[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0315246B2 - - Google Patents

Info

Publication number
JPH0315246B2
JPH0315246B2 JP58031935A JP3193583A JPH0315246B2 JP H0315246 B2 JPH0315246 B2 JP H0315246B2 JP 58031935 A JP58031935 A JP 58031935A JP 3193583 A JP3193583 A JP 3193583A JP H0315246 B2 JPH0315246 B2 JP H0315246B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
substrate
recording medium
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58031935A
Other languages
Japanese (ja)
Other versions
JPS59157831A (en
Inventor
Shozo Ishibashi
Juji Kasanuki
Masahiko Naoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58031935A priority Critical patent/JPS59157831A/en
Publication of JPS59157831A publication Critical patent/JPS59157831A/en
Publication of JPH0315246B2 publication Critical patent/JPH0315246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/667Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

1 産業上の利用分野 本発明は磁気テープ、磁気デイスク等の磁気記
録媒体に関するもである。 2 従来技術 従来、この種の磁気記録媒体は、ビデオ、オー
デイオ、デイジタル等の各種電気信部の記録に幅
広く利用されている。これらは、基体上に被着形
成された磁性層(磁気記録層)の面内長手方向に
おける磁化を用いる方式として発達してきた。と
ころが、近年、磁気記録の高密度化に伴ない、面
内長手方向の磁化を用いる記録方式では、記録信
号が短波長になるにつれ、媒体内の反磁界が増し
て残留磁化の減衰と回転が生じ、再生出力が著し
く減少する。このため、記録波長をサブミクロン
以下にすることは極めて困難である。 一方、磁気記録媒体の磁性層の厚さ方向の磁化
(いわゆる垂直磁化)を用いる垂直磁化記録方式
が、最近になつて提案されている(例えば、「日
経エレクトロニクス」1978年8月7日、No.192)。
この記録方式によれば、記録波長が短かくなるに
伴なつて媒体内の残留磁化に作用する反磁界が減
少するので、高密度化にとつて好ましい特性を有
し、本質的に高密度記録に適した方式であると考
えられる。 ところで、このような垂直記録を能率良く行な
うには、磁気記録媒体の記録層が垂直方向(磁性
層の厚さ方向)に磁化容易軸を有していなければ
ならない。こうした磁気記録媒体としては、基体
(支持体)上に、磁性粉末とバインダーとを主成
分とする磁性塗料を塗布し、磁性層の垂直方向に
磁化容易軸が向くように配向させた塗布型の媒体
が知られている。この塗布型媒体には、Co,
Fe3O4、γ−Fe2O3、Co添加Fe3O4、Co添加γ−
Fe2O3、六方晶フエライト(例えばバリウムフエ
ライト)、MnBi等が磁性粉末として用いられて
いる(特開昭52−46803号、同53−67406号、同52
−78403号、同55−86103号、同52−78403号、同
54−87202号各公報)。しかしながら、これらの塗
布型媒体は、磁性層中に非磁性のバインダーが存
在しているために、磁性粉末の充填密度を高める
ことには限界があり、従つてS/N比を充分高く
することができない。しかも、記録される信号の
大きさは磁性粒子の寸法で制約される等、磁性塗
膜からなる磁性層を有する媒体は垂直磁化記録用
としては不適当である。 そこで、垂直磁化する磁性層を、例えばバイン
ダーを用いることなく磁性体を支持体上に連続的
に被着したもので形成した連続薄膜型磁気記録媒
体が、高密度記録に適したものとして注目されて
いる。 この連続薄膜型の垂直磁化記録用記録媒体は、
例えば特公昭57−17282号に開示されているよう
に、コバルトとクロムとの合金膜からなる磁気記
録層を有していて、特にクロム含有量は5〜25重
量%のCo−Cr合金膜が優れているとしている。
また、Co−Cr合金膜に30重量%以下のロジウム
を添加してなる磁性層を有する磁気記録媒体が特
開昭55−111110号公報に開示され、更にコバルト
−バナジウム合金膜(例えば米国電気電子通信学
会:略称IEEE刊行の学会誌、“Transaction on
Magnetism”1982年第18巻No.6、1116頁)やコ
バルト−ルテニウム合金膜(例えば1982年3月開
催の第18回東北大通研シンポジウム「垂直磁気記
録」論文集)を用いた磁気記録媒体が知られてい
る。 一方、例えば上記のCo−Cr系垂直磁化膜と基
体との間にFe−Ni系の軟磁性(低保磁力)下地
層を設けることが、特開昭54−51804号公報に開
示されている。この場合には、軟磁性下地層の存
在によつて、補助磁極からの磁束を対向した主磁
極に集中させることができると共に、記録後の残
留磁化状態における減磁作用が少なくなるという
効果が期待できる。 ところが、本発明者が検討を加えた結果、上記
の如き構造の磁気記録媒体は、Co−Cr系垂直磁
化膜が次に示す欠点を有しているために、実用化
する上で不充分であることを見出した。 (1) 磁性層の面に垂直に磁化容易軸を配向させる
には、特に10-7Torr以上の高真空中で磁性層
を作成する必要があり、かつ基板の高度な洗浄
処理、低スパツタ速度等の如き条件を要し、垂
直配向の制御要因が非常に複雑となる。 (2) 信号の記録、再生においては、磁気記録媒体
と垂直記録/再生用ヘツドとを相対的に摺動さ
せるために、ヘツドと媒体との間の界面状態が
悪く、媒体にきずが発生し易く、ヘツドも破損
等を生じる。 (3) 磁性層が硬いために、可撓性のある基体上に
磁性層を設けた場合に亀裂が入り易い。 (4) 磁気記録媒体としての耐蝕性が充分でなく、
従つて表面に保護膜を設ける必要がある。 (5) 原料のコバルトは安定に入手し難く、コスト
が高くつく。 3 発明の目的 本発明者は、上記の如き実情に鑑み、鋭意検討
した結果、高密度の垂直磁気記録に適し、機械的
強度や化学的安定性等に優れ、記録/再生特性に
優れた磁気記録媒体を得ることに成功したもので
ある。 4 発明の構成及びその作用効果 即ち、本発明は、基体上に磁性層が設けられて
いる磁気記録媒体において、前記基体自体が高透
磁率材料で形成され、この高透磁率の基体に直接
接して前記磁性層が形成され、この磁性層が、 (a) アルミニウム、コバルト、コバルト−マンガ
ン、亜鉛、コバルト−亜鉛、リチウム、クロ
ム、チタン、リチウム−クロム、マグネシウ
ム、マグネシウム−ニツケル、マンガン−亜
鉛、ニツケル、ニツケル−アルミニウム、ニツ
ケル−亜鉛、銅、銅−マンガン、銅−亜鉛及び
バナジウムからなる群より選ばれた添加物質を
含む鉄をターゲツト材として用いた対向ターゲ
ツトスパツタ法により、形成されたものであ
り、 (b) 面内方向での残留磁化(MH)と、その面に
対し垂直方向での残留磁化(MV)との比
(MV/MH)が0.5以上であり、 (c) 前記添加物質を含み、酸化鉄を主成分とする 連続磁性薄膜からなつていることを特徴とする磁
気記録媒体。 本発明によれば、磁性層が酸化鉄を主成分とし
ているから、酸化物に由来する特有の優れた特性
(即ち機械的強度及び化学的安定性等)が得られ、
従来の合金薄膜に必要であつた表面保護膜は不要
となる。この結果、磁気ヘツドと媒体との間隔を
小さくし得て高密度記録が可能になると共に、材
料面からみても低コスト化が可能となる。 しかも、酸化鉄を主成分とする磁性層の面内方
向と垂直方向とでの残留磁化比(MV/MH)を
0.5以上としているので、酸化鉄磁性体の磁気モ
ーメントは面内方向に対し30度以上垂直方向側へ
立ち上つており、垂直磁化を充分に実現できる構
造となつている。上記磁化量MV,MHは、例えば
試料振動型磁力計(東英工業社製)で測定可能で
ある。即ち、MV/MHが0.5未満であれば垂直磁
化に適した磁気モーメントが得られ難い。 また、本発明の磁気記録媒体は、上記の酸化鉄
系磁性層に加えて、基体自体を高透磁率材料で形
成しているために、磁性層単独のものに比べて記
録時に磁束を集中させ、かつ記録後の減磁作用を
少なくして記録保持性を向上させることができ
る。つまり、高透磁率の基体が磁束(フラツク
ス)を通し易い性質があるために、磁極からの磁
束を磁性層に集中させると共に、後述の磁気還流
効果によつて残留磁化を充分に保持させる効果が
あり、記録密度を損うことなく記録/再生の感度
を向上させることができる。この場合、基体自体
を高透磁率材料で形成しているので、予め所定の
透磁率の材料で基体を作製しておき、次に1回の
製膜工程(対向ターゲツトスパツタ)で基体上に
垂直磁化膜を形成できる。従つて、高透磁率膜を
付ける必要がなく、高透磁率の基体さえ用意すれ
ばよいので、磁気記録媒体の製造が容易になると
共に、高透磁率による磁気集中及び還流効果を確
実に実現することができる。 本発明の磁気記録媒体の各層は、次の如くに構
成される。 まず、磁性層は、従来の塗布型磁性層とは根本
的に異なり、バインダーを使用せずに酸化鉄(例
えばFe3O4、γ−Fe2O3、又はこれらの中間組成
の非化学量論的組成からなるベルトライド化合
物)自体が連続的に連なつた薄膜(飽和磁化量が
大きく、保磁力(Hc)が100〜5000Oe)からなつ
ている。この磁性層においては、鉄と酸素の両元
素の総和は磁性層の50重量%以上であるのがよ
く、70重量%以上であるのが更に望ましい。ま
た、鉄と酸素との比は、酸素の原子数/鉄の原子
数=1〜3であるのがよく、4/3〜2であるのが
更によく、上記に例示した酸化鉄が適当である。
上記酸化鉄がスピネル型の結晶構造(特に、例え
ばFe3O4では(111)面が、またはγ−Fe2O3では
(100)面が面内方向に対して垂直方向に向いてい
るのがよい。)を有していると、飽和磁化量が大
きく、記録信号の再生時に残留磁束密度が大きく
て再生感度が極めて良好となる。一般に、磁性を
示す酸化鉄には、菱面体晶形の寄生強磁性を有す
るα−Fe2O3;スピネル構造でフエリ磁性を示す
Fe3O4、γ−Fe2O3又はこれらのベルトライド化
合物;六方晶型の酸化物であるBa系フエライト
又はSrフエライト、Pbフエライト又はその誘導
体;ガーネツト構造の希土類ガーネツト型フエラ
イトがある。これらの酸化鉄のうち、その磁気特
性の重要な1つである飽和磁化量は、α−Fe2O3
では2.0Gauss、Baフエライト、Srフエライト、
Pbフエライトでは最大でも380Gauss程度、更に
ガーネツト型フエライトでは最大でも140Gauss
である。これに対し、本発明で好ましく使用する
スピネル型フエライトの飽和磁化量は480Gauss
を示し、酸化鉄の中で最も大きい。このような大
きな飽和磁化量は、記録した信号を再生する場
合、残留磁束密度の大きさを充分にし、再生感度
が良好となるために、極めて有効なものである。
一方、スピネル型フエライトに類似した飽和磁束
密度を示すものとしてBaフエライト、Srフエラ
イトがあるが、これらの連続薄膜型の磁性層を形
成するには、例えば後述のスパツタ装置において
基体の温度を500℃と高温に保持しなければなら
ず、このために基体の種類等が制約される(例え
ば耐熱性の乏しいプラスチツクス基体は使用不可
能)等、作成条件に問題があり、不適当である。
本発明の好ましく使用されるスピネル型酸化鉄で
は室温〜300℃と低温で製膜が可能であり、基体
材料の制約を受けることがない。但、磁性層に
は、鉄及び酸素以外の金属又はその酸化物、或い
は非金属、半金属又はその化合物等を添加し、こ
れによつて磁性層の磁気特性(例えば保磁力、飽
和磁化量、残留磁化量)及びその結晶性、結晶の
特定軸方向への配向性の向上等を図ることができ
る。こうした添加元素又は化合物としては、Al,
Co,Co−Mn,Zn,Co−Zn,Li,Cr,Ti,Li−
Cr,Mg,Mg−Ni,Mn−Zn,Ni,Ni−Al,Ni
−Zn,Cu,Cu−Mn,Cu−Zn,V等が挙げられ
る。 また、上記高透磁率材料層は一般に、磁性層と
基体との間に設けられるが、本発明では基体自体
を高透磁率材料で形成していることが特徴的であ
る。この高透磁率の基体はフラツクスを通し易い
性質(特に、透磁率μiは102以上、望ましくは
2000以上、Hcは特に10Oe以下、例えば1Oe)を
有していて、主として磁性層の内面方向に磁化容
易軸を有するものが好適である。このような高透
磁率材料は軟磁性材料であればよく、例えば、純
鉄、ケイ素鋼、パーマロイ、スーパーマロイ、
Cu−Znフエライト、Ni−Znフエライト、Mn−
Znフエライト、センダスト、ミユーメタル等か
らなる結晶;Fe−Co、Co−Zr、CoとTi、Y、
Hf、Nb、Ta又はW等との合金、Fe、Co、Ni等
の遷移金属とSi、B、P、C等の半金属との合金
からなる非晶質が挙げられる。また、高透磁率材
料層の厚みは0.05〜5μmであるのが望ましく、0.1
〜3μmがより望ましい。即ち、0.05μm未満では、
薄すぎるために効果に乏しくなり、また5μmを越
えると効果が飽和状態となつて再生出力がそれ程
向上しないからである。 また、本発明の磁気記録媒体に使用可能な基体
の形状はシート、カード、デイスク、ドラムの
他、長尺テープ状でもよい。 この磁気記録媒体を作成するには、基体を固定
板に密着支持し、或いは基体を走行させつつ所定
の材料を被着させることができる。このために
は、真空ポンプ等の真空排気系に接続した処理室
内で、磁性材料のターゲツトを対向ターゲツト方
式でスパツタする。 5 実施例 以下、本発明の磁気記録媒体を図面参照下に更
に詳細に説明する。 まず、本発明の理解のために、その参考例を説
明する。第1図は同参考例による磁気記録媒体の
一例を示すものであつて、基体6上に、厚さ約
1μmのパーマロイからなる軟磁性層11が形成さ
れ、この上に厚さ約1μmの酸化鉄からなる垂直磁
化膜10が積層されている。 軟磁性層11は、公知のスパツタ法で形成され
るものであるため、その形成方法はここでは特に
説明しない。 本実施例による磁気記録媒体は、第1図におい
て軟磁性層11を設けず、基体6をパーマロイで
形成したものである。 垂直磁化膜(磁性層)10を形成するために、
磁性材料を基体上に被着させる手段として、対向
ターゲツトスパツタ法を用いる。 第2図は、対向ターゲツトスパツタ装置を示す
ものである。 図面において、1は真空槽、2は真空槽1を排
気する真空ポンプ等からなる排気系、3は真空槽
1内に所定のガスを導入してガス圧力を10-1
10-4Torr程度に設定するガス導入系である。タ
ーゲツト電極は、ターゲツトホルダー4により一
対のターゲツトT1,T2を互いに隔てて平行に対
向配置した対向ターゲツト電極として構成されて
いる。これらのターゲツト間には、磁界発生手段
(図示せず)による磁界が形成される。一方、磁
性薄膜を形成すべき基体6は、基体ホルダー5に
よつて、上記対向ターゲツト間の側方に垂直に配
置される。 このように構成されたスパツタ装置において、
平行に対向し合つた両ターゲツトT1,T2の各表
面と垂直方向に磁界を形成し、この磁界により陰
極降下部(即ち、ターゲツトT1−T2間に発生し
たプラズマ雰囲気と各ターゲツトT1及びT2との
間の領域)での電界で加速されたスパツタガスイ
オンのターゲツト表面に対する衝撃で放出された
γ電子をターゲツト間の空間にとじ込め、対向し
た他方のターゲツト方向へ移動させる。他方のタ
ーゲツト表面へ移動したγ電子は、その近傍の陰
極降下部で反射される。こうして、γ電子はター
ゲツトT1−T2間において磁界に束縛されながら
往復運動を繰返すことになる。この往復運動の間
に、γ電子は中性の雰囲気ガスと衝突して雰囲気
ガスのイオンと電子とを生成させ、これらの生成
物がターゲツトからのγ電子の放出と雰囲気ガス
のイオン化を促進させる。従つて、ターゲツト
T1−T2間の空間には高密度のプラズマが形成さ
れ、これに伴なつてターゲツト物質が充分にスパ
ツタされ、側方の基体6上に磁性材料として堆積
してゆくことになる。 この対向ターゲツトスパツタ装置は、他の飛翔
手段に比べて、高速スパツタによる高堆積速度の
製膜が可能であり、また基体がプラズマに直接曝
されることがなく、低い基体温度での製膜が可能
である等のことから、垂直磁化膜を形成するのに
有利である。しかも、対向ターゲツトスパツタ装
置によつて飛翔した磁性膜材料の基体への入射エ
ネルギーは、通常のスパツタ装置のものより小さ
いので、材料が所望の方向へ方向性を以つて堆積
し易く、垂直磁化記録に適した構造の膜を得易く
なる。 次に、上記のスパツタ装置を用いて磁気記録媒
体を作成する具体例を説明する。 この作成条件は以下の通りであつた。 ターゲツト材 鉄(Coを1原子%含有) 基 体 ガラス 対向ターゲツト間隔 100mm スパツタ空間の磁界 100Oe ターゲツト形状 100mm直径の円盤(5mm厚) 基体とターゲツト端との間隔 30mm 真空槽内の背圧 10-6Torr 導入ガス Ar+O2 導入ガス圧 4×10-3Torr スパツタ投入電力 420W このようにして第1図に示す如く、ベースフイ
ルム6上に軟磁性層11上に酸化鉄系の磁性層1
0を有する磁気記録媒体が得られた。この媒体に
ついて、磁性層の特性評価は、X線マイクロアナ
ライザー(XMA)による組成の同定、X線回折
法による酸化鉄の状態、試料振動型磁力計による
磁気特性によつて行なつた。得られた磁気記録媒
体の特性は次の如くであつた。 まず、両内方向での残留磁化量(MH)と面に
垂直方向での残留磁化量(MV)との比はMV
MH≧0.5であつた。即ち、第3図に例示するよう
に、破線で示す面内方向での磁化時のヒステリシ
ス曲線と、実線で示す垂直方向での磁化時のヒス
テリシス曲線とが夫々得られたが、印加磁界がゼ
ロのときの各磁化量をMH,MVとした。これによ
れば、前者のヒステリシス曲線は後者のヒステリ
シス曲線よりも小さく、MV≧0.5MHとなつてい
ることが明らかであり、垂直磁化にとつて好適な
磁性層が形成されていることが分る。また、保磁
力は垂直方向では920エルステツド、面内方向で
は750エルステツドであつた。これは、酸化鉄系
の磁性層においては驚くべき事実である。 また、この磁気記録媒体の組成をXMA(X線
マイクロアナライザ:日立製作所製「X−556」
KEVEX−7000型)で測定したところ、Feが主ピ
ークであり、Coが少量含まれていることが分つ
た。更に、酸化鉄の状態を調べるために、X線回
折装置(日本電子社製「JDX−10RA:CuKα管
球使用)を用いて測定したところ、下記表に示す
ように、磁性層が酸化鉄を主成分とするものであ
ることが分つた。しかも、この磁性層は、面内方
向に対して垂直方向に秩序正しい構造を有してい
ることが電子顕微鏡で観察された。
1. Field of Industrial Application The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks. 2. Prior Art Conventionally, this type of magnetic recording medium has been widely used for recording in various telecommunication systems such as video, audio, and digital. These have been developed as a system that uses magnetization in the in-plane longitudinal direction of a magnetic layer (magnetic recording layer) formed on a substrate. However, in recent years, with the increasing density of magnetic recording, recording methods that use magnetization in the in-plane longitudinal direction have the problem of attenuation and rotation of the residual magnetization due to the increase in the demagnetizing field within the medium as the recording signal becomes shorter in wavelength. This causes a significant decrease in playback output. For this reason, it is extremely difficult to reduce the recording wavelength to submicron or less. On the other hand, a perpendicular magnetization recording method that uses magnetization in the thickness direction of the magnetic layer of a magnetic recording medium (so-called perpendicular magnetization) has recently been proposed (for example, "Nikkei Electronics" August 7, 1978, No. .192).
According to this recording method, as the recording wavelength becomes shorter, the demagnetizing field that acts on the residual magnetization in the medium decreases, so it has favorable characteristics for increasing density, and is essentially suitable for high-density recording. This method is considered to be suitable for By the way, in order to perform such perpendicular recording efficiently, the recording layer of a magnetic recording medium must have an axis of easy magnetization in the perpendicular direction (thickness direction of the magnetic layer). Such a magnetic recording medium is a coated type in which a magnetic coating mainly composed of magnetic powder and a binder is coated on a substrate (support), and the axis of easy magnetization is oriented in the perpendicular direction of the magnetic layer. The medium is known. This coated medium contains Co,
Fe 3 O 4 , γ-Fe 2 O 3 , Co-added Fe 3 O 4 , Co-added γ-
Fe 2 O 3 , hexagonal ferrite (e.g. barium ferrite), MnBi, etc. are used as magnetic powders (Japanese Patent Application Laid-open Nos. 52-46803, 53-67406, 52
-78403, 55-86103, 52-78403, same
54-87202). However, in these coated media, there is a limit to increasing the packing density of magnetic powder due to the presence of a non-magnetic binder in the magnetic layer, and therefore it is difficult to increase the S/N ratio sufficiently. I can't. Moreover, the magnitude of the recorded signal is limited by the size of the magnetic particles, and thus a medium having a magnetic layer made of a magnetic coating is unsuitable for perpendicular magnetization recording. Therefore, continuous thin film magnetic recording media, in which a perpendicularly magnetized magnetic layer is formed by continuously depositing a magnetic material on a support without using a binder, are attracting attention as suitable for high-density recording. ing. This continuous thin film type perpendicular magnetization recording medium is
For example, as disclosed in Japanese Patent Publication No. 57-17282, it has a magnetic recording layer made of an alloy film of cobalt and chromium, and in particular, a Co-Cr alloy film with a chromium content of 5 to 25% by weight is used. It is said to be excellent.
Further, a magnetic recording medium having a magnetic layer formed by adding 30% by weight or less of rhodium to a Co-Cr alloy film is disclosed in JP-A-55-111110, and furthermore, a cobalt-vanadium alloy film (for example, Communication Society: Abbreviation: An academic journal published by IEEE, “Transaction on
Magnetism" 1982 Vol. 18 No. 6, p. 1116) and cobalt-ruthenium alloy films (for example, the 18th Tohoku University Research Symposium "Perpendicular Magnetic Recording" Paper Collection held in March 1982). Are known. On the other hand, for example, JP-A-54-51804 discloses that a Fe-Ni soft magnetic (low coercive force) underlayer is provided between the Co-Cr perpendicular magnetization film and the substrate. . In this case, the presence of the soft magnetic underlayer allows the magnetic flux from the auxiliary magnetic pole to be concentrated on the opposing main magnetic pole, and is expected to have the effect of reducing the demagnetization effect in the residual magnetization state after recording. can. However, as a result of studies conducted by the present inventor, it was found that the magnetic recording medium having the above structure is insufficient for practical use because the Co-Cr-based perpendicularly magnetized film has the following drawbacks. I discovered something. (1) In order to orient the axis of easy magnetization perpendicular to the plane of the magnetic layer, it is necessary to create the magnetic layer in a high vacuum of 10 -7 Torr or higher, and the substrate must be cleaned with advanced cleaning treatment and low sputtering speed. etc., and the control factors for vertical alignment become extremely complicated. (2) When recording and reproducing signals, the magnetic recording medium and the perpendicular recording/reproducing head slide relative to each other, so the interface between the head and the medium is poor and scratches may occur on the medium. This can easily cause damage to the head. (3) Since the magnetic layer is hard, cracks tend to occur when the magnetic layer is provided on a flexible substrate. (4) Corrosion resistance as a magnetic recording medium is insufficient;
Therefore, it is necessary to provide a protective film on the surface. (5) Cobalt, a raw material, is difficult to obtain stably and is expensive. 3. Purpose of the Invention In view of the above-mentioned circumstances, the present inventor has made extensive studies and has developed a magnetic material that is suitable for high-density perpendicular magnetic recording, has excellent mechanical strength and chemical stability, and has excellent recording/reproducing characteristics. We succeeded in obtaining a recording medium. 4 Structure of the Invention and its Effects That is, the present invention provides a magnetic recording medium in which a magnetic layer is provided on a substrate, in which the substrate itself is formed of a high magnetic permeability material and is in direct contact with the high magnetic permeability substrate. The magnetic layer is formed by: (a) aluminum, cobalt, cobalt-manganese, zinc, cobalt-zinc, lithium, chromium, titanium, lithium-chromium, magnesium, magnesium-nickel, manganese-zinc, Formed by the opposed target sputtering method using iron as a target material containing an additive selected from the group consisting of nickel, nickel-aluminum, nickel-zinc, copper, copper-manganese, copper-zinc and vanadium. (b) The ratio (M V /M H ) of the residual magnetization in the in-plane direction (M H ) to the residual magnetization (M V ) in the direction perpendicular to the plane is 0.5 or more, and ( c) A magnetic recording medium comprising a continuous magnetic thin film containing the additive substance and having iron oxide as a main component. According to the present invention, since the magnetic layer contains iron oxide as a main component, excellent characteristics unique to oxides (i.e., mechanical strength, chemical stability, etc.) can be obtained,
The surface protective film required for conventional alloy thin films is no longer required. As a result, the distance between the magnetic head and the medium can be reduced, making it possible to perform high-density recording, and also to reduce costs in terms of materials. Moreover, the residual magnetization ratio (M V /M H ) in the in-plane direction and in the perpendicular direction of the magnetic layer whose main component is iron oxide is
Since the value is 0.5 or more, the magnetic moment of the iron oxide magnetic material rises in the perpendicular direction by 30 degrees or more with respect to the in-plane direction, and the structure is such that perpendicular magnetization can be sufficiently realized. The magnetization amounts M V and M H can be measured, for example, with a sample vibrating magnetometer (manufactured by Toei Kogyo Co., Ltd.). That is, if M V /M H is less than 0.5, it is difficult to obtain a magnetic moment suitable for perpendicular magnetization. In addition, the magnetic recording medium of the present invention has the base itself made of a high magnetic permeability material in addition to the above-mentioned iron oxide-based magnetic layer, so that it concentrates magnetic flux during recording compared to a magnetic layer alone. , and the demagnetization effect after recording can be reduced to improve recording retention. In other words, since the high magnetic permeability substrate has the property of allowing magnetic flux to easily pass through, it is effective in concentrating the magnetic flux from the magnetic pole in the magnetic layer and retaining residual magnetization sufficiently through the magnetic reflux effect described below. Therefore, recording/reproducing sensitivity can be improved without impairing recording density. In this case, since the substrate itself is made of a material with high magnetic permeability, the substrate is made in advance from a material with a predetermined magnetic permeability, and then a film is formed on the substrate in one film forming process (opposing target sputtering). A perpendicularly magnetized film can be formed. Therefore, there is no need to attach a high magnetic permeability film, and all that is needed is a high magnetic permeability substrate, which simplifies the production of magnetic recording media, and also ensures the magnetic concentration and reflux effects due to the high magnetic permeability. be able to. Each layer of the magnetic recording medium of the present invention is constructed as follows. First, the magnetic layer is fundamentally different from conventional coated magnetic layers in that it is made of non-stoichiometric amounts of iron oxide (e.g. Fe 3 O 4 , γ-Fe 2 O 3 , or intermediate compositions) without the use of a binder. The bertolide compound (having a theoretical composition) itself consists of a continuous thin film (with a large saturation magnetization and a coercive force (H c ) of 100 to 5000 Oe). In this magnetic layer, the sum of both elements iron and oxygen is preferably at least 50% by weight of the magnetic layer, and more preferably at least 70% by weight. In addition, the ratio of iron to oxygen is preferably 1 to 3 (number of oxygen atoms/number of iron atoms), and even more preferably 4/3 to 2, and the iron oxides listed above are suitable. be.
The above iron oxide has a spinel-type crystal structure (especially, for example, the (111) plane in Fe 3 O 4 or the (100) plane in γ-Fe 2 O 3 is oriented perpendicular to the in-plane direction). ), the amount of saturation magnetization is large, the residual magnetic flux density is large during reproduction of recorded signals, and the reproduction sensitivity is extremely good. In general, magnetic iron oxides include α-Fe 2 O 3 which has parasitic ferromagnetism in a rhombohedral crystal structure; exhibits ferrimagnetism in a spinel structure.
Fe 3 O 4 , γ-Fe 2 O 3 or their bertholide compounds; hexagonal oxides such as Ba-based ferrite, Sr ferrite, Pb ferrite or derivatives thereof; and rare earth garnet-type ferrites with a garnet structure. Among these iron oxides, the saturation magnetization, which is one of the important magnetic properties, is α-Fe 2 O 3
So 2.0 Gauss, Ba ferrite, Sr ferrite,
For Pb ferrite, the maximum is about 380 Gauss, and for garnet type ferrite, the maximum is 140 Gauss.
It is. On the other hand, the saturation magnetization of the spinel ferrite preferably used in the present invention is 480 Gauss.
It is the largest of all iron oxides. Such a large amount of saturation magnetization is extremely effective when reproducing a recorded signal because it ensures a sufficient residual magnetic flux density and improves reproduction sensitivity.
On the other hand, Ba ferrite and Sr ferrite exhibit saturation magnetic flux densities similar to spinel ferrite, but in order to form continuous thin film magnetic layers of these, it is necessary to raise the temperature of the substrate to 500°C using a sputtering device, which will be described later. This poses problems in the production conditions, such as the need to maintain the temperature at a high temperature, which limits the type of substrate (for example, plastic substrates with poor heat resistance cannot be used), making them inappropriate.
The spinel type iron oxide preferably used in the present invention can be formed into a film at a low temperature of room temperature to 300° C., and is not subject to limitations of the substrate material. However, metals other than iron and oxygen or their oxides, nonmetals, semimetals, or compounds thereof are added to the magnetic layer, thereby improving the magnetic properties of the magnetic layer (e.g. coercive force, saturation magnetization, etc.). It is possible to improve the amount of residual magnetization), its crystallinity, and the orientation of the crystal in a specific axis direction. These additive elements or compounds include Al,
Co, Co−Mn, Zn, Co−Zn, Li, Cr, Ti, Li−
Cr, Mg, Mg-Ni, Mn-Zn, Ni, Ni-Al, Ni
-Zn, Cu, Cu-Mn, Cu-Zn, V, etc. Further, the high magnetic permeability material layer is generally provided between the magnetic layer and the base, but the present invention is characterized in that the base itself is made of a high magnetic permeability material. This high magnetic permeability substrate has the property of easily passing flux (in particular, the magnetic permeability μi is 10 2 or more, preferably
2000 or more, Hc is particularly 10 Oe or less, for example 1 Oe), and the axis of easy magnetization is preferably mainly in the inner surface direction of the magnetic layer. Such high magnetic permeability materials may be soft magnetic materials, such as pure iron, silicon steel, permalloy, supermalloy,
Cu−Zn ferrite, Ni−Zn ferrite, Mn−
Crystals made of Zn ferrite, sendust, miu metal, etc.; Fe-Co, Co-Zr, Co and Ti, Y,
Examples include alloys with Hf, Nb, Ta, or W, and amorphous alloys of transition metals such as Fe, Co, Ni, and semimetals such as Si, B, P, and C. In addition, the thickness of the high magnetic permeability material layer is preferably 0.05 to 5 μm, and 0.1
~3μm is more desirable. That is, below 0.05μm,
This is because if the thickness is too thin, the effect will be poor, and if it exceeds 5 μm, the effect will reach a saturated state and the reproduction output will not improve much. Further, the shape of the substrate that can be used in the magnetic recording medium of the present invention may be a sheet, a card, a disk, a drum, or a long tape. To produce this magnetic recording medium, the substrate can be closely supported on a fixed plate, or a predetermined material can be applied while the substrate is traveling. For this purpose, targets of magnetic material are sputtered using a facing target method in a processing chamber connected to an evacuation system such as a vacuum pump. 5 Examples The magnetic recording medium of the present invention will be explained in more detail below with reference to the drawings. First, in order to understand the present invention, a reference example thereof will be explained. FIG. 1 shows an example of a magnetic recording medium according to the same reference example, which shows a magnetic recording medium with a thickness of approximately
A soft magnetic layer 11 made of permalloy with a thickness of 1 μm is formed, and a perpendicular magnetization film 10 made of iron oxide with a thickness of about 1 μm is laminated thereon. Since the soft magnetic layer 11 is formed by a well-known sputtering method, the method for forming it will not be particularly explained here. In the magnetic recording medium according to this embodiment, the soft magnetic layer 11 is not provided in FIG. 1, and the base body 6 is made of permalloy. In order to form the perpendicular magnetization film (magnetic layer) 10,
A facing target sputtering method is used as a means for depositing the magnetic material onto the substrate. FIG. 2 shows a facing target sputtering device. In the drawing, 1 is a vacuum chamber, 2 is an evacuation system consisting of a vacuum pump etc. for evacuating the vacuum chamber 1, and 3 is an exhaust system that introduces a predetermined gas into the vacuum chamber 1 to raise the gas pressure to 10 -1 ~
This is a gas introduction system set at approximately 10 -4 Torr. The target electrodes are constructed as opposed target electrodes in which a pair of targets T 1 and T 2 are separated from each other by a target holder 4 and are placed facing each other in parallel. A magnetic field is generated between these targets by magnetic field generating means (not shown). On the other hand, the substrate 6 on which the magnetic thin film is to be formed is placed by the substrate holder 5 perpendicularly to the side between the opposing targets. In the sputtering device configured in this way,
A magnetic field is formed in a direction perpendicular to the surfaces of both targets T 1 and T 2 facing each other in parallel, and this magnetic field creates a gap between the plasma atmosphere generated between the targets T 1 and T 2 and the cathode fall area (i.e., the plasma atmosphere generated between the targets T 1 and T 2 ) . The γ electrons emitted by the impact of sputtering gas ions accelerated by the electric field on the target surface in the region between T1 and T2 ) are trapped in the space between the targets and moved toward the other opposing target . The γ electrons that have moved to the other target surface are reflected by the cathode fall section nearby. In this way, the γ electrons repeatedly move back and forth between the targets T 1 and T 2 while being constrained by the magnetic field. During this reciprocating motion, the γ electrons collide with the neutral atmospheric gas to generate ions and electrons of the atmospheric gas, and these products promote the release of γ electrons from the target and the ionization of the atmospheric gas. . Therefore, the target
A high-density plasma is formed in the space between T 1 and T 2 , and the target material is sufficiently sputtered and deposited as a magnetic material on the lateral substrate 6 . Compared to other flying methods, this facing target sputtering device enables film formation at a high deposition rate using high-speed sputtering, and the substrate is not directly exposed to plasma, allowing film formation at low substrate temperatures. This method is advantageous for forming a perpendicularly magnetized film. Furthermore, the incident energy of the magnetic film material sputtered onto the substrate by the facing target sputtering device is smaller than that of a normal sputtering device, so that the material is easily deposited directionally in the desired direction, resulting in perpendicular magnetization. It becomes easier to obtain a film with a structure suitable for recording. Next, a specific example of producing a magnetic recording medium using the above sputtering apparatus will be described. The preparation conditions were as follows. Target material Iron (contains 1 atomic % Co) Substrate Glass spacing between opposing targets 100 mm Magnetic field in sputtering space 100 Oe Target shape 100 mm diameter disk (5 mm thickness) Distance between substrate and target end 30 mm Back pressure in vacuum chamber 10 -6 Torr Introduced gas Ar + O 2 Introduced gas pressure 4×10 -3 Torr Sputter input power 420W In this way, as shown in FIG.
0 was obtained. Regarding this medium, the characteristics of the magnetic layer were evaluated by identifying the composition using an X-ray microanalyzer (XMA), the state of iron oxide using an X-ray diffraction method, and the magnetic properties using a sample vibrating magnetometer. The characteristics of the obtained magnetic recording medium were as follows. First, the ratio of the residual magnetization in both inward directions (M H ) and the residual magnetization in the direction perpendicular to the plane (M V ) is M V /
M H ≧0.5. That is, as illustrated in FIG. 3, a hysteresis curve during magnetization in the in-plane direction shown by the broken line and a hysteresis curve during magnetization in the perpendicular direction shown by the solid line were obtained, but when the applied magnetic field is zero The amount of magnetization at that time was defined as M H and M V. According to this, it is clear that the former hysteresis curve is smaller than the latter hysteresis curve, and M V ≧0.5M H , indicating that a magnetic layer suitable for perpendicular magnetization is formed. I understand. The coercive force was 920 oersted in the vertical direction and 750 oersted in the in-plane direction. This is a surprising fact for iron oxide-based magnetic layers. In addition, the composition of this magnetic recording medium was measured using an XMA (X-ray microanalyzer: "X-556" manufactured by Hitachi, Ltd.).
When measured with KEVEX-7000 model), it was found that Fe was the main peak and a small amount of Co was included. Furthermore, in order to investigate the state of iron oxide, measurements were taken using an X-ray diffraction device (JDX-10RA manufactured by JEOL Ltd., using a CuKα tube), and as shown in the table below, the magnetic layer did not contain iron oxide. Furthermore, it was observed using an electron microscope that this magnetic layer had an ordered structure in the direction perpendicular to the in-plane direction.

【表】 なお、上記のスパツタ法による製膜前に、基体
上の表面を同一スパツタ装置内でAr+によりボン
バードして表面清浄化処理したり、或いはベーキ
ングを施すか、高周波をかけて表面処理しておく
のが望ましい。 上記した実験と比較するために、上記作成条件
において、ターゲツト材を純鉄(Co含有せず)
として同様にスパツタした結果、得られた磁性薄
膜のMV/MHは0.5未満、保磁力は垂直方向で600
エルステツド、面内方向で500エルステツドであ
つた。 上記の如くに得られる磁気記録媒体は、磁性層
10の磁化容易軸をその面内方向に対しほぼ垂直
にすることができると共に、磁性層10下に高透
磁率の軟磁性層基体を設けていることが重要であ
る。以下においては、第1図に示した参考例によ
る媒体を例に挙げて説明するが、本実施例の媒体
でも同様である。 第4図aは、磁気記録時の状態を示すものであ
つて、図中の12の補助磁極であつて記録信号に
より励磁され、そこから媒体側へ磁界13が発生
している。軟磁性層11中では、面内方向に主磁
極14へ向けてフラツクス15が集中し、磁性層
10に主磁極14に対応した磁気記録がなされ
る。即ち、補助磁極から主磁極への磁束の集中が
強まり、垂直方向の磁束による磁化を高感度に行
なえる。また、第4図bは磁気記録後の残留磁化
状態を示すが、軟磁性層11の存在により、磁性
層10の記録部分16と17との間で軟磁性層1
1中をフラツクス18が流れ、この磁気還流効果
(馬蹄形磁化モード)で磁化を保持し、その減磁
作用を少なくすることができる。このために、垂
直方向の磁気記録に基づく再生出力を安定にかつ
高レベルで得ることができる。 第5図は、軟磁性層のある磁気記録媒体の再生
出力を曲線aで表わし、かつ上記軟磁性層を設け
ずに基体上に磁化膜を直接設けた磁気記録媒体の
再生出力を曲線bで示した実験データである。こ
の結果から明らかなように、軟磁性層のある媒体
では高密度、高出力で周波数特性の良い記録を行
なえるのに対し、軟磁性層を設けない場合には特
性が低下することが分る。なお、記録及び再生
は、実効ヘツドギヤツプ0.3μm、トラツク幅
100μmのリング型ヘツドを用いて行なつた。 また、本発明に基く磁気記録媒体はまた、出力
の経時変化が著しく少なくなることも確認され
た。第6図の曲線aは軟磁性層のある磁気記録媒
体を示すものであつて劣化試験によつても高出力
が安定に得られることが分る。しかし、軟磁性層
を設けない場合(曲線b)では、出力が低下して
しまう。但、この強制劣化試験は、記録密度30キ
ロビツト/インチの媒体(磁性層の膜厚は5000
Å)に対して80℃、85%RHの条件で出力測定す
ることによつて行なつた。媒体の記録/再生は、
実効ギヤツプ0.4μm、トラツク幅100μmのリング
型ヘツドを用いて行なつた。 次に、本発明による磁気記録媒体は、磁性層と
して酸化鉄を主成分とするものを用いているの
で、従来のCo−Cr系磁性層に比べて化学的、機
械的安定性等に著しく優れている。第7図は、上
記と同様の強制劣化試験を行なつた場合に得られ
た、酸化鉄系磁性層を用いた本発明による媒体
の、試料振動型磁力計(東英工業社製)で測定さ
れた残留磁束密度Brの経時変化aと、Co−Cr系
磁性層を用いた媒体の残留磁束密度Brの経時変
化cとを示すものである(△Brは残留磁束密度
の変化量)。これによれば、酸化鉄系磁性層では、
Co−Cr系磁性層よりBrの劣化が大幅に小さくな
ることが分る。なお、酸化鉄系磁性層で△Br/
Brが幾分低下しているのは、膜の組成である
Fe3O4の一部がγ−Fe2O3に移行したからである
と考えられる。また、1カ月(30日)後の観察結
果において、Co−Cr系磁性層の表面に斑点、く
もり、サビ等が生じていたが、酸化鉄系磁性層で
は表面状態に変化はみられなかつた。
[Table] Before forming a film using the sputtering method described above, the surface of the substrate may be cleaned by bombarding it with Ar + in the same sputtering device, baking, or surface treatment using high frequency. It is desirable to keep it. In order to compare with the experiment described above, the target material was pure iron (without Co) under the above production conditions.
As a result of sputtering in a similar manner as
It was 500 oersted in the in-plane direction. In the magnetic recording medium obtained as described above, the axis of easy magnetization of the magnetic layer 10 can be made almost perpendicular to the in-plane direction thereof, and a soft magnetic layer base with high magnetic permeability is provided under the magnetic layer 10. It is important to be present. The following description will be made using the medium according to the reference example shown in FIG. 1 as an example, but the same applies to the medium according to this embodiment. FIG. 4a shows the state during magnetic recording, in which the 12 auxiliary magnetic poles in the figure are excited by a recording signal, and a magnetic field 13 is generated from there toward the medium side. In the soft magnetic layer 11, flux 15 is concentrated in the in-plane direction toward the main magnetic pole 14, and magnetic recording corresponding to the main magnetic pole 14 is performed in the magnetic layer 10. That is, the concentration of magnetic flux from the auxiliary magnetic pole to the main magnetic pole is strengthened, and magnetization by vertical magnetic flux can be performed with high sensitivity. Further, FIG. 4b shows the residual magnetization state after magnetic recording, and due to the existence of the soft magnetic layer 11, the soft magnetic layer 1
A flux 18 flows through the magnet 1, and this magnetic reflux effect (horseshoe magnetization mode) can maintain magnetization and reduce the demagnetization effect. For this reason, it is possible to stably obtain a high-level reproduction output based on perpendicular magnetic recording. In FIG. 5, curve a represents the reproduction output of a magnetic recording medium with a soft magnetic layer, and curve b represents the reproduction output of a magnetic recording medium in which a magnetized film is directly provided on the base without the soft magnetic layer. This is the experimental data shown. As is clear from these results, media with a soft magnetic layer can perform recording at high density, high output, and with good frequency characteristics, whereas when the soft magnetic layer is not provided, the characteristics deteriorate. . For recording and playback, the effective head gap is 0.3 μm and the track width is
A 100 μm ring head was used. It has also been confirmed that the magnetic recording medium according to the present invention exhibits significantly less change in output over time. Curve a in FIG. 6 shows a magnetic recording medium with a soft magnetic layer, and it can be seen that high output can be stably obtained even in a deterioration test. However, when the soft magnetic layer is not provided (curve b), the output decreases. However, this forced deterioration test was conducted on media with a recording density of 30 kilobits/inch (the thickness of the magnetic layer was 5000 kbit/inch).
This was done by measuring the output under conditions of 80°C and 85% RH. Recording/playback of media is
A ring-shaped head with an effective gap of 0.4 μm and a track width of 100 μm was used. Next, since the magnetic recording medium according to the present invention uses a magnetic layer containing iron oxide as the main component, it has significantly superior chemical and mechanical stability compared to conventional Co-Cr magnetic layers. ing. Figure 7 shows the results of a forced deterioration test similar to the one described above, as measured by a sample vibrating magnetometer (manufactured by Toei Kogyo Co., Ltd.) of a medium according to the present invention using an iron oxide magnetic layer. Fig. 3 shows a change over time a in the residual magnetic flux density Br, and a change over time c in the residual magnetic flux density Br of a medium using a Co--Cr magnetic layer (ΔBr is the amount of change in the residual magnetic flux density). According to this, in the iron oxide magnetic layer,
It can be seen that the deterioration of Br is significantly smaller than that of the Co-Cr magnetic layer. In addition, in the iron oxide magnetic layer, △Br/
The reason why Br decreases somewhat is due to the composition of the film.
This is considered to be because a part of Fe 3 O 4 was transferred to γ-Fe 2 O 3 . In addition, observation results after one month (30 days) showed that spots, cloudiness, rust, etc. had occurred on the surface of the Co-Cr magnetic layer, but no change was observed in the surface condition of the iron oxide magnetic layer. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を説明をするためのものであつ
て、第1図は磁気記録媒体の断面図、第2図は対
向ターゲツトスパツタ装置の概略断面図、第3図
は磁気記録媒体のヒステリシス曲線図、第4図a
は磁気記録時の概略図、第4図bは残留磁化状態
の概略図、第5図は磁気記録媒体の再生特性を比
較して示すグラフ、第6図は磁気記録媒体の再生
特性の経時変化を比較して示すグラフ、第7図は
磁気記録媒体の残留磁束密度の経時変化を比較し
て示すグラフである。 なお、図面に示された符号において、1……真
空槽、2……排気系、3……ガス導入系、4,5
……ホルダー、6……基体、10……磁性層、1
1……軟磁性層、12……補助磁極、14……主
磁極、T1,T2……ターゲツト、である。
The drawings are for explaining the present invention, and FIG. 1 is a sectional view of a magnetic recording medium, FIG. 2 is a schematic sectional view of a facing target sputtering device, and FIG. 3 is a hysteresis curve of the magnetic recording medium. Figure, Figure 4a
is a schematic diagram during magnetic recording, Figure 4b is a schematic diagram of the residual magnetization state, Figure 5 is a graph comparing the reproduction characteristics of the magnetic recording medium, and Figure 6 is the change over time in the reproduction characteristics of the magnetic recording medium. FIG. 7 is a graph showing a comparison of changes in residual magnetic flux density of magnetic recording media over time. In addition, in the symbols shown in the drawings, 1...vacuum chamber, 2...exhaust system, 3...gas introduction system, 4, 5
...Holder, 6...Base, 10...Magnetic layer, 1
1...Soft magnetic layer, 12...Auxiliary magnetic pole, 14...Main magnetic pole, T1 , T2 ...Target.

Claims (1)

【特許請求の範囲】 1 基体上に磁性層が設けられている磁気記録媒
体において、前記基体自体が高透磁率材料で形成
され、この高透磁率の基体に直接接して前記磁性
層が形成され、この磁性層が、 (a) アルミニウム、コバルト、コバルト−マンガ
ン、亜鉛、コバルト−亜鉛、リチウム、クロ
ム、チタン、リチウム−クロム、マグネシウ
ム、マグネシウム−ニツケル、マンガン−亜
鉛、ニツケル、ニツケル−アルミニウム、ニツ
ケル−亜鉛、銅、銅−マンガン、銅−亜鉛及び
バナジウムからなる群より選ばれた添加物質を
含む鉄をターゲツト材として用いた対向ターゲ
ツトスパツタ法により、形成されたものであ
り、 (b) 内面方向での残留磁化(MH)と、その面に
対し垂直方向での残留磁化(MV)との比
(MV/MH)が0.5以上であり、 (c) 前記添加物質を含み、酸化鉄を主成分とする 連続磁性薄膜からなつていることを特徴とする磁
気記録媒体。
[Claims] 1. In a magnetic recording medium in which a magnetic layer is provided on a substrate, the substrate itself is formed of a high magnetic permeability material, and the magnetic layer is formed in direct contact with this high magnetic permeability substrate. , this magnetic layer contains (a) aluminum, cobalt, cobalt-manganese, zinc, cobalt-zinc, lithium, chromium, titanium, lithium-chromium, magnesium, magnesium-nickel, manganese-zinc, nickel, nickel-aluminum, nickel - formed by a facing target sputtering method using iron as a target material containing an additive selected from the group consisting of zinc, copper, copper-manganese, copper-zinc and vanadium; (b) inner surface; The ratio (M V /M H ) of the residual magnetization in the direction (M H ) to the residual magnetization (M V ) in the direction perpendicular to the surface is 0.5 or more, and (c) contains the additive substance, A magnetic recording medium characterized by being made of a continuous magnetic thin film whose main component is iron oxide.
JP58031935A 1983-02-28 1983-02-28 Magnetic recording medium Granted JPS59157831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031935A JPS59157831A (en) 1983-02-28 1983-02-28 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031935A JPS59157831A (en) 1983-02-28 1983-02-28 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS59157831A JPS59157831A (en) 1984-09-07
JPH0315246B2 true JPH0315246B2 (en) 1991-02-28

Family

ID=12344824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031935A Granted JPS59157831A (en) 1983-02-28 1983-02-28 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59157831A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134706A (en) * 1976-05-06 1977-11-11 Univ Tohoku Vertical magnetic recorder reproducer and system therefor
JPS5434205A (en) * 1977-08-22 1979-03-13 Canon Inc Magnetic recording medium
JPS5451810A (en) * 1977-09-30 1979-04-24 Shiyunichi Iwasaki Magnetic recording regenerative apparatus
JPS57158380A (en) * 1981-03-26 1982-09-30 Teijin Ltd Counter target type sputtering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134706A (en) * 1976-05-06 1977-11-11 Univ Tohoku Vertical magnetic recorder reproducer and system therefor
JPS5434205A (en) * 1977-08-22 1979-03-13 Canon Inc Magnetic recording medium
JPS5451810A (en) * 1977-09-30 1979-04-24 Shiyunichi Iwasaki Magnetic recording regenerative apparatus
JPS57158380A (en) * 1981-03-26 1982-09-30 Teijin Ltd Counter target type sputtering device

Also Published As

Publication number Publication date
JPS59157831A (en) 1984-09-07

Similar Documents

Publication Publication Date Title
CA1315612C (en) Perpendicular magnetic storage medium
JPS63119209A (en) Soft magnetic thin-film
Inagaki et al. Ferrite thin films for high recording density
US4609593A (en) Magnetic recording medium
JPH0315245B2 (en)
JPS58100412A (en) Manufacture of soft magnetic material
JPH0315246B2 (en)
JPS59147422A (en) Formation of magnetic layer
JPH0512765B2 (en)
JPS6039157A (en) Manufacture of amorphous magnetic alloy
JPS59157830A (en) Magnetic recording medium
JPH0315244B2 (en)
JPS59157827A (en) Magnetic recording medium
JPH0316690B2 (en)
JPS59148120A (en) Magnetic recording medium
JPS59157833A (en) Magnetic recording medium
JP2808547B2 (en) Composite magnetic head
JP2727274B2 (en) Soft magnetic thin film
JPS59144032A (en) Magnetic recording medium
JPH0315248B2 (en)
JPS59148122A (en) Magnetic recording medium
JPS59148318A (en) Formation of magnetic layer
JPH0573877A (en) Magnetic recording medium
JPH03129707A (en) Soft-magnetic thin film and magnetic head using same
JPS59148121A (en) Magnetic recording medium