JPH03158781A - Method for estimating residual capacity of sodium-sulfur battery - Google Patents
Method for estimating residual capacity of sodium-sulfur batteryInfo
- Publication number
- JPH03158781A JPH03158781A JP1296683A JP29668389A JPH03158781A JP H03158781 A JPH03158781 A JP H03158781A JP 1296683 A JP1296683 A JP 1296683A JP 29668389 A JP29668389 A JP 29668389A JP H03158781 A JPH03158781 A JP H03158781A
- Authority
- JP
- Japan
- Prior art keywords
- series
- discharge
- depth
- units
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 24
- 238000007599 discharging Methods 0.000 claims abstract description 17
- 238000005259 measurement Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims 1
- 238000012937 correction Methods 0.000 abstract description 4
- 239000011734 sodium Substances 0.000 description 23
- 229910052708 sodium Inorganic materials 0.000 description 17
- 229910052717 sulfur Inorganic materials 0.000 description 15
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 7
- HYHCSLBZRBJJCH-UHFFFAOYSA-N sodium polysulfide Chemical compound [Na+].S HYHCSLBZRBJJCH-UHFFFAOYSA-N 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- RPMPQTVHEJVLCR-UHFFFAOYSA-N pentaaluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3] RPMPQTVHEJVLCR-UHFFFAOYSA-N 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ナトリウム−硫黄電池に係り、特に、電池の
残存容量を精度よく推定するとともに、電池内の単電池
破損の有無1個数を検査するに好適な電圧測定法及びデ
ータ処理方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to sodium-sulfur batteries, and in particular, to accurately estimate the remaining capacity of the battery and to inspect the number of damaged single cells in the battery. The present invention relates to a voltage measurement method and data processing method suitable for
従来の技術としては、電池の通電電流を積算することに
より、初装荷時を始点として放電深度を算出し、理論放
電容量との差から残存容量を得る方法が一般的であり、
測定精度を上げることにより残存容量の精度を上げるよ
うにしていた。鉛蓄電池の場合には、電解液の比重を測
定して放電深度を推定する方法もある。また、特殊な方
法として、特開昭60−166875号公報に記載のよ
うに、直流電圧に重畳して、交流電圧を印加し流れる電
流の高調波を測定し、予め判っている残存容量状態での
値と照合して、残存容量を推定する方法も提案されてい
る。しかしながら、精度よく残存容量を推定するための
有効な手段は、確立されていない。Conventional technology generally involves calculating the depth of discharge starting from the time of initial loading by integrating the current flowing through the battery, and then obtaining the remaining capacity from the difference from the theoretical discharge capacity.
The accuracy of the remaining capacity was increased by increasing the measurement accuracy. In the case of lead-acid batteries, there is also a method of estimating the depth of discharge by measuring the specific gravity of the electrolyte. In addition, as a special method, as described in JP-A-60-166875, an AC voltage is applied superimposed on a DC voltage and the harmonics of the flowing current are measured, and the remaining capacity state is determined in advance. A method has also been proposed for estimating the remaining capacity by comparing it with the value of . However, an effective means for accurately estimating remaining capacity has not been established.
しかしながら、上記従来技術には以下の問題点がある。 However, the above conventional technology has the following problems.
第1の例では、多数回の充放電サイクルを繰返す間に電
流値及び積分時の誤差が警積して、精度が低下する点、
及び、基本単位である単電池を多数本、直並列接続する
組電池の場合には、上記単電池の破損により、組電池内
の電流の配分が大きく変り、外部電流の積算から得られ
る放電深度は。In the first example, errors in current value and integration accumulate while repeating a large number of charge/discharge cycles, resulting in a decrease in accuracy;
In the case of an assembled battery in which a large number of single cells, which are the basic unit, are connected in series and parallel, damage to the above-mentioned single cells will greatly change the distribution of current within the assembled battery, and the depth of discharge obtained from the integration of external currents will decrease. teeth.
単電池の放電深度を表さなくなるという問題がある。逆
に、単電池毎に電流を測定しようとするならば、膨大な
甜定量となる上、誤差の観点から有効な手段とはならな
い。There is a problem in that it no longer represents the depth of discharge of a single cell. On the other hand, if one were to try to measure the current for each cell, it would require a huge amount of quantitative determination, and would not be an effective method in terms of errors.
第2の比重測定の例は、鉛電池等、電解液を用いる電池
では可能であるが、ナトリウム−硫黄電池のように、固
体電解質を用いる電池には適用できない。The second example of specific gravity measurement is possible for batteries that use electrolytes, such as lead batteries, but cannot be applied to batteries that use solid electrolytes, such as sodium-sulfur batteries.
第3の例では、予め残存容量と高調波成分との関係を得
ておく必要がある。In the third example, it is necessary to obtain the relationship between the remaining capacity and harmonic components in advance.
本発明の目的は、単電池を多数本、直並列接続したナト
リウム−硫黄電池において、予め測定する必要なく、精
度よく残存容量を推定することにある。An object of the present invention is to accurately estimate the remaining capacity of a sodium-sulfur battery in which a large number of single cells are connected in series and parallel, without the need for prior measurement.
上記目的を達成するための本発明方法は、ナトリウム硫
黄電池内で単電池を直並列接続した最小単位、つまり、
外部回路を開いた際にも循環電流がその内部で流れ得る
閉じた回路を持つ単位毎に起電力及びそれに対応した理
論的な放電深度を測定した後、それらの起電力の差異か
ら破損単電池の個数を推定して、その組電池単位内の単
電池に流れる電流値の補正係数を求め、かつ、この補正
係数と上記放電深度の内、最大の深度を示した放電深度
とを用いて、電池全体の残存容量を算定するという方法
である。The method of the present invention for achieving the above object consists of the minimum unit of cells connected in series and parallel in a sodium-sulfur battery, that is,
After measuring the electromotive force and the corresponding theoretical depth of discharge for each unit that has a closed circuit in which a circulating current can flow even when the external circuit is opened, it is possible to determine whether the battery is damaged based on the difference in electromotive force. Estimate the number of cells, find a correction coefficient for the current value flowing through the single cells in the assembled battery unit, and use this correction coefficient and the depth of discharge that indicates the maximum depth among the above depths of discharge, This method calculates the remaining capacity of the entire battery.
また、上記起電力を測定する際には、充放電電流停止直
後の電圧変化を指数関数を含む関数形に近似することに
よって、極めて長時間後に漸近していく真の起電力の値
を短時間に推定することができる。In addition, when measuring the electromotive force mentioned above, by approximating the voltage change immediately after the charging/discharging current stops to a functional form including an exponential function, the true electromotive force value, which approaches asymptotically after an extremely long period of time, can be measured for a short time. It can be estimated that
上記の構成によれば、ナトリウム硫黄電池の充放電停止
時の残存容量を短時間の内に算定し、これを始点として
、従来通り、電池の通電電流を積算し、かつ、上記補正
係数を掛けることにより、長時間の充放電サイクルの繰
返しが続いても、精度の高い残存容量が常時得られるこ
とになるとともに、破損単電池の個数が推定できること
から、電池の補修時間の推定が可能となる。According to the above configuration, the remaining capacity of the sodium-sulfur battery when charging and discharging is stopped is calculated within a short time, and using this as a starting point, the battery current is integrated as before, and multiplied by the above correction coefficient. This makes it possible to constantly obtain a highly accurate remaining capacity even after repeated charge/discharge cycles over a long period of time, and because it is possible to estimate the number of damaged cells, it is also possible to estimate the battery repair time. .
以下本発明の作用M理を適宜図面を用いて詳述する。The operation principle of the present invention will be explained in detail below using appropriate drawings.
ナトリウム硫黄電池の最小構成単位である単電池は、負
極活物質として溶融ナトリウムを、正極活物質として硫
黄あるいは多硫化ナトリウムを用い、電解質として、ナ
トリウムイオン伝導性を有するβ″−アルミナ等の固体
電解質を用いる。放電時には、ナトリウムは電子を遊離
してイオンとなり、固体電解質を通って正極内に入って
、硫黄と反応して多硫化ナトリウムとなり、この際、外
部から流れこんでくる電子を結合して中性化して、放電
反応を終える。正極内では、放電が進むにつれてナトリ
ウムが増加し、Na2S、、Na、S、。A single cell, which is the smallest structural unit of a sodium-sulfur battery, uses molten sodium as the negative electrode active material, sulfur or sodium polysulfide as the positive electrode active material, and a solid electrolyte such as β''-alumina that has sodium ion conductivity as the electrolyte. During discharge, sodium liberates electrons and becomes ions, which enter the positive electrode through the solid electrolyte and react with sulfur to form sodium polysulfide.At this time, it combines electrons flowing in from the outside. The discharge reaction is completed by neutralization.In the positive electrode, as the discharge progresses, sodium increases and becomes Na2S, Na, S, and so on.
Na、SJ、というように、多硫化ナトリウムの硫化度
が低下していく。通常、Na□S、の融点が約285℃
であり、Na、S、となると、融点が1000℃以上に
上昇してしまうため、運転温度を300〜350℃程度
として、Na、S、を放電限度とする6つまり、Na、
S□に達するに必要なNaの量を電荷量に換算すること
により、理論放電容量とすることができる。実用上は、
ナトリウムがNa、S、をこえて供給されても、多硫化
ナトリウムが正極内で部分的に凝固し始めて、内部抵抗
が上昇するため、電池の機能が損われることになり。The sulfidity of sodium polysulfide decreases as Na, SJ, and so on. Usually, the melting point of Na□S is about 285℃
When it comes to Na, S, the melting point rises to over 1000°C, so the operating temperature is set to about 300 to 350°C, and the discharge limit is set to Na, S. 6 In other words, Na,
The theoretical discharge capacity can be obtained by converting the amount of Na required to reach S□ into the amount of charge. In practical terms,
Even if sodium is supplied in excess of Na and S, sodium polysulfide will begin to partially solidify within the positive electrode, increasing internal resistance and impairing battery functionality.
Na2S、を放電限度とすることが適当である。It is appropriate to set the discharge limit to Na2S.
また、ナトリウムがNa、S、に達するまで供給されな
いように電池を構成する場合には、ナトリウム量を電荷
量に換算した値をそのまま放電限度とし得る1通常は、
ナトリウムと硫黄の量のモル比を2=3程度として、高
いエネルギ密度を得られるように単電池を構成する。充
電時には、起電力よりも高い電圧を外部から逆にかけて
やることにより、多硫化ナトリウムから電子を取ってイ
オン化し、イオンとなったナトリウムが固体電解質を放
電時と逆に通過して、負極内に戻り、そこで電子を受は
取って中性化して充電反応を終る。この時、充電が進ん
で正極内の多硫化ナトリウムの硫黄の割合が多くなると
、硫黄単体が析出するようになるが、硫黄は電子伝導性
を有しないため、充電末期には、高い内部抵抗を有する
ようになる。In addition, if the battery is constructed in such a way that sodium is not supplied until Na, S,
The unit cell is configured so that a high energy density can be obtained by setting the molar ratio of sodium and sulfur to about 2=3. During charging, by applying a voltage higher than the electromotive force from the outside in the opposite direction, electrons are taken from sodium polysulfide and it is ionized.The ionized sodium passes through the solid electrolyte in the opposite direction to that during discharging, and enters the negative electrode. It returns, where it picks up electrons and becomes neutral, completing the charging reaction. At this time, as charging progresses and the proportion of sulfur in the sodium polysulfide in the positive electrode increases, elemental sulfur begins to precipitate, but since sulfur does not have electronic conductivity, it has a high internal resistance at the end of charging. come to have.
そこで通常は、上記放電容量を100%として10〜1
5%程度が実用上の充電限度となり、正極内に若干のナ
トリウムを残した状態で充電を終了する。従って、通常
の運転領域は、放電容量に対して、10〜15%の位置
から、最大100%の間となる。Therefore, the discharge capacity is usually 10 to 1, assuming the above discharge capacity as 100%.
The practical charging limit is about 5%, and charging ends with some sodium remaining in the positive electrode. Therefore, the normal operating range ranges from 10 to 15% to a maximum of 100% of the discharge capacity.
第2図は、ナトリウム−硫黄電池の起電力を示している
。ナトリウム−硫黄電池の起電力は、放電深度によって
異なる変化を示し、正極内のナトリウムと硫黄のモル比
が2:5に達するまでは、正極内は、硫黄単体とNa、
S、の混合体で、起電力は約2.07Vで一定となる。Figure 2 shows the electromotive force of a sodium-sulfur battery. The electromotive force of a sodium-sulfur battery shows different changes depending on the depth of discharge, and until the molar ratio of sodium and sulfur in the positive electrode reaches 2:5, the positive electrode contains elemental sulfur, Na,
In the mixture of S, the electromotive force is constant at about 2.07V.
Na、S、の状態より放電が進行した状態では、Na、
S、、Na。In the state where the discharge has progressed from the state of Na, S, Na,
S,,Na.
S、、Na、S、、等の混合体となり、総体としては、
放電深度に対してほぼ直線的に低下し、Na2S5での
約1.76Vに達する。従って、Na。It becomes a mixture of S, Na, S, etc., and as a whole,
It decreases almost linearly with the depth of discharge, reaching about 1.76 V for Na2S5. Therefore, Na.
S、より進んだ放電深度では、起電力を知ることにより
、放電深度を同定することができる。S, at more advanced depths of discharge, the depth of discharge can be identified by knowing the electromotive force.
しかし、この理論値は、ナトリウムと硫黄の組成が均一
である場合の値であり、実際には、有限の体積を持つ正
極内で起電力の異なる組成が分布する場合があり、外部
から真の起電力を測定するのは困難な場合が多い、つま
り、第3図に示すように、放電停止後の電圧は、ゆっく
りと真の起電力に漸近していく変化が起こり、真の起電
力に漸近するまでには、数時間がかかる。However, this theoretical value is the value when the composition of sodium and sulfur is uniform; in reality, different compositions of electromotive force may be distributed within the positive electrode, which has a finite volume, and the true It is often difficult to measure the electromotive force; in other words, as shown in Figure 3, the voltage after discharge stops slowly approaches the true electromotive force; It takes several hours for it to reach an asymptotic state.
本発明においては、この電圧の変化を、V (t)=E
@−(Eo−vo)e ” ”−(1)に関数近似す
ることによって、充放電停止後、短時間の内に真の起電
力を推定できるというものである。ここでV (t)は
、測定される電圧値を、E、はV (t)が漸近してい
く真の起電力を、■。In the present invention, this voltage change is defined as V (t)=E
By approximating the function to @-(Eo-vo)e""-(1), the true electromotive force can be estimated within a short time after charging and discharging are stopped. Here, V (t) is the measured voltage value, and E is the true electromotive force that V (t) approaches asymptotically.
は、時刻1=0における電圧値を各々表わしている。こ
れまでに述べた事柄は、単電池を対象にしているが、こ
の手法は、以下の実施例で説明する単電池を多数個直並
列接続した組電池にも有効であることが分っている。respectively represent voltage values at time 1=0. Although the matters described so far are aimed at single cells, this method has also been found to be effective for assembled batteries in which many single cells are connected in series and parallel, as explained in the following example. .
以下本発明の一実施例を図面を参考にして説明する。 An embodiment of the present invention will be described below with reference to the drawings.
はじめに具体的なナトリウム−硫黄電池の構成例とその
動作について述べる。一般にナトリウム−硫黄電池の単
電池は、製作上の制約1等から数十ワット程度であるが
、実用上1例えば、電力貯蔵用や電気自動車用に用いる
には、数キロワットから数メガワットの出力が必要とな
る。そこで、単電池を多数本直並列に接続して、所定の
電圧、電流を得るようにする。First, a specific example of the configuration of a sodium-sulfur battery and its operation will be described. In general, a single sodium-sulfur battery has an output of several tens of watts due to manufacturing constraints, but in practical terms, for example, for use in power storage or electric vehicles, an output of several kilowatts to several megawatts is required. It becomes necessary. Therefore, a large number of single cells are connected in series and parallel to obtain a predetermined voltage and current.
第1図は、このように考えて構成されたナトリウム−硫
黄電池の組電池の構成例を示す、第1図において、単電
池2は、1本以上を直列接続されて直列単位4を作る。FIG. 1 shows an example of the configuration of a sodium-sulfur battery assembly constructed in this way. In FIG. 1, one or more cells 2 are connected in series to form a series unit 4.
これを複数本並列接続して直並列単位6を構成する。さ
らに、これを直列に1ヶ以上接続して組電池8とする。A series-parallel unit 6 is constructed by connecting a plurality of these in parallel. Furthermore, one or more of these are connected in series to form an assembled battery 8.
なお、ナトリウム−硫黄電池は、高温作動型であるため
、通常、断熱構造体である保温箱10に収納される。こ
のように構成された組電池では、単電池2の定格電流を
工。、平均放電電圧をv0、直並列単位6の中の直列数
をn、並列数をm、直並列単位6の個数をNとすれば、
外部端子12a、12bの両端では、およそ、mI。の
定格電流−にてnNV、の平均電圧が得られる。電圧計
14は直並列単位6の両端の電圧を計るためのものであ
り、電流計16は組電池8の通電電流を計るためのもの
である。Note that since the sodium-sulfur battery operates at high temperatures, it is normally housed in a heat-insulating box 10 that is a heat-insulating structure. In the assembled battery configured in this way, the rated current of the single cell 2 is calculated. , if the average discharge voltage is v0, the number of series in series-parallel units 6 is n, the number of parallel units is m, and the number of series-parallel units 6 is N, then
Approximately mI at both ends of external terminals 12a and 12b. At a rated current of -, an average voltage of nNV is obtained. The voltmeter 14 is for measuring the voltage across the series-parallel unit 6, and the ammeter 16 is for measuring the current flowing through the assembled battery 8.
この組電池8は、運転、温度管理、保守の単位であり、
通常数キロワットから数十キロワットの出力に構成され
る。さらに、大きな電力の蓄電が必要な場合には、この
組電池を直列あるいは並列接続する。This assembled battery 8 is a unit for operation, temperature control, and maintenance.
Usually configured with outputs ranging from a few kilowatts to several tens of kilowatts. Furthermore, if a large amount of power needs to be stored, these assembled batteries are connected in series or in parallel.
この組電池8の動作は、前記単電池2の動作を重ね合わ
せたものに他ならない、従ってすべてのの単電池2が健
全に動作している場合には、第2図に示した起電力の変
化をnN倍した形の起電力をもつ、直並列単位6の内部
では、直列単位4の抵抗値の差異によって、電流の分配
は均一とはならず、従って、直列単位毎に放電深度が異
なる状態で充放電が進行するが、起電力は、それら異な
る放電深度の平均値に対応した値である。充放電を停止
した直後には、電圧計14で測定される直並列単位6の
電圧は、第3図に示したような変化を示す。この休止中
には、放電深度、即ち、起電力の異なる直列単位4の間
で電荷のやりとりが起こっている。つまり、放電深度の
浅い直列単位は起電力が高いため、他の直列単位を充電
する形で放電する。従って、測定される電圧の変化は、
起電力の平均値の変化であり、前記単電池2の内部の変
化による起電力の変化を5倍したものである。The operation of this assembled battery 8 is nothing but a superposition of the operation of the single cells 2. Therefore, if all the single cells 2 are working properly, the electromotive force shown in FIG. Inside the series-parallel unit 6, which has an electromotive force in the form of nN times the change, the current distribution is not uniform due to the difference in the resistance value of the series unit 4, and therefore the depth of discharge differs for each series unit. Charging and discharging progress in this state, and the electromotive force is a value corresponding to the average value of these different depths of discharge. Immediately after stopping charging and discharging, the voltage of the series-parallel unit 6 measured by the voltmeter 14 shows a change as shown in FIG. 3. During this pause, charge is exchanged between the series units 4 having different depths of discharge, that is, different electromotive forces. In other words, since the series unit with a shallow discharge depth has a high electromotive force, it discharges while charging other series units. Therefore, the change in the measured voltage is
This is the change in the average value of the electromotive force, which is the change in the electromotive force due to the change inside the cell 2 multiplied by five.
従ってこの直並列単位6の充放電停止直後の電圧変化を
前記単電池の場合と同様に関数近似することによって、
短時間で直並列単位6の起電力、すなわち放電深度を知
ることができる。Therefore, by approximating the voltage change of the series-parallel unit 6 immediately after charging and discharging is stopped as a function as in the case of the single cell,
The electromotive force of the series-parallel unit 6, that is, the depth of discharge can be known in a short time.
組電池8の中の全ての単電池2が健全な場合には、上述
のようにして得られる各直並列単位6の放電深度は等し
い。何故ならば1通電される電流は同じだからである。When all the cells 2 in the assembled battery 8 are healthy, the depth of discharge of each series-parallel unit 6 obtained as described above is equal. This is because the current supplied is the same.
しかしながら、単電池が破損した場合には状況は異なる
。However, the situation is different if the cell is damaged.
ナトリウム−硫黄電池の破損は、基本的には、固体電解
質の劣化破損である。その結果、確実に起こるのは、起
電力の低下である。単電池外部での短絡でも、外部から
見れば、起電力の低下と等価である。内部抵抗の変化は
一定ではなく、健全な状態より大きくなる場合も小さく
なる場合もあり、また経時変化も様々である。Damage to sodium-sulfur batteries is basically due to deterioration of the solid electrolyte. As a result, what definitely occurs is a decrease in the electromotive force. Even a short circuit outside the cell is equivalent to a decrease in electromotive force when viewed from the outside. Changes in internal resistance are not constant; they may become larger or smaller than in a healthy state, and changes over time vary.
今、単電池2が破損し、起電力が低下すると、直並列単
位6の他の健全な直列単位4から起電力の差に対応した
電流が流れこむ。その結果、破損単電池を含む直列単位
は充電され、直列単位内の健全な単電池は、前述のよう
に充電末期の高抵抗域に達する。そして、破損した組電
池を含む直列単位は実質的に開路状態となる。この過程
は、直列数n、並列数m、および破損単電池の内部抵抗
値によって進行速度が異なるが、最終的には、破損した
単電池を含む直列単位は実質的に切離されるので、当初
m本あった直列単位4は(m−1)本となる。Now, when the cell 2 is damaged and the electromotive force decreases, a current corresponding to the difference in electromotive force flows from another healthy series unit 4 of the series-parallel unit 6. As a result, the series unit including the damaged cell is charged, and the healthy cell in the series unit reaches the high resistance region at the end of charging as described above. Then, the series unit including the damaged assembled battery becomes substantially open circuited. This process progresses at different speeds depending on the number n in series, the number m in parallel, and the internal resistance value of the damaged cells, but in the end the series unit including the damaged cells is virtually disconnected, so the initial The number of serial units 4, which were m, becomes (m-1).
また、以上の過程が進行する間、健全な直列単位は実質
的に放電量の方が充電量より多くなり、破損した時点で
の破損した単電池を含む直列単位の放電深度分の充電量
を負担する。従って、最大で放電容量の1 / m −
1だけ、放電側に放電深度がずれる。また、破損した単
電池を含む直並列単位内の健全な直列単位は、健全な直
並列単位内の直列単位に比べて、平均でm/m−1倍の
電流が流れる。従って、健全な直並列単位と破損した単
電池を含む直並列単位の放電深度を比べれば、必らず後
者の方が深度が進んでいることになる。In addition, while the above process is progressing, the amount of discharge of a healthy series unit is actually greater than the amount of charge, and the amount of charge corresponding to the depth of discharge of the series unit including the damaged cell at the time of damage is increased. bear. Therefore, at maximum 1/m − of discharge capacity
The depth of discharge shifts by 1 to the discharge side. Also, a healthy series unit in a series-parallel unit containing a damaged cell carries an average of m/m-1 times more current than a series unit in a healthy series-parallel unit. Therefore, if we compare the depth of discharge of a healthy series-parallel unit and a series-parallel unit containing a damaged cell, the latter will necessarily have a deeper depth of discharge.
この結果、組電池内の直並列単位毎の電圧を測定して、
得られた放電深度の比較を行なうことにより、特定の直
並列単位内が健全であるかどうかのチエツクでき、放電
深度がずれていれば、単電池の破損が起こっていること
が分り、それを記録することができる。As a result, the voltage of each series-parallel unit in the assembled battery was measured,
By comparing the obtained depths of discharge, it is possible to check whether a particular series-parallel unit is healthy or not. If the depth of discharge deviates, it can be determined that damage has occurred in the cell, and this can be checked. Can be recorded.
さて、組電池の残存容量は、最も放電深度の進んだ直並
列単位内の単電池が放電容量に達するまでの組電池外部
から見た通電量であるから、その直並列単位内の健全な
直列単位数をkとすれば、となる。Now, the remaining capacity of an assembled battery is the amount of current that passes through the battery in the series-parallel unit with the most advanced discharge depth, as seen from the outside of the assembled battery, until the single cell in the series-parallel unit with the most advanced discharge depth reaches its discharge capacity. If the number of units is k, then
以上の様に、組電池8内の直並列単位毎に充放電停止直
後の電圧変化を計測して、その起電力を算定し放電深度
を得、相互の値を比較することによって、最大放電深度
と、各直並列単位内の健全な直列単位数を知ることがで
きる。これを始点として以後、を流計16で得られる積
算電流量に1/に倍したものを放(充)電量に換算して
深度を更新していけば、常時、運転中においても、残存
容量を知ることができるようになる。As described above, by measuring the voltage change immediately after charging and discharging is stopped for each series-parallel unit in the assembled battery 8, calculating the electromotive force to obtain the depth of discharge, and comparing the mutual values, the maximum discharge depth can be determined. Then, we can know the healthy number of series units in each series-parallel unit. Using this as a starting point, if you update the depth by converting the accumulated current obtained by the current meter 16 to 1/1 to the discharge (charge) amount, the remaining capacity can be maintained at all times even during operation. You will be able to know.
以下、本発明の一実施例を第4図により説明する。An embodiment of the present invention will be described below with reference to FIG.
直並列単位6を直列に接続し、保温箱10に収納した組
電池8において、電圧計14は直並列単位6の両端の電
圧を測定し、電流計16は外部端子12a、12bを流
れる電流を測定する。直並列単位6の起電力E(符号1
8)は、充放電停止直後の直並列単位6の電圧の時間変
化から推定され。In the assembled battery 8 where the series-parallel units 6 are connected in series and stored in the heat insulation box 10, the voltmeter 14 measures the voltage across the series-parallel units 6, and the ammeter 16 measures the current flowing through the external terminals 12a and 12b. Measure. Electromotive force E of series-parallel unit 6 (symbol 1
8) is estimated from the time change in the voltage of the series-parallel unit 6 immediately after charging and discharging is stopped.
直並列単位6の放電深度D(符号20)は、前記起電力
18と理論値を照合することにより得られる。The depth of discharge D (symbol 20) of the series-parallel unit 6 is obtained by comparing the electromotive force 18 with a theoretical value.
直並列単位6の健全直列単位数K(符号22)は、前記
放電深度20を直並列単位間で相互に比較することによ
り得られる。組電池8の充放電量Ah(符号24)は電
流計16によって測定された電流値を時間積分したもの
で、常時参照できる。The number of healthy series units K (symbol 22) of the series-parallel units 6 is obtained by mutually comparing the depth of discharge 20 between the series-parallel units. The charge/discharge amount Ah (reference numeral 24) of the assembled battery 8 is obtained by time-integrating the current value measured by the ammeter 16, and can be referenced at all times.
組電池8の残存容量R(符号26)は、直並列単位6の
放電深度20の内、最大のもの、及びその直並列単位6
の健全直列単位数22、及び1組電池8の充放電量24
とから算定される。The remaining capacity R (symbol 26) of the assembled battery 8 is determined by the maximum depth of discharge 20 of the series-parallel unit 6 and its series-parallel unit 6.
The number of healthy series units is 22, and the amount of charging and discharging of one set of batteries 8 is 24.
It is calculated from
放電深度算出に当っては、前記第2図に基づく理論式。When calculating the depth of discharge, a theoretical formula based on the above-mentioned Fig. 2 is used.
E=A (D−B)+C(D>60%)・・・(3)(
A、B、Cは定数)
を適用するが、Dを誤差1%程度に同定するためには、
Eを最低4桁以上の精度で得る必要がある。E=A (D-B)+C (D>60%)...(3)(
A, B, and C are constants), but in order to identify D with an error of about 1%,
It is necessary to obtain E with an accuracy of at least 4 digits.
そこで電圧計14には、最低5桁、好ましくは、7桁程
度の分解能力を有する計測器を用いる。この電圧計14
によって得られた電圧の変化を直並列単位6に前述の(
1)式である。Therefore, as the voltmeter 14, a measuring instrument having a resolution of at least 5 digits, preferably about 7 digits is used. This voltmeter 14
The change in voltage obtained by
1) is the formula.
−α t
V(t)=E (E ’/’+o+)6
、、、(1)/に関数近似してEを求めるのであるが、
本実施例では以下のようにした。つまり、(1)’式を
微分した
に対して、時刻、tz+ tz (t□<シ2)での微
係数を近似して、
とし、更に、時刻1.、1. (12<1□)での値と
から、辺々割って、
・・・(7)
とし、この(7)式から、1=1.〜t3でのα値を得
る。-α t V(t)=E (E'/'+o+)6
, , E is found by functional approximation to (1)/.
In this example, the following steps were taken. In other words, when formula (1)' is differentiated, the differential coefficient at time tz+tz (t□<C2) is approximated as follows, and further, at time 1. , 1. (12<1□), divide the sides and get...(7) From this equation (7), 1=1. Obtain the α value at ~t3.
これを何点か採取して平均のαを求め、このαを用いて
、Eを求める。本実施例では、6秒間隔で電圧を測定し
、3分間サンプリング(30点)した後上記の演算を施
して、Eを求めた。こうして得られたEを用いて放電深
度D(%)を求めた結果、およそ1%程度の誤差で、放
電深度が正しいことが分った。Several points are sampled to find the average α, and this α is used to find E. In this example, the voltage was measured at 6-second intervals, and after sampling (30 points) for 3 minutes, the above calculation was performed to obtain E. As a result of determining the depth of discharge D (%) using E thus obtained, it was found that the depth of discharge was correct with an error of approximately 1%.
次にこのようにして得られた各直並列単位6の放電深度
20を・相互に比較し、放電深度が進んでしまっている
ものがないか調べる。その結果、進んでいるものがあれ
ば、その直並列単位6の健全直列単位数22のカウンタ
を1つ減らす、この操作によって、直並列単位6毎の放
電深度2oと健全直列単位数22は、充放電停止時に更
新される。Next, the depths of discharge 20 of the series-parallel units 6 obtained in this way are compared with each other, and it is checked whether there is any one whose depth of discharge has advanced. As a result, if there is one that is progressing, the counter for the number of healthy series units 22 of that series-parallel unit 6 is decremented by one. By this operation, the depth of discharge 2o and the number of healthy series units 22 for each series-parallel unit 6 are as follows. Updated when charging/discharging stops.
但し、起電力が約2.07Vのn倍の場合は、放電深度
が同定できないため、更新はできない。However, if the electromotive force is n times about 2.07V, the depth of discharge cannot be identified and therefore cannot be updated.
さて、組電池の残存容量は、最も放電深度の進んだ直並
列単位に注目して算出すればよい、つまり単電池の放電
容量を八〇とし、更新の時点でのその直並列単位の放電
深度をD0、その時点から積算充放電量(放電を正に、
充電を負にとる)をAh、健全直列単位数をに0とすれ
ば、残存容量Rは。Now, the remaining capacity of an assembled battery can be calculated by focusing on the series-parallel unit with the most advanced depth of discharge.In other words, assuming the discharge capacity of a single cell is 80, the discharge depth of that series-parallel unit at the time of renewal is D0, and from that point on, the cumulative amount of charge and discharge (discharge is positive,
If charging is negative) is Ah, and the number of healthy series units is 0, then the remaining capacity R is.
R=に、xA、X (1−D、)−AhX −(8) にて得られ、Ahの積分が更新されれば、常時。R=, xA, X (1-D,) - AhX - (8) , and if the integral of Ah is updated, then always.
Rは更新される。R is updated.
以上の手法に加えて、直並列単位毎の平均温度を測定し
て、起電力から放電深度を算出する際に用いれば、さら
に精度が向上する。ナトリウム−硫黄電池の起電力は、
温度が上昇すると低下することが分かっており、前述の
(3)式中の定数A。In addition to the above method, if the average temperature of each series-parallel unit is measured and used when calculating the depth of discharge from the electromotive force, the accuracy will be further improved. The electromotive force of a sodium-sulfur battery is
It is known that the constant A in the above-mentioned formula (3) decreases as the temperature increases.
B、Cは、温度に対して、何点かが文献に与えられてい
る。For B and C, several points are given in the literature with respect to temperature.
また、本手法の過程の中で、破損単電池数が概略把握で
きるので、組電池の補修時期を決定することができる。Furthermore, since the number of damaged single cells can be roughly grasped during the process of this method, it is possible to determine when to repair the assembled battery.
本発明によれば、ナトリウム−硫黄電池の組電池の残存
容量が精度よく常に監視することができるので、運転中
でも、その後の運転計画が容易となる効果がある。According to the present invention, since the remaining capacity of the assembled sodium-sulfur battery can be constantly monitored with high accuracy, there is an effect that the subsequent operation plan can be easily planned even during operation.
第1図はナトリウム−硫黄電池の構成例を示す説明図、
第2図はナトリウム−硫黄電池の放電深度に対する起電
力の変化を表わすグラフ、第3図は放電停止直後の電池
電圧の変化の様子を表わすグラフ、第4図は本発明の一
実施例の概念を示す説明図である。
2・・・単電池、4・・・直列単位、
8・・・組電池、14・・・電圧計。
18・・・直並列単位の起電力E。
20・・・直並列単位の放電深度D、
22・・・直並列単位の健全直列単位数K、24・・・
組電池の充放電量Ah、
26・・・組電池の残存容量R0
6・・・直並列単位、FIG. 1 is an explanatory diagram showing an example of the configuration of a sodium-sulfur battery;
Figure 2 is a graph showing changes in electromotive force with respect to depth of discharge of a sodium-sulfur battery, Figure 3 is a graph showing changes in battery voltage immediately after discharging is stopped, and Figure 4 is a concept of an embodiment of the present invention. FIG. 2... Single battery, 4... Series unit, 8... Assembled battery, 14... Voltmeter. 18...Emotive force E in series and parallel units. 20... Depth of discharge D in series/parallel units, 22... Number K of healthy series units in series/parallel units, 24...
Charge/discharge amount of the assembled battery Ah, 26...Remaining capacity R0 of the assembled battery 6...Series/parallel unit,
Claims (1)
続した直列単位を、複数並列接続して直並列単位とし、
これを更に複数直列接続してなるナトリウム−硫黄電池
の組電池の残存容量を推定する方法において、 前記直並列単位毎に充放電停止直後の電圧変化から起電
力及び放電深度を推定し、該放電深度の該直並列単位間
相互の差異から該直並列単位内の健全なる前記直列単位
の数を得、該放電深度を始点として、前記組電池の通電
量に該健全直列単位数による補正を加えて各々の直並列
単位毎の放電深度を算出して、この内、最大の放電深度
より前記組電池の残存容量を算定することを特徴とする
ナトリウム−硫黄電池の残存容量推定方法。 2、ナトリウム−硫黄電池の単電池を1個以上直列に接
続した直列単位を、複数並列接続して直並列単位とし、
これを更に複数直列接続してなるナトリウム−硫黄電池
の組電池の残存容量を推定する方法において、 前記直並列単位毎に充放電停止直後の電圧変化を指数関
数を含む関数形に近似することによって該直並列単位の
起電力を推定して、この起電力から該直並列単位の放電
深度を推定し、該放電深度の該直並列単位間相互の差異
から該直並列単位内の健全なる前記直列単位の数を得、
該放電深度を始点として、前記組電池の通電量に該健全
直列単位数による補正を加えて各々の直並列単位毎の放
電深度を算出して、この内、最大の放電深度より前記組
電池の残存容量を算定することを特徴とするナトリウム
−硫黄電池の残存容量推定方法。 3、ナトリウム−硫黄電池の単電池を1個以上直列に接
続した直列単位を、複数並列接続して直並列単位とし、
これを更に複数直列接続してなるナトリウム−硫黄電池
の組電池の残存容量を推定する方法において、 前記直並列単位毎の充放電停止直後の電圧変化を指数関
数を含む関数形に近似することによって該直並列単位の
起電力を演算して、この起電力から該直並列単位の放電
深度を推定し、該放電深度の該直並列単位間相互の差異
から該直並列単位内の健全なる前記直列単位の数を得、
該放電深度を始点として、前記組電池の通電量に該健全
直列単位数による補正を加えて各々の直並列単位毎の放
電深度を算出して、この内、最大の放電深度より前記組
電池の残存容量を算定する方法であって、前記関数形は
、時刻tにおける前記直並列単位毎の測定電圧をV(t
)、この電圧V(t)が漸近していく真の起電力をE_
0、時刻t=0における電圧をV_0とすると、自然対
数の底をe、べき指数をαとして、 V(t)=E_0−(E_0−V_0)e^−^α^t
なる関数形であることを特徴とするナトリウム−硫黄電
池の残存容量推定方法。 4、ナトリウム−硫黄電池の単電池を1個以上直列に接
続した直列単位を、複数並列接続して直並列単位とし、
これを更に複数直列接続してなるナトリウム−硫黄電池
の組電池の残存容量を推定する方法において、 前記直並列単位毎の充放電停止直後の電圧変化を指数関
数を含む関数形に近似することによって該直並列単位の
起電力を演算して、この起電力から該直並列単位の放電
深度を推定し、該放電深度の該直並列単位間相互の差異
から該直並列単位内の健全なる前記直列単位の数を得、
該放電深度を始点として、前記組電池の通電量に該健全
直列単位数による補正を加えて各々の直並列単位毎の放
電深度を算出して、この内、最大の放電深度より前記組
電池の残存容量を算定する方法であって、前記起電力は
、異なったいくつかの時刻における前記直並列単位毎の
電圧を測定し、該電圧測定値及び測定時刻に基づいて、
時刻をt、自然数をn、測定電圧をV、自然対数の底を
e、べき指数をαとする、 ▲数式、化学式、表等があります▼ なる関数式から時刻t_n_+_1ないしt_n_+_
2におけるべき指数α値を演算し、このα値の平均値か
ら求めるものであることを特徴とするナトリウム−硫黄
電池の残存容量推定方法。[Claims] 1. A series unit in which one or more single cells of a sodium-sulfur battery are connected in series is connected in parallel to form a series-parallel unit,
In a method for estimating the remaining capacity of a sodium-sulfur battery assembly formed by connecting a plurality of these batteries in series, the electromotive force and depth of discharge are estimated from the voltage change immediately after charging and discharging are stopped for each series-parallel unit, and the The number of healthy series units in the series-parallel unit is obtained from the mutual difference in depth between the series-parallel units, and using the depth of discharge as a starting point, the amount of current flowing through the assembled battery is corrected by the number of healthy series units. A method for estimating remaining capacity of a sodium-sulfur battery, comprising calculating the depth of discharge for each series-parallel unit, and calculating the remaining capacity of the assembled battery based on the maximum depth of discharge. 2. A series unit in which one or more sodium-sulfur battery cells are connected in series is connected in parallel to form a series-parallel unit;
In a method for estimating the remaining capacity of a sodium-sulfur battery assembly formed by connecting multiple batteries in series, the voltage change immediately after charging and discharging is stopped for each series-parallel unit is approximated to a functional form including an exponential function. The electromotive force of the series-parallel unit is estimated, the depth of discharge of the series-parallel unit is estimated from this electromotive force, and the healthy series in the series-parallel unit is estimated from the mutual difference in the depth of discharge between the series-parallel units. get the number of units,
Using this depth of discharge as a starting point, calculate the depth of discharge for each series-parallel unit by correcting the current flow amount of the assembled battery by the number of healthy series units, and calculate the depth of discharge for each series-parallel unit from the maximum depth of discharge. A method for estimating the remaining capacity of a sodium-sulfur battery, the method comprising calculating the remaining capacity. 3. A series unit in which one or more sodium-sulfur battery cells are connected in series is connected in parallel to form a series-parallel unit;
In a method of estimating the remaining capacity of a sodium-sulfur battery assembly formed by connecting multiple batteries in series, the voltage change immediately after charging and discharging of each series-parallel unit is approximated to a functional form including an exponential function. The electromotive force of the series-parallel unit is calculated, the depth of discharge of the series-parallel unit is estimated from this electromotive force, and the healthy series in the series-parallel unit is estimated from the difference in the depth of discharge between the series-parallel units. get the number of units,
Using this depth of discharge as a starting point, calculate the depth of discharge for each series-parallel unit by correcting the current flow amount of the assembled battery by the number of healthy series units, and calculate the depth of discharge for each series-parallel unit from the maximum depth of discharge. A method for calculating remaining capacity, in which the functional form calculates the measured voltage for each series-parallel unit at time t by V(t
), the true electromotive force asymptotic to this voltage V(t) is E_
0, the voltage at time t=0 is V_0, the base of the natural logarithm is e, and the exponent is α, V(t)=E_0-(E_0-V_0)e^-^α^t
A method for estimating the remaining capacity of a sodium-sulfur battery, characterized in that the functional form is: 4. A series unit in which one or more sodium-sulfur battery cells are connected in series is connected in parallel to form a series-parallel unit;
In a method of estimating the remaining capacity of a sodium-sulfur battery assembly formed by connecting multiple batteries in series, the voltage change immediately after charging and discharging of each series-parallel unit is approximated to a functional form including an exponential function. The electromotive force of the series-parallel unit is calculated, the depth of discharge of the series-parallel unit is estimated from this electromotive force, and the healthy series in the series-parallel unit is estimated from the difference in the depth of discharge between the series-parallel units. get the number of units,
Using this depth of discharge as a starting point, calculate the depth of discharge for each series-parallel unit by correcting the current flow amount of the assembled battery by the number of healthy series units, and calculate the depth of discharge for each series-parallel unit from the maximum depth of discharge. A method for calculating the remaining capacity, wherein the electromotive force is determined by measuring the voltage of each series-parallel unit at several different times, and based on the voltage measurement value and the measurement time,
There are mathematical formulas, chemical formulas, tables, etc. where time is t, a natural number is n, the measured voltage is V, the base of the natural logarithm is e, and the exponent is α.
1. A method for estimating remaining capacity of a sodium-sulfur battery, characterized in that the power exponent α value in 2 is calculated and the remaining capacity of a sodium-sulfur battery is determined from the average value of the α values.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1296683A JP2597208B2 (en) | 1989-11-15 | 1989-11-15 | Method for estimating remaining capacity of sodium-sulfur battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1296683A JP2597208B2 (en) | 1989-11-15 | 1989-11-15 | Method for estimating remaining capacity of sodium-sulfur battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03158781A true JPH03158781A (en) | 1991-07-08 |
JP2597208B2 JP2597208B2 (en) | 1997-04-02 |
Family
ID=17836729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1296683A Expired - Fee Related JP2597208B2 (en) | 1989-11-15 | 1989-11-15 | Method for estimating remaining capacity of sodium-sulfur battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2597208B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997020225A1 (en) * | 1994-05-31 | 1997-06-05 | Omron Corporation | Device and method for estimating remaining life of battery |
JP2004247319A (en) * | 2004-04-26 | 2004-09-02 | Ngk Insulators Ltd | Battery fault detecting method |
WO2005006006A1 (en) * | 2003-07-09 | 2005-01-20 | The Furukawa Electric Co., Ltd. | Charging rate estimating method, charging rate estimating unit and battery system |
WO2010090110A1 (en) * | 2009-02-06 | 2010-08-12 | 日本碍子株式会社 | Method for determining drop in capacity of sodium-sulfur battery |
WO2010109977A1 (en) * | 2009-03-25 | 2010-09-30 | 日本碍子株式会社 | Method for calculating residual capacity of sodium-sulfur battery |
WO2011001727A1 (en) * | 2009-06-29 | 2011-01-06 | 日本碍子株式会社 | End-of-discharge voltage correction device and end-of-discharge voltage correction method |
CN103105588A (en) * | 2013-03-07 | 2013-05-15 | 上海电气钠硫储能技术有限公司 | Method for judging position of failure cell in energy storage type sodium-sulfur cell module |
WO2013187096A1 (en) | 2012-06-15 | 2013-12-19 | 日本碍子株式会社 | Insulating container for battery, battery control device, and battery-failure detection method |
WO2013187095A1 (en) | 2012-06-15 | 2013-12-19 | 日本碍子株式会社 | Secondary-battery system and secondary-battery-failure-detection system |
CN103837837A (en) * | 2014-03-31 | 2014-06-04 | 国网上海市电力公司 | Mass detection method of sodium-sulfur batteries |
WO2015005454A1 (en) | 2013-07-11 | 2015-01-15 | 日本碍子株式会社 | Device and method for specifying where abnormality has occurred in secondary battery system and program |
WO2015008762A1 (en) | 2013-07-19 | 2015-01-22 | 日本碍子株式会社 | Secondary battery abnormality warning system |
WO2015029832A1 (en) | 2013-08-30 | 2015-03-05 | 日本碍子株式会社 | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
WO2015029831A1 (en) | 2013-08-30 | 2015-03-05 | 日本碍子株式会社 | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
CN118483597A (en) * | 2024-07-12 | 2024-08-13 | 江西科技师范大学 | Sodium ion battery life detection method, system, electronic equipment and storage medium |
-
1989
- 1989-11-15 JP JP1296683A patent/JP2597208B2/en not_active Expired - Fee Related
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997020225A1 (en) * | 1994-05-31 | 1997-06-05 | Omron Corporation | Device and method for estimating remaining life of battery |
US6317697B1 (en) | 1995-11-29 | 2001-11-13 | Omron Corporation | Battery life determination apparatus and battery life determination method |
WO2005006006A1 (en) * | 2003-07-09 | 2005-01-20 | The Furukawa Electric Co., Ltd. | Charging rate estimating method, charging rate estimating unit and battery system |
US7525284B2 (en) | 2003-07-09 | 2009-04-28 | The Furukawa Electric Co., Ltd | Charging rate estimating method, charging rate estimating unit and battery system |
JP2004247319A (en) * | 2004-04-26 | 2004-09-02 | Ngk Insulators Ltd | Battery fault detecting method |
WO2010090110A1 (en) * | 2009-02-06 | 2010-08-12 | 日本碍子株式会社 | Method for determining drop in capacity of sodium-sulfur battery |
US9026388B2 (en) | 2009-02-06 | 2015-05-05 | Ngk Insulators, Ltd. | Method for determining drop in capacity of sodium—sulfur battery |
JP5483736B2 (en) * | 2009-02-06 | 2014-05-07 | 日本碍子株式会社 | Sodium-sulfur battery capacity drop judgment method |
WO2010109977A1 (en) * | 2009-03-25 | 2010-09-30 | 日本碍子株式会社 | Method for calculating residual capacity of sodium-sulfur battery |
CN102301251A (en) * | 2009-03-25 | 2011-12-28 | 日本碍子株式会社 | Method for calculating residual capacity of sodium-sulfur battery |
US8957640B2 (en) | 2009-03-25 | 2015-02-17 | Ngk Insulators, Ltd. | Method for accurately and precisely calculating state of charge of a sodium-sulfur battery |
JP5483748B2 (en) * | 2009-03-25 | 2014-05-07 | 日本碍子株式会社 | Method for calculating remaining capacity of sodium-sulfur battery |
US8866446B2 (en) | 2009-06-29 | 2014-10-21 | Ngk Insulators, Ltd. | End-of-discharge voltage correction device and end-of-discharge voltage correction method |
WO2011001727A1 (en) * | 2009-06-29 | 2011-01-06 | 日本碍子株式会社 | End-of-discharge voltage correction device and end-of-discharge voltage correction method |
JP5416770B2 (en) * | 2009-06-29 | 2014-02-12 | 日本碍子株式会社 | End discharge voltage correction device and end discharge voltage correction method |
WO2013187096A1 (en) | 2012-06-15 | 2013-12-19 | 日本碍子株式会社 | Insulating container for battery, battery control device, and battery-failure detection method |
US10147976B2 (en) | 2012-06-15 | 2018-12-04 | Ngk Insulators, Ltd. | Insulating container for battery, battery control device, and battery-failure detection method |
US9595740B2 (en) | 2012-06-15 | 2017-03-14 | Ngk Insulators, Ltd. | Secondary-battery system and secondary-battery-failure-detection system |
JPWO2013187095A1 (en) * | 2012-06-15 | 2016-02-04 | 日本碍子株式会社 | Secondary battery system and secondary battery failure detection system |
WO2013187095A1 (en) | 2012-06-15 | 2013-12-19 | 日本碍子株式会社 | Secondary-battery system and secondary-battery-failure-detection system |
CN104396084A (en) * | 2012-06-15 | 2015-03-04 | 日本碍子株式会社 | Secondary-battery system and secondary-battery-failure-detection system |
CN103105588A (en) * | 2013-03-07 | 2013-05-15 | 上海电气钠硫储能技术有限公司 | Method for judging position of failure cell in energy storage type sodium-sulfur cell module |
WO2015005454A1 (en) | 2013-07-11 | 2015-01-15 | 日本碍子株式会社 | Device and method for specifying where abnormality has occurred in secondary battery system and program |
US10451685B2 (en) | 2013-07-11 | 2019-10-22 | Ngk Insulators, Ltd. | Secondary battery system and method for identifying abnormality of secondary battery system |
WO2015008762A1 (en) | 2013-07-19 | 2015-01-22 | 日本碍子株式会社 | Secondary battery abnormality warning system |
US9768477B2 (en) | 2013-07-19 | 2017-09-19 | Ngk Insulators, Ltd. | Secondary battery abnormality notification system |
EP3040732A4 (en) * | 2013-08-30 | 2017-06-21 | NGK Insulators, Ltd. | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
EP3040732A1 (en) * | 2013-08-30 | 2016-07-06 | NGK Insulators, Ltd. | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
WO2015029831A1 (en) | 2013-08-30 | 2015-03-05 | 日本碍子株式会社 | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
EP3040733A4 (en) * | 2013-08-30 | 2017-06-28 | NGK Insulators, Ltd. | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
EP3040733A1 (en) * | 2013-08-30 | 2016-07-06 | NGK Insulators, Ltd. | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
US10203376B2 (en) | 2013-08-30 | 2019-02-12 | Ngk Insulators, Ltd. | Device, method, and non-transitory recording medium storing program for specifying abnormality-occurrence area of secondary battery system |
US10203377B2 (en) | 2013-08-30 | 2019-02-12 | Ngk Insultors, Ltd. | Device, method, and non-transitory recording medium storing program for specifying abnormality-occurrence area of secondary battery system |
WO2015029832A1 (en) | 2013-08-30 | 2015-03-05 | 日本碍子株式会社 | Device, method, and program for specifying abnormality-occurrence area of secondary battery system |
CN103837837A (en) * | 2014-03-31 | 2014-06-04 | 国网上海市电力公司 | Mass detection method of sodium-sulfur batteries |
CN118483597A (en) * | 2024-07-12 | 2024-08-13 | 江西科技师范大学 | Sodium ion battery life detection method, system, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP2597208B2 (en) | 1997-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Baccouche et al. | Implementation of an improved Coulomb-counting algorithm based on a piecewise SOC-OCV relationship for SOC estimation of li-IonBattery | |
JPH03158781A (en) | Method for estimating residual capacity of sodium-sulfur battery | |
TWI237703B (en) | Secondary cell residual capacity calculation method and battery pack | |
JP5058814B2 (en) | Battery state and parameter estimation system and method | |
JP5818878B2 (en) | Lithium ion battery charge state calculation method | |
KR101946784B1 (en) | method for measuring battery entropy by dual kalman filter | |
WO2017046870A1 (en) | Storage battery control device, control method, program, power storage system, electric power system | |
US20070194756A1 (en) | System and method for monitoring battery state | |
CN105548900A (en) | Track traffic power battery state of health (SOH) evaluation method | |
JP6406468B1 (en) | Storage amount estimation device, storage module, storage amount estimation method, and computer program | |
US8957640B2 (en) | Method for accurately and precisely calculating state of charge of a sodium-sulfur battery | |
Thingvad et al. | Characterization of nmc lithium-ion battery degradation for improved online state estimation | |
WO2018181620A1 (en) | Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program | |
KR20180021570A (en) | Method for determining state of charge and method for measuring charge loss of battery using the same | |
US20220011374A1 (en) | Method for determining an ageing function of an accumulator | |
Khaki et al. | Fast and simplified algorithms for SoC and SoH estimation of vanadium redox flow batteries | |
CN107895175A (en) | A kind of method degenerated based on Nonhomogeneous Markov Chains model prediction capacity of lithium ion battery | |
JP3505111B2 (en) | Operation method of sodium-sulfur battery | |
Vishnu et al. | Adaptive integral correction-based state of charge estimation strategy for lithium-ion cells | |
CN112014751B (en) | SOC estimation method based on estimation of actual dischargeable capacity of lithium ion battery | |
Liu et al. | Battery Loss Modelling Using Equivalent Circuits | |
Chen et al. | Accurate voltage prediction for lithium and sodium-ion full-cell development | |
CN109991553B (en) | Estimation method of battery SOC | |
Shiekh et al. | Analysis of Extended Kalman Filter for SOC Estimation in Lithium-ion Batteries | |
JP6406470B1 (en) | Management device, power storage module, management method, and computer program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |