is connected to the cathode of a power source because salicylic acid is negatively charged, and the electrical repulsion forces the salicylic acid into the current-carrying path in the skin. It causes electrophoresis and penetration.

通電する電流密度は、有効或分供給濃度の必要性によっ
て大きく異なるが、通常数〜数100μA/cd程度と
いわれる(たとえば、特開昭58−130054号).
イオントフォレーゼの採用によって有効或分の生体内供
給速度が、単なる拡散浸透の場合に比べて1桁以上高ま
っていることが報告されている(たとえば、特開昭61
−149168号,第lから第4表対比)。それ故、イ
オントフォレーゼを利用した経皮投与法は、ペニシリン
,セファゾ,リン等の抗生物質,サリチル酸,フルフェ
ナム酸などの消炎鎮痛剤,ベントバルビタール,セコバ
ルビタールなどの抗てんかん剤,その他ビタミン,ホル
モン剤,抗不整脈剤など多くの薬剤投与に活用される気
運にある。
The current density to be applied varies greatly depending on the necessity of the effective supply concentration, but is usually said to be on the order of several to several hundred μA/cd (for example, JP-A-58-130054).
It has been reported that by employing iontophoresis, the rate of effective in-vivo supply is increased by more than one order of magnitude compared to the case of simple diffusion and osmosis (for example,
Compare No. 149168, Tables 1 to 4). Therefore, transdermal administration using iontophoresis is effective for antibiotics such as penicillin, cefazo, and phosphorus, anti-inflammatory analgesics such as salicylic acid and flufenamic acid, antiepileptic drugs such as bentobarbital and secobarbital, and other vitamins and hormones. It is likely to be used for the administration of many drugs, including anti-arrhythmic drugs and anti-arrhythmic drugs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

イオントフォレーゼは外部電源による偏倚によってイオ
ン性薬剤の電気泳動を生せしめるため、活動中の生体に
適用するには携帯用小型電池が電源として用いられねば
ならない(たとえば特開昭60−188176号).シ
かし、乾電池は一定時間の使用によって起電力が消耗し
、目的を果たせなくなったり,或は皮接面の状況変化,
たとえば発汗などによって皮膚抵抗が大きく変化し、大
電流が流れて生体皮膚面にヤケドを生ずるなどの問題点
がある.これを防ぐ方策として、イオン化傾向の異なる
二種類の金属を導電接続し、皮接時に生ずる電気的閉回
路を利用して起電力を発生させ、陽極側金属と同じ神類
の金属を用いたイオン性薬剤金属塩を陽極の皮接面に塗
布して用いるイオントフォレーゼが提案されている(特
開昭60 − 203270号).この方法は生体皮膚
面を電解質として利用しようとするもので、外部電源(
電池)を用いた上記従来技術に比べて、いわば電池の内
部反応(電極間の酸化還元反応)を用いるものである。
Since iontophoresis causes electrophoresis of ionic drugs by biasing from an external power source, a small portable battery must be used as a power source in order to apply it to an active living body (for example, JP-A-60-188176). .. However, after using a dry cell battery for a certain period of time, the electromotive force will be consumed and it will no longer be able to fulfill its purpose, or if the situation in contact with the skin changes,
For example, there are problems such as the skin resistance changes greatly due to sweating, etc., and a large current flows, causing burns on the living body's skin. As a measure to prevent this, two types of metals with different ionization tendencies are electrically connected, and an electromotive force is generated using the electrical closed circuit that occurs when the skin is in contact with the skin. Iontophoresis has been proposed in which a sex drug metal salt is applied to the skin-contacting surface of the anode (Japanese Patent Laid-Open No. 203270/1983). This method attempts to use the biological skin surface as an electrolyte, and uses an external power supply (
Compared to the above-mentioned conventional technology using a battery, this method uses the internal reaction of the battery (oxidation-reduction reaction between electrodes).

したがって、皮膚抵抗の大幅な変化や電極間短絡が発生
しても電池起電能の停止が生ずるのみで、安全であると
いう利点がある。
Therefore, even if a large change in skin resistance or a short circuit between the electrodes occurs, the electromotive ability of the battery will only stop, and there is an advantage that it is safe.

しかし,この方法は大きな欠点がある。すなわち、陰陽
極を皮接して電気的閉回路を形成した時、イオン化傾向
の大きな陰極から電子が陽極へ流れ、陰極金属が酸化さ
れた状態になる.陰極から陽極に移った電子は陽極を負
に帯電させるから,その電気的反撥力によって陽極下に
配置された陰イオン性薬剤成分は生体内に泳動して吸収
される。ところが、電子のぬけた(酸化された)陰極は
化学的に不安定な「活性状態」にあるため、電気陰性度
の高い電子を引きよせ化合物を形成しやすい。
However, this method has major drawbacks. In other words, when a cathode and anode are brought into skin contact to form an electrical closed circuit, electrons flow from the cathode, which has a strong tendency to ionize, to the anode, and the cathode metal becomes oxidized. Since the electrons transferred from the cathode to the anode negatively charge the anode, the anionic drug component placed under the anode migrates into the living body and is absorbed by the electrical repulsion. However, an electron-depleted (oxidized) cathode is in a chemically unstable ``active state,'' so it attracts highly electronegative electrons and tends to form compounds.

特開昭60 − 203270号では、(3)右上欄1
4〜16行目において「(この状態下にある陰極は)体
内の陰イオンを吸収し、これにより金属塩となって蓄積
されることになるJと記述されているが、この文献例の
如く陰極が水分子に取りかこまれた状態にあれば、体内
の陰イオンを吸収する前に速やかに下記反応式によって
酸化物が生或することは自明である。
In JP-A-60-203270, (3) upper right column 1
Lines 4 to 16 state that ``(the cathode under this condition) absorbs anions in the body, which accumulates as metal salts. It is obvious that if the cathode is surrounded by water molecules, an oxide is immediately formed according to the following reaction formula before absorbing anions in the body.

Me”+20H−→Me(○H)z→M e O + 
H 2 0(ただし、Me”は陰極構或金属のイオン)
特に、この文献例で好適として推奨されているマグネシ
ウム合金を陰極に用いた場合には、強い酸化作用を呈す
るので、短かい時間のうちにMgO系酸化物が陰極表−
面を被覆する。MgO系酸化物は絶縁物であるため、酸
化物の形成開始と共に電池の内部抵抗が上昇するので、
その起電力は低下しはじめ、酸化物膜厚が厚くなるにし
たがって遂には全く導通がなくなる。すなわち、イオン
トフォレーゼは惹起しなくなる。
Me”+20H−→Me(○H)z→M e O +
H 2 0 (Me” is a cathode structure metal ion)
In particular, when the magnesium alloy recommended as suitable in this literature example is used for the cathode, it exhibits a strong oxidizing effect, so MgO-based oxides are quickly deposited on the cathode surface.
Cover the surface. Since MgO-based oxide is an insulator, the internal resistance of the battery increases as the oxide begins to form.
The electromotive force begins to decrease, and as the oxide film becomes thicker, there is no conduction at all. In other words, iontophoresis is no longer induced.

本発明は,上記した携帯用イオントフォレーゼ用電源の
もつ欠点を解消するために行われたものである.すなわ
ち、本発明の主要な目的は,生体皮膚電解質作用を利用
した内部反応型電池(バイオセル)の安全性を生かしな
がら、外部電源電池なみに安定した電極反応を継続的に
行なわせることによって、理想的なイオントフォレーゼ
用携帯電源を構成することにある。また、本発明の別の
目的は、陽極側からのイオン性薬剤の生体内浸透だけで
なく、症状の必要性に応じて、同時に陰極構成物質をも
電気泳動によって生体内に浸透せしめ、インターフェロ
ンを誘起するなどして生理活性作用を高めることができ
るようにすることである。
The present invention was made in order to eliminate the drawbacks of the above-mentioned portable iontophoresis power source. In other words, the main purpose of the present invention is to take advantage of the safety of an internal reaction type battery (biocell) that utilizes the action of biological skin electrolytes while continuously performing electrode reactions as stable as an externally powered battery. The objective is to configure a portable power source for iontophoresis. Another object of the present invention is to not only permeate the ionic drug from the anode side into the living body, but also to simultaneously permeate the cathode constituent substances into the living body by electrophoresis, depending on the needs of the symptoms, so that interferon can be absorbed into the living body. The aim is to make it possible to enhance physiologically active effects by inducing drugs, etc.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達或するために本発明では、イオン性被浸透
薬剤(有効或分)を含有する導電性マトリクス背面に導
電接触した標準端極電位のより高い金I7X電極と、該
金属電極に導電接続した標準端極電位のより低い半導体
電極とから成り、該半導体電極と前記イオン性被浸透薬
剤を含有する導電性マトリクスとを同時に皮接すること
を特徴とする経皮投薬用素子を開示する。
In order to achieve the above object, the present invention provides a gold I7X electrode having a higher standard terminal potential that is in conductive contact with the back side of a conductive matrix containing an ionic penetrating drug (effective amount), and a gold I7X electrode having a higher standard terminal potential. A device for transdermal administration is disclosed, which comprises a connected semiconductor electrode having a lower standard terminal potential, and is characterized in that the semiconductor electrode and a conductive matrix containing the ionic penetrant drug are brought into skin contact at the same time.

皮接によって電気的閉回路が形成されると直ちに電子が
流出する(還元される)ので、きわめて酸化されやすい
状態にある陰極に半導体を用いることは、この内部反応
型電池の電極反応を安定して継続する,すなわち、イオ
ントフォレーゼを長時間継続して行なわせる上できわめ
て効果的である。
When an electrical closed circuit is formed by skin contact, electrons immediately flow out (reduced), so using a semiconductor for the cathode, which is extremely susceptible to oxidation, stabilizes the electrode reaction of this internal reaction type battery. In other words, it is extremely effective in allowing iontophoresis to continue for a long period of time.

電池の内部抵抗を減らし、有効電流密度を高める上では
比抵抗が工Ω(1)以下の低抵抗半導体,なかんずく電
子供給型の導電性半導体を陰極に用いることが有用であ
る。このような低抵抗導電性酸化物には酸化亜鉛(Zn
○),酸化ビスマス(Bl203)e酸化アンチモン(
 s b203),酸化スズ(Sn○2)などがあるが
、これら化合物は一種の不定比酸化物であり、酸素欠陥
を含むほうが導電率が高い(低抵抗である)。したがっ
て、最初から酸化物半導体の形で陰極に用いることもで
きるが、最初はこれらを金属(Zn,Bi,Sb,Sn
など)のままで陰極として皮接することもできる。特に
濡水状態で使用した場合はより速やかであるが、陰陽極
同時皮接によって電気的閉回路が形成されると,該金属
から電子が流出しその結果直ちに皮接面で薄い酸化被膜
が発生する。酸化被膜は通電時間の経過と共に数〜数十
μmの厚さまで或長するが、該酸化被膜が良好な低抵抗
電子供給型半導体として作用するので,このような用い
方をすることもできるのである。
In order to reduce the internal resistance of the battery and increase the effective current density, it is useful to use a low-resistance semiconductor with a resistivity of Ω(1) or less, especially an electron-supplying conductive semiconductor, for the cathode. Such low-resistance conductive oxides include zinc oxide (Zn
○), bismuth oxide (Bl203)e antimony oxide (
s b203), tin oxide (Sn○2), etc., but these compounds are a type of non-stoichiometric oxide, and the ones containing oxygen defects have higher conductivity (lower resistance). Therefore, although it is possible to use oxide semiconductors for the cathode from the beginning, it is also possible to use these as metals (Zn, Bi, Sb, Sn) at first.
), it can also be used as a cathode in contact with the skin. This is faster especially when used in wet conditions, but when an electrical closed circuit is formed by simultaneous cathode and anode skin contact, electrons flow out of the metal, resulting in the immediate formation of a thin oxide film on the skin contact surface. do. The oxide film grows to a thickness of several to several tens of micrometers over time when the current is applied, but since the oxide film acts as a good low-resistance electron-supplying semiconductor, it can be used in this way. .

また、半導体陰極としてゲルマニウムや同化合物,混合
物,シリコンや同化合物,混合物,希土類化合物や同混
合物などの物質を用いると、これらは皮接通電によって
陽イオン化し、生体内に浸透していく。この結果,生体
内で浸透濃度に比例した単位のインターフェロンなどを
誘起することが知られており、生戊したインターフェロ
ン等サイト力インが生体の生理活性作用を強化するため
、治療により好ましい影響を与える。
Furthermore, when a substance such as germanium, its compound, or mixture, silicon, its compound, or mixture, or rare earth compound or its mixture is used as a semiconductor cathode, these substances are cationized by contact with the skin and permeate into the living body. As a result, it is known that a unit of interferon, etc., is induced in the body in proportion to the osmotic concentration, and the generated interferon cytotoxicity strengthens the biological activity of the body, resulting in a more favorable effect on treatment. .

〔作用〕[Effect]

本発明の半導体陰極がイオントフォレーゼ用内部反応型
電池に用いられた場合,安定して一定の起電力を発生す
るのは次の理由による。すなわち,第1図(a)の如く
半導体陰極3を陽極金属1と導線4で連結して導電接続
し、陽極金属1に導電接触させたイオン性被浸透薬剤(
M−)を含む導電性マトリクス2(ここでマトリクスと
は、碁盤目状とのことではなく、基材との意)と共に生
体皮膚面に皮接した時、図示したように陰陽極の標準端
極電位差に起因して半導体陰極3から陽極金属1に向け
て自由電子(e−)が流出し、半導体陰極3の伝導帯は
電子不足となって第1図(b)に示す如く,半導体陰極
3のエネルギーバンドは傾斜する。この時、半導体陰極
3の皮接面にはショットキー電位障へきβが形成され空
乏層ができる。しかし,低抵抗酸化物半導体を陰極に用
いると、図示したような酸素欠陥が形成する連続的な欠
陥準位から電子が熱的励起されて伝導帯に供給されるの
で,たえず安定して実効起電力が保たれるのである。こ
の時欠陥準位を介して熱的励起される電子の源は酸化物
半導体の充満帯なので,充満帯には電子のぬけから、す
なわち正孔(h+)が発生する.正孔は半導体内で順方
向に自己偏倚されるので、図示したように皮接面側へ流
れる。その結果、皮接面では酸化物半導体分子は陽イオ
ン化するが、電気陰性度の高い酸素原子と金属原子のイ
オン結合が強いため、隣接原子間の結合力が斥力に打勝
って通常は結晶から陽イオンが解離して生体皮膚内に浸
透することはない。正孔はそのまま生体皮膚内に流入し
、この領域に存在する生体内イオン(たとえば鉄イオン
)を酸化する(Fe”+h+→Fe3+). 一方,半導体陰極としてゲルマニウムなどの非酸化物結
晶を用いると、第1図(b)で示したプロセスにより発
生した正孔によって皮接面で陽イオン化した半導体原子
(又は分子)は、原子間引力が酸化物よりはるかに弱い
ため(共有結合性が強いため)不安定な状態にあり、隣
接する同種陽イオン間の斥力と皮膚面の電解質作用を受
けて結晶から解離し,半導体陽イオンとして生体内に浸
透する.前記したように、ゲルマニウムイオン等は、生
体内でインターフェロンやインターロイチン等サイトカ
インを作り出す働きがあり.生理作用が活性化されるの
で,陽極側から生体内に浸透する治療用イオン性薬剤の
作用と連けいして治癒効果が高まる場合が多い。この場
合は、陽極側と同時に陰極側でもイオントフオレーゼが
生じていることになる。またこの場合、陰極半導体の皮
接面においては、次々と陽イオンが解離するので、新鮮
な原子面が皮接している状態となる. 金属陽極ではなく半導体陰極を用いると、皮接した時第
1図(b)に示す如く皮接面でショットキー障へきβが
形威され,生体皮膚伝導帯の底と半導体伝導帯の底がこ
の部位で不連続になるため,半導体原子が皮接面で陽イ
オン化しても皮膚面から電子が流入して電気的に中和さ
せることはない.したがって、半導体陽イオンの電離と
生体内浸透が可能なわけである.一方、特開昭60− 
203270号の如く,陰極に金属を用いた場合には、
皮膚面と金属は皮接面で電子伝導帯の底が連続するので
,生体から金属側に電子が補給される。すなわち,マグ
ネシウム合金などの酸化されやすい卑金属を陽極に用い
ず,仮りに貴金属を陰極に用いた場合覧;は,皮接面で
長期使用レこよっても酸化膜が形成されることもなく電
子が生体側から補給され続けるので、金属の陽イオン化
,電離は生じない。ただし、この場合は、陽極として陰
極側より更に標準端極電位の高い貴金属を用いなければ
ならないことは自明である。
When the semiconductor cathode of the present invention is used in an internal reaction type battery for iontophoresis, it stably generates a constant electromotive force for the following reasons. That is, as shown in FIG. 1(a), the semiconductor cathode 3 is connected to the anode metal 1 by a conductive wire 4 for conductive connection, and the ionic penetrant drug (
When the conductive matrix 2 (herein, matrix does not refer to a grid pattern but refers to a base material) containing a conductive matrix 2 (M-) is brought into contact with the skin of a living body, the standard ends of the cathode and anode as shown in the figure. Due to the electrode potential difference, free electrons (e-) flow from the semiconductor cathode 3 toward the anode metal 1, and the conduction band of the semiconductor cathode 3 becomes electron-deficient, as shown in FIG. 1(b). The energy band of 3 is tilted. At this time, a Schottky potential barrier β is formed on the skin contact surface of the semiconductor cathode 3, creating a depletion layer. However, when a low-resistance oxide semiconductor is used for the cathode, electrons are thermally excited from the continuous defect levels formed by oxygen defects as shown in the figure and supplied to the conduction band, resulting in stable and effective activation. Electricity is conserved. At this time, the source of electrons that are thermally excited via the defect level is the filled zone of the oxide semiconductor, so holes (h+) are generated in the filled zone from the loss of electrons. Since the holes are self-biased in the forward direction within the semiconductor, they flow toward the skin-contacting surface as shown. As a result, the oxide semiconductor molecules are cationized at the surface in contact with the skin, but because the ionic bond between the highly electronegative oxygen atom and the metal atom is strong, the bonding force between adjacent atoms overcomes the repulsive force, and the oxide semiconductor molecule is normally separated from the crystal. The cations do not dissociate and penetrate into the skin of a living body. The holes directly flow into the living body's skin and oxidize the living body's ions (e.g. iron ions) present in this area (Fe"+h+ → Fe3+). On the other hand, if a non-oxide crystal such as germanium is used as the semiconductor cathode, , the semiconductor atoms (or molecules) that are cationized at the skin contact surface by the holes generated by the process shown in Figure 1 (b) have much weaker interatomic attraction than oxides (due to strong covalent bonding). ) In an unstable state, it dissociates from the crystal due to the repulsion between adjacent cations of the same type and the action of electrolytes on the skin surface, and penetrates into the body as semiconductor cations.As mentioned above, germanium ions, etc. It has the function of producing cytokines such as interferon and interleutin in the body.Since physiological effects are activated, the healing effect may be enhanced in conjunction with the action of therapeutic ionic drugs that penetrate into the body from the anode side. In this case, iontophoresis occurs on the cathode side at the same time as on the anode side.In addition, in this case, cations dissociate one after another on the skin contact surface of the cathode semiconductor, so fresh atomic surfaces are generated. When a semiconductor cathode is used instead of a metal anode, a Schottky disorder β is formed at the skin contact surface as shown in Figure 1 (b) when the cathode is in contact with the skin, and the biological skin conduction band is Because the bottom of the conduction band and the bottom of the semiconductor conduction band are discontinuous at this location, even if the semiconductor atoms become cationized at the skin contact surface, electrons will not flow in from the skin surface and electrically neutralize them.Therefore, This makes it possible to ionize semiconductor cations and penetrate the body.
When metal is used for the cathode as in No. 203270,
Since the bottom of the electron conduction band is continuous between the skin surface and the metal, electrons are supplied from the living body to the metal side. In other words, if a noble metal is used for the cathode instead of a base metal that is easily oxidized, such as a magnesium alloy, for the anode, no oxide film will be formed on the skin surface even after long-term use, and electrons will not be generated. Since the metal is continuously replenished from the living body, cationization and ionization of the metal do not occur. However, in this case, it is obvious that a noble metal having a standard terminal potential higher than that of the cathode must be used as the anode.

なお、本発明の陽極金属1は通常ゲル状マトリクス2に
導電接触しており、マトリクス2に含有されたイオン性
薬剤塩が電離して生ずる被浸透イオンM−の生体浸透に
ともなってマトリクス2のpHが変化するため、腐蝕に
強い金属,たとえば貴金属を用いることが望ましい。ま
た、経皮投薬用素子を長時間皮接する場合は、PH変化
(アルカリ化)によって生体皮膚面がかぶれるなどの問
題が生ずるので、周知の技法によるpH変化の緩和,た
とえば尿酸などの酸性基材配合による不溶性塩生或反応
の利用や、アルコール配合によるエステル化の利用など
、中和反応生起を考慮に入れたマトリクス組成決定を行
なうべきである。
Note that the anode metal 1 of the present invention is usually in conductive contact with the gel matrix 2, and as the ionic drug salt contained in the matrix 2 is ionized and the permeated ions M- are permeated into the living body, the matrix 2 changes. Since the pH changes, it is desirable to use metals that are resistant to corrosion, such as noble metals. In addition, when a transdermal drug device is in contact with the skin for a long period of time, problems such as irritation of the skin surface due to pH change (alkalinization) may occur. The matrix composition should be determined taking into account the occurrence of neutralization reactions, such as the use of insoluble salt production or esterification by blending with alcohol.

〔実施例〕〔Example〕

(その1) 第2図に示すように直径2oのメッシュ状金電極工の外
側に10の間隔をあけて@ 3 tmの金属陰極3を配
置し,両電極1,3を導線4で短絡した.メッシュ状金
電極1は陽極であり、その下面にイオン性被浸透薬剤を
含む導電性マトリクス2が密着配置されている。この経
皮投薬用素子を剪毛後脱毛した白色ウサギの背面に皮接
して粘着テープでとめ、投薬効果を経時的に調べた。な
お、浸透効果を比較するために,メッシュ状金電極■に
サリチル酸ナトリウムを0.4モル含む導電性マトリク
ス2を組合せただけのものを用意し、同様に白色ウサギ
背面に皮接した。導電性マトリクス基材はポリビニルピ
ロリドンゲルとし、イオン性被浸透薬剤をサリチル酸ナ
トリウム,アスコルビン酸ナトリウム,トレチノインカ
ルシウムに選んで各0.4モルを前記ゲル基材に分散さ
せ、シート状に戒形したものが導電性マトリクス2とな
っている。
(Part 1) As shown in Fig. 2, @3tm metal cathodes 3 were placed on the outside of a mesh-like gold electrode with a diameter of 2o at intervals of 10 mm, and both electrodes 1 and 3 were short-circuited with a conductive wire 4. .. The mesh-like gold electrode 1 is an anode, and a conductive matrix 2 containing an ionic penetrant drug is disposed in close contact with the lower surface of the mesh-shaped gold electrode 1. This device for transdermal administration was placed in skin contact with the back of a white rabbit whose hair had been shaved and its hair removed, and it was fixed with adhesive tape, and the administration effect was examined over time. In order to compare the penetration effect, a mesh gold electrode (1) in which conductive matrix 2 containing 0.4 mol of sodium salicylate was simply combined was prepared and similarly applied to the back of a white rabbit. The conductive matrix base material was polyvinylpyrrolidone gel, and the ionic penetrant drugs were selected as sodium salicylate, sodium ascorbate, and calcium tretinoin, and 0.4 mol of each was dispersed in the gel base material and formed into a sheet. is the conductive matrix 2.

また,金属陽極3の材料は、マグネシウム合金または亜
鉛とした。
Further, the material of the metal anode 3 was a magnesium alloy or zinc.

皮接時に陰陽極の密着度を高めるため、各皮接面に純水
を霧状に吹きつけ、皮接後は試験時間中一貫して皮接部
位を同じ位置とした。皮接後6,12, 18. 24
時間を経過して各ウサギから採血し、血中のイオン性薬
剤濃度を時間の関数として測定した。なお、各ウサギは
特定薬剤,特定陰極金属の一回だけに用い、濃度測定は
被験ウサギの耳静脈に挿入したカーテルから上大静脈血
を採取することにより行なった。この結果を第3図に示
す。
In order to increase the adhesion of the cathode and anode during skin contact, a mist of pure water was sprayed onto each skin contact surface, and after skin contact, the skin contact site was kept at the same position throughout the test period. After skin contact 6, 12, 18. 24
Blood was collected from each rabbit over time and the concentration of ionic drug in the blood was measured as a function of time. Each rabbit was treated with a specific drug and a specific cathode metal only once, and the concentration was measured by collecting superior vena cava blood from a catheter inserted into the ear vein of the test rabbit. The results are shown in FIG.

第3図は、サリチル酸,アスコルビン酸,トレチノイン
の各イオン性薬剤共第2図に示した素子を用いることに
よってイオントフオレーゼを惹起し、ウサギ生体内に浸
透していることを示している。すなわち,比較のために
ウサギに皮接した濃度拡散のみを生ずる素子によるサリ
チル酸イオンの経皮吸収濃度(・・×・・・X・・・)
より、明らかにイオントフオレーゼによる血中濃度が高
いことが示されている。しかし,金属陰極としてマグネ
シウム合金を用いた場合の浸透効果は、亜鉛を用いた場
合に比べて著しく低い。マグネシウム合金を用いた場合
,皮接後も時間経過のデータをピークに血濃度が低下し
、遂には濃度拡散による血中濃度と大差ない値に収れん
している。
FIG. 3 shows that each of the ionic drugs salicylic acid, ascorbic acid, and tretinoin induces iontophoresis by using the device shown in FIG. 2, and permeates into the rabbit body. In other words, for comparison, the transdermal absorption concentration of salicylate ions (...×...
This clearly shows that the blood concentration is higher due to iontophoresis. However, the penetration effect when a magnesium alloy is used as the metal cathode is significantly lower than when zinc is used. When a magnesium alloy is used, the blood concentration decreases after skin contact, reaching a peak in the data over time, and finally converges to a value that is not much different from the blood concentration due to concentration diffusion.

この原因は、イオントフオレーゼの過程で陰極金属3の
表面で形成される酸化被膜の性質にある。
The reason for this lies in the nature of the oxide film formed on the surface of the cathode metal 3 during the iontophoresis process.

イオントフォレーゼの実験に用いた各ウサギの素子を皮
接後24時間を経てとりはずし、陰極金属3の皮接面を
調べると、例外なく灰白色を呈していた。灰白色は膜厚
5〜30μmの酸化被膜によるもので,陰極金属3のみ
を素子から切離して導通を調べると、亜鉛の場合は良好
な導通特性(比抵抗0.6Ωの)を示したが、マグネシ
ウム合金の場合は絶縁膜が形成されており、全く導通が
なかった.酸化被膜の形成経過を調べるために、第2図
の素子から陽極の導電性マトリクス2のみをはずし、陰
極金属に純水を噴霧して剪毛後脱毛処理した白色ウサギ
の背面に皮接した。この場合、一匹の白色ウサギ背面の
2ケ所に陰極金gt3が亜鉛の素子とマグネシウム合金
の素子をそれぞれ皮接し、一定時間経過毎に陰極をとり
はずし、その皮接の様子を調べた。この結果,亜鉛陰極
,マグネシウム合金陰極とも皮接後約2時間を経過した
だけで皮接面に酸化被膜が形成されはじめているのが、
肉眼で認められた。酸化膜厚は時間経過にともなって厚
くなるが.マグネシウム合金陰極の場合、皮接後2時間
経過した時点から抵抗上昇が認められ(比抵抗数+Ωa
n).4時間経過した時は比抵抗は数KΩ備に急増して
いた、しかし、亜鉛陰極の場合は4時間経過後も比抵抗
は0.1Ω個以下にとどまった。すなわち、マグネシウ
ム合金陰極を用いた場合は、酸化被膜形成による比抵抗
急増のため、第2図の素子とウサギから戊る電気的閉回
路の回路抵抗が急増し、回路電源である第2図の内部反
応型電池の性能が急激に低下してイオントフォレーゼが
比較的短時間(皮接後約10時間程度)で停止してしま
うのである。これに対して、亜鉛陰極の場合は、皮接面
に形成された酸化亜鉛半導体被膜が電子供給源としての
役割を充分はたすため、長時間にわたってイオントフォ
レーゼが持続するのである。亜鉛陰極の場合は、皮接後
72時間を経過しても比抵抗は1Ω国程度にとどまるの
で、電池としての内部抵抗は充分小さく、イオントフォ
レーゼ用電源として有効である.したがって、第3図の
亜鉛陰極(実効的には酸化亜鉛陰極)における薬剤血中
濃度の緩やかな飽和特性は、陰極特性の劣化によるもの
ではなく各イオン性薬剤の生体への供給と排出のバラン
スによるものと考えられる。
When the devices of each rabbit used in the iontophoresis experiment were removed 24 hours after being in contact with the skin and the skin contact surface of the cathode metal 3 was examined, it was a grayish white color without exception. The grayish white color is due to an oxide film with a thickness of 5 to 30 μm. When only the cathode metal 3 was separated from the element and conductivity was examined, zinc showed good conductivity (specific resistance of 0.6Ω), but magnesium In the case of alloy, an insulating film was formed and there was no conduction at all. In order to investigate the progress of oxide film formation, only the conductive matrix 2 of the anode was removed from the device shown in FIG. 2, pure water was sprayed onto the cathode metal, and the device was placed in skin contact with the back of a white rabbit whose hair had been shaved and depilated. In this case, the cathode gold gt3 was attached to a zinc element and a magnesium alloy element at two places on the back of a white rabbit, and the cathode was removed after a certain period of time to examine how the cathodes were attached to the skin. As a result, an oxide film began to form on the skin contact surface for both the zinc cathode and the magnesium alloy cathode after only about 2 hours had passed after skin contact.
It was recognized with the naked eye. The oxide film thickness increases over time. In the case of the magnesium alloy cathode, an increase in resistance was observed 2 hours after skin contact (specific resistance number + Ωa
n). After 4 hours had elapsed, the specific resistance had rapidly increased to several KΩ, but in the case of the zinc cathode, the specific resistance remained below 0.1 Ω even after 4 hours had elapsed. In other words, when a magnesium alloy cathode is used, the specific resistance rapidly decreases due to the formation of an oxide film, so the circuit resistance of the electrical closed circuit between the element and the rabbit in Figure 2 increases rapidly, and the circuit power supply in Figure 2 increases. The performance of the internal reaction type battery rapidly deteriorates, and iontophoresis stops in a relatively short period of time (about 10 hours after skin contact). In contrast, in the case of a zinc cathode, the zinc oxide semiconductor film formed on the surface in contact with the skin sufficiently serves as an electron supply source, so iontophoresis continues for a long time. In the case of a zinc cathode, the specific resistance remains at around 1Ω even after 72 hours have passed after contact with the skin, so the internal resistance as a battery is sufficiently small and it is effective as a power source for iontophoresis. Therefore, the gradual saturation characteristic of the drug blood concentration at the zinc cathode (effectively the zinc oxide cathode) shown in Figure 3 is not due to deterioration of the cathode properties, but rather a balance between the supply and excretion of each ionic drug to the living body. This is thought to be due to

(その2) 第2図に示した素子形状を有し、陽極金属1がニッケル
板面上に白金薄膜(厚さ約2μl)をメッキした素材で
あり、導電性マトリクス2がゼラチンゲルに0.8モル
のクエン酸ソーダを分散させたイオン性薬剤源であり、
陰極3は出発材料をそれぞれ亜鉛,ビスマス,釦,アン
チモン,スズ金属とするような5種類の内部反応型起電
力利用経皮投薬用素子を形成した。また、比較のために
直径2aaのニッケル板上に0.8モルのクエン酸ソー
ダ分散ゼラチンゲルマトリクスを導電接着したもの(陰
極は用いず)を別に用意した。各素子および比較用パッ
ド(濃度拡散のみ利用)をそれぞれ剪毛後脱毛処理した
別の白色ウサギの背面に粘着テープで貼りつけ,24時
間経過後に各被験ウサギの血液を採取してクエン酸の血
中濃度のを調べた.この結果、第l表が得られた。
(Part 2) The device has the shape shown in FIG. 2, and the anode metal 1 is made of a nickel plate plated with a platinum thin film (approximately 2 μl in thickness), and the conductive matrix 2 is gelatin gel coated with a thin platinum film (approximately 2 μl thick). It is an ionic drug source with 8 moles of sodium citrate dispersed in it,
For the cathode 3, five types of internal reaction type electromotive force-based transdermal medication elements were formed, each using zinc, bismuth, button, antimony, and tin metal as starting materials. For comparison, a nickel plate having a diameter of 2 aa and a gelatin gel matrix in which 0.8 mol of sodium citrate was dispersed was electrically bonded (no cathode was used) was separately prepared. Each element and the comparative pad (using only concentration diffusion) were attached with adhesive tape to the back of another white rabbit that had been shaved and depilated, and after 24 hours, the blood of each test rabbit was collected and citrate was added to the blood. I checked the concentration. As a result, Table 1 was obtained.

第1表は,第2図に示した素子を用いたイオントフォレ
ーゼが、l昼夜皮接後も有効に作用していることを示し
ている.イオントフォレーゼにょる経皮吸収は,単純拡
散による吸収に比べて6〜10倍高いことがわかる。な
お,24時間経過時における第2図の素子電流は8μA
であった。この値は,皮接開始時における約9μAと殆
ど変わらない。
Table 1 shows that iontophoresis using the device shown in Figure 2 works effectively even after being in contact with the skin day and night. It can be seen that transdermal absorption by iontophoresis is 6 to 10 times higher than absorption by simple diffusion. The element current in Figure 2 after 24 hours is 8 μA.
Met. This value is almost the same as about 9 μA at the start of skin contact.

また、24時間経過後素子をとりはずし、陰極金属の皮
接面を調べると、表面はいずれも酸化膜半導体で被われ
ていた。
Furthermore, after 24 hours had elapsed, the device was removed and the surfaces in contact with the cathode metal were examined, and it was found that all surfaces were covered with an oxide film semiconductor.

次に、第2図の素子の陰極3を、ニッケル板に厚さ5〜
lOμmの酸化亜鉛膜をスパッタリング法で形威した環
状板とした。すなわち、皮接開始前から低抵抗の酸化物
半導体を陰極3の用いた素子を作った。陽極金属1およ
び導電性マトリクス2は試料A−Fと同じである.この
素子を白色ウサギの背面剪毛部に皮接し、24時間経過
後に血液を採取して血中のクエン酸濃度を測定すると、
80μg/mQであり、第1表の試料Aとほぼ同じ結果
が得られた.この事実は、本発明の内部反応型起電力を
利用した経皮投薬用素子においては,陰極として予め導
電性酸化物半導体を採用することも、また皮接通電時に
導電性酸化物半導体が速やかに形威される第1表記載の
如き金属を採用することも可能であることを示している
Next, the cathode 3 of the device shown in FIG.
An annular plate was formed by sputtering a 10 μm zinc oxide film. That is, an element using a low-resistance oxide semiconductor for the cathode 3 was manufactured before the skin contact started. Anode metal 1 and conductive matrix 2 are the same as samples A-F. When this device was applied to the shaved area on the back of a white rabbit, blood was collected after 24 hours and the citric acid concentration in the blood was measured.
80 μg/mQ, and almost the same results as Sample A in Table 1 were obtained. This fact indicates that in the device for transdermal medication using internal reaction electromotive force of the present invention, a conductive oxide semiconductor can be used as the cathode in advance, and the conductive oxide semiconductor can be quickly removed when electricity is applied to the skin. This shows that it is also possible to employ metals such as those listed in Table 1, which have a similar shape.

(その3) 10角,厚さ0.2+mの銀板を陽極金属1とし、lc
m角,厚さ0.5mmのn型ゲルマニウム単結晶板(キ
ャリア濃度I X 10”cm−’)を半導体陰極3と
し、第4図に示す如く両者を5rLn間隔で並べて銅線
4のハンダ付けにより導電接続した。次に、陽極金属l
の裏面に、デキサメタゾン0.3モル含有のポリビニー
ルピロリドンとグリセリンおよび10%食塩水とから成
るゲルマ状マトリクス2を塗布して経皮投薬用素子(素
子G)を形成した。また、この素子の半導体陰極3を,
1cII1角のスズ板表面にリンドープn型SiC(キ
ャリア濃度I X 10”an−3)をl5μmの厚さ
に化学蒸着したものに取替えた素子(素子H),および
半導体陰極3を、10角の鉄板表面に厚さ0.5μmの
ランタン硼化物( L a B 6 )を蒸着したもの
に取替えた素子(素子■)も別に用意した。
(Part 3) A 10 square, 0.2+m thick silver plate is used as the anode metal 1, and the lc
An m-square, 0.5 mm thick n-type germanium single crystal plate (carrier concentration I x 10"cm-') was used as the semiconductor cathode 3, and as shown in FIG. 4, both were arranged at 5rLn intervals and copper wires 4 were soldered. A conductive connection was made by the anode metal l.
A gelatinous matrix 2 consisting of polyvinyl pyrrolidone containing 0.3 mol of dexamethasone, glycerin, and 10% saline was applied to the back side of the device to form a transdermal drug device (device G). Moreover, the semiconductor cathode 3 of this element is
An element (element H) in which phosphorous-doped n-type SiC (carrier concentration I x 10"an-3) was chemically vapor-deposited to a thickness of 15 μm on the surface of a 1cII 1 square tin plate, and the semiconductor cathode 3 were replaced with a 10 square tin plate. A separate element (element ■) was also prepared in which the iron plate surface was replaced with one in which lanthanum boride (L a B 6 ) was deposited to a thickness of 0.5 μm.

これら素子をそれぞれ別のCaH型マウス(雄)の背毛
を剪毛して該部位に粘性テープで貼着し、時間経過によ
るデキサメタゾンとインターフェロンの血中濃度変化を
調べた.実験はCaH型マウスを4匹ずつ一群として三
群準備し、各群にそれぞれ素子G,Hおよび工を貼着し
て、6時間毎に各群より一匹ずつを取り出し血液を採取
して調べた。また、比較のために、第4図の半導体陰極
をlcm角の亜鉛板表面に厚い酸化亜鉛被膜を形成した
素子(素子J)を用意し、二匹のC3H型マウス(雄)
の背皮に貼着して、それぞれ12時間後および24時間
後のデキサメタゾンおよびインターフェロンの血中濃度
を調べた。この結果を第5図に示す。いずれの素子を用
いた場合でもイオントフォレーゼの効果によって、皮接
後時間経過にしたがって体内のデキサメタゾン濃度は上
昇し,24時間後飽和点にむかう。同時に、特徴的であ
るのは、素子G,H,Iにおいては酸化物陰極を用いた
素子Jに比へて、血中のインターフェロン′a度が経時
的に増大していることである。これに対して,素子Jの
場合は、インターフェロン濃度の素子皮接による増加は
わずかにとどまる。この理由を明らかにするために、素
子工を貼着したマウス血液中のランタン濃度を調べた。
Each of these devices was attached to the shaved back hair of a different CaH mouse (male) using adhesive tape, and changes in the blood concentrations of dexamethasone and interferon over time were examined. For the experiment, three groups of four CaH type mice were prepared, and elements G, H, and F were attached to each group, and one mouse was taken out from each group every 6 hours and blood was collected for examination. Ta. For comparison, we prepared a device (device J) in which the semiconductor cathode shown in FIG.
The blood concentrations of dexamethasone and interferon were examined 12 hours and 24 hours later, respectively. The results are shown in FIG. Regardless of which device is used, due to the effect of iontophoresis, the concentration of dexamethasone in the body increases over time after skin contact, reaching a saturation point after 24 hours. At the same time, what is characteristic is that in devices G, H, and I, the concentration of interferon'a in the blood increases over time compared to device J using an oxide cathode. On the other hand, in the case of device J, the interferon concentration increases only slightly due to skin contact with the device. In order to clarify the reason for this, we investigated the lanthanum concentration in the blood of mice to which the device was attached.

その結果、ランタン濃度は素子貼着前のゼロの水準から
時間経過にしたがって増大していくことがわかった。ま
た、素子GおよびHを貼着した24時間経過後のマウス
血液からもそれぞれ相当量のゲルマニウムおよびシリコ
ンが検出された。これに対して素子Jを貼着後24時間
経過したマウスの血液中からは、素子貼着前と変らない
水準の亜鉛濃度が検出されたのみである。したがって、
素子G,Hおよび工を貼着したラットにおける血液中の
インターフェロン濃度の増加は、陰極の半導体材料がイ
オントフォレーゼの結果マウス体内に浸透して誘起され
たものと結論ずけることができる。これら素子(G,H
,■)の陰極皮接面は24時間経過後もほとんど酸化し
ていなかった。
As a result, it was found that the lanthanum concentration increased over time from the zero level before the device was attached. In addition, considerable amounts of germanium and silicon were detected in the blood of mice 24 hours after attaching elements G and H, respectively. On the other hand, in the blood of mice 24 hours after attaching element J, zinc concentration was only detected at the same level as before attaching the element. therefore,
It can be concluded that the increase in interferon concentration in the blood of rats to which devices G, H and device were attached was caused by the semiconductor material of the cathode penetrating into the mouse body as a result of iontophoresis. These elements (G, H
, ■) The surface in contact with the cathode skin was hardly oxidized even after 24 hours.

(その4) 第2図に示した経皮投薬用素子において、陽極金pA1
は、金,その下面に配置した導電性71・リク入2はナ
リジクス酸カリウムを0.1モル含有する寒天ゲルとし
、陰極半導体3を銅板上に被着させたリンドープn型硫
化亜鉛(キャリア濃度8X101ff , −3 )の
薄膜(厚さ約0.5μm)の場合(素子K)、および陰
極半導体3を銅板上に被着させた硼化鉄FeB膜(厚さ
約1μm)の場合(素子L)につき、素子の生体皮接実
験を行なった。前実施例同様CaH型マウス(雄)の背
毛を剪毛し、素子KおよびLをそれぞれ別のマウスに貼
着して48時間後、マウスの血液を採取して薬剤の血中
濃度を調べた。
(Part 4) In the transdermal drug device shown in Figure 2, the anode gold pA1
is gold, the conductive layer 71 placed on the bottom surface is an agar gel containing 0.1 mole of potassium nalidixate, and the cathode semiconductor 3 is a phosphorus-doped n-type zinc sulfide (carrier concentration) coated on a copper plate. 8X101ff, -3) thin film (approximately 0.5 μm thick) (device K), and in the case of an iron boride FeB film (approximately 1 μm thick) in which the cathode semiconductor 3 is deposited on a copper plate (device L). ), we conducted an experiment to attach the device to living skin. As in the previous example, the back hair of a CaH type mouse (male) was shaved, elements K and L were attached to different mice, and 48 hours later, the blood of the mouse was collected to examine the blood concentration of the drug. .

この結果、陽極下だけでなく陰極側においてもイオント
フォレーゼが惹起していることが確認された。すなわち
、両マウスの血液中には、ナリジクス酸が50〜60I
Lg/n+Q検出されたほか、素子Kを貼着したマウス
においては亜鉛の血中濃度が素子Lを貼着したマウスの
場合より3倍強検出され、逆に素子Lを貼着したマウス
では素子Kを貼着したマウスの場合より約20%高い鉄
分が検出された。
As a result, it was confirmed that iontophoresis was induced not only under the anode but also on the cathode side. That is, the blood of both mice contained 50 to 60 I of nalidixic acid.
In addition to detecting Lg/n+Q, the blood concentration of zinc in mice to which Element K was attached was more than three times higher than that in mice to which Element L was attached; Approximately 20% higher iron content was detected than in mice with K attached.

これは、前記〔作用〕欄で述べたように陰極半導体3が
皮接部で陽イオン化し、相隣る陽イオン間の電気的反撥
力と皮膚の表面触媒作用によって結晶から分子単位で解
離し,生体内に浸透したものである。亜鉛や鉄は生体の
希少構戊元素であり、過剰摂取とならなければ生体にと
って好ましい元素である。
This is because the cathode semiconductor 3 is cationized in contact with the skin, as described in the [Operation] section, and is dissociated from the crystal in molecular units due to the electrical repulsion between adjacent cations and the surface catalytic action of the skin. , which has penetrated into the living body. Zinc and iron are rare constituent elements of living organisms, and are preferable elements for living organisms as long as they are not ingested in excess.

〔発明の効果〕〔Effect of the invention〕

以上、実施例で詳細に述べたように、本発明の半導体陰
極を用いたバイオセル型経皮投薬素子の場合、乾電池や
蓄電池のような携帯用外部電源を用いた場合に懸念され
る皮膚抵抗変化による過剰大電流通電の心配や起電力の
経時的な低下という心配がなく、きわめて安全でかつ長
時間安定した経皮電流を日常活動中の生体に供給するこ
とができる。また、その酸化膜が絶縁性抵抗を有する金
属を陰極に用いた従前のバイオセル型皮接投薬素子に比
べて、はるかに長時間継続して陽極に配置されたイオン
性薬剤有効成分を経皮吸収せしめることが出来、生体患
部の治療に大変効果的であることが示された。更に,陰
極半導体として、非酸化物でありかつ被浸透イオンが生
体にとって生理活性上好ましい元素を含む低抵抗材料を
用いるならば、陽極下だけでなく陰極下においてもイオ
ントフォレーゼが惹起して、本来のイオン性薬剤による
治療効果を一層高めることができ好都合である。
As described above in detail in the Examples, in the case of the biocell-type transdermal medication device using the semiconductor cathode of the present invention, skin resistance change is a concern when using a portable external power source such as a dry battery or storage battery. There is no need to worry about the application of an excessively large current or a decrease in electromotive force over time, and it is possible to supply an extremely safe and stable transcutaneous current for a long time to a living body during daily activities. In addition, the ionic drug active ingredient placed on the anode can be transdermally absorbed for a much longer period of time compared to previous biocell-type skin dosing devices that use a metal with insulating resistance as the cathode. It was shown that it is very effective in treating the affected parts of living bodies. Furthermore, if a low-resistance material is used as the cathode semiconductor, which is a non-oxide and whose penetrating ions contain elements that are physiologically active for living organisms, iontophoresis will be induced not only under the anode but also under the cathode. This is advantageous because the therapeutic effect of the original ionic drug can be further enhanced.

本発明によって,経皮投薬は従来以上に有効な生体治療
方法となった.
With the present invention, transdermal medication has become a more effective biological treatment method than ever before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明するための図,第2図およ
び第4図は、それぞれ別の本発明の経皮投薬用素子構造
を示す図,第3図および第5図は、それぞれ別の本発明
の実施例データである。図において、1は陽極金属,2
はイオン性被浸透薬剤を含む導電性マトリクス,3は半
導体陰極,4は導線である。
FIG. 1 is a diagram for explaining the principle of the present invention, FIGS. 2 and 4 are diagrams showing different structures of elements for transdermal administration of the present invention, and FIGS. 3 and 5 are diagrams, respectively. This is another example data of the present invention. In the figure, 1 is the anode metal, 2
3 is a conductive matrix containing an ionic penetrant drug, 3 is a semiconductor cathode, and 4 is a conductive wire.

Claims (3)

【特許請求の範囲】[Claims] (1)イオン性被浸透薬剤を含有する導電性マトリクス
背面に導電接触した標準単極電位のより高い金属電極と
、該金属電極に導電接続した標準端極電位のより低い半
導体電極とから成り、該半導体電極と前記イオン性被浸
透薬剤を含有する導電性マトリクスとを同時に皮接する
ことを特徴とする経皮投薬用素子。
(1) consisting of a metal electrode with a higher standard unipolar potential that is in conductive contact with the back surface of a conductive matrix containing an ionic penetrant drug, and a semiconductor electrode with a lower standard unipolar potential that is conductively connected to the metal electrode, A device for transdermal administration, characterized in that the semiconductor electrode and the conductive matrix containing the ionic penetrant drug are brought into skin contact at the same time.
(2)上記半導体電極が、電子供給型の導電性酸化物半
導体または該素子の皮接使用により、皮接面で表面酸化
により該半導体を形成する亜鉛、ビスマス、鉛、アンチ
モンおよびスズから成る金属の少なくとも1種から形成
されることを特徴とする特許請求の範囲第1項記載の経
皮投薬用素子。
(2) The semiconductor electrode is an electron-supplying conductive oxide semiconductor or a metal made of zinc, bismuth, lead, antimony, and tin that forms the semiconductor by surface oxidation on the skin contact surface when the element is used in skin contact. The transdermal drug device according to claim 1, characterized in that it is formed from at least one of the following.
(3)上記半導体電極が、生体にイオン浸透した時、イ
ンターフェロン誘起等で生理活性作用を呈する元素また
はその化合物から成る半導体で形成されることを特徴と
する特許請求の範囲第1項記載の経皮投薬用素子。
(3) The method according to claim 1, wherein the semiconductor electrode is formed of a semiconductor made of an element or a compound thereof that exhibits a physiologically active effect by inducing interferon when ions permeate into a living body. Element for skin dosing.
JP15065489A 1989-06-15 1989-06-15 Transdermal drug delivery device Expired - Lifetime JP2797118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15065489A JP2797118B2 (en) 1989-06-15 1989-06-15 Transdermal drug delivery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15065489A JP2797118B2 (en) 1989-06-15 1989-06-15 Transdermal drug delivery device

Publications (2)

Publication Number Publication Date
JPH0316573A true JPH0316573A (en) 1991-01-24
JP2797118B2 JP2797118B2 (en) 1998-09-17

Family

ID=15501572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15065489A Expired - Lifetime JP2797118B2 (en) 1989-06-15 1989-06-15 Transdermal drug delivery device

Country Status (1)

Country Link
JP (1) JP2797118B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880354A (en) * 1994-09-14 1996-03-26 Poritoronikusu:Kk Percutaneous administration element
EP0845281A2 (en) * 1996-11-21 1998-06-03 Polytronics, Ltd. Transdermal drug delivery device
US6235013B1 (en) * 1990-11-01 2001-05-22 Robert Tapper Iontophoretic treatment system
JP2002345977A (en) * 2001-03-21 2002-12-03 Hayashibara Biochem Lab Inc Ion introduction tool
JP2009195650A (en) * 2008-02-19 2009-09-03 Shinobu Ito Composition for external use
RU2690104C1 (en) * 2018-04-06 2019-05-30 Александр Николаевич Разумов Method of mud treatment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235013B1 (en) * 1990-11-01 2001-05-22 Robert Tapper Iontophoretic treatment system
JPH0880354A (en) * 1994-09-14 1996-03-26 Poritoronikusu:Kk Percutaneous administration element
EP0845281A2 (en) * 1996-11-21 1998-06-03 Polytronics, Ltd. Transdermal drug delivery device
EP0845281A3 (en) * 1996-11-21 1999-12-01 Polytronics, Ltd. Transdermal drug delivery device
JP2002345977A (en) * 2001-03-21 2002-12-03 Hayashibara Biochem Lab Inc Ion introduction tool
JP4652639B2 (en) * 2001-03-21 2011-03-16 株式会社林原生物化学研究所 Ion introduction tool
JP2009195650A (en) * 2008-02-19 2009-09-03 Shinobu Ito Composition for external use
RU2690104C1 (en) * 2018-04-06 2019-05-30 Александр Николаевич Разумов Method of mud treatment

Also Published As

Publication number Publication date
JP2797118B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
KR100194851B1 (en) Ion osmosis therapy apparatus
KR100290524B1 (en) Electrode device for iontophoresis
EP1633431B1 (en) Kit, device and method for controlled delivery of oxidizing agent into the skin
CA1315853C (en) Iontophoresis process and apparatus for administering a dissolved or partially dissolved substance, percutaneously or perungually
US5320731A (en) Iontophoresis device for transcutaneous administration of a given total quantity of an active principle to a subject
US6375990B1 (en) Method and devices for transdermal delivery of lithium
JPH08155041A (en) New high-efficiency electrode system for iontophoresis
US20140107740A1 (en) Advanced Electrolytic Device--Bimetallic Wound Dressing
JPH0316573A (en) Element for percutaneous administration
JP3748278B2 (en) Skin contact device
KR102022336B1 (en) Local pain relief cataplasma patch
JPS6232944B2 (en)
JP3566346B2 (en) Transdermal drug delivery device
JP2007195607A (en) Drug delivery method, and drug delivery device
WO2001013988A9 (en) Devices and methods for the generation of voltage potential
JPH045469B2 (en)
JP2003169853A (en) Iontophoresis element
JP2002345977A (en) Ion introduction tool
JP4171630B2 (en) Ion introduction tool
EP0845281A2 (en) Transdermal drug delivery device
JP4182555B2 (en) Iontophoresis element for transdermal administration
JP4126110B2 (en) Transdermal dosing element
AU2006202742B2 (en) Method and devices for transdermal delivery of lithium
JP2856551B2 (en) Device for iontophoresis
JPH039765A (en) Antipruritic apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

EXPY Cancellation because of completion of term