[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03142928A - Cutting-out of wafer - Google Patents

Cutting-out of wafer

Info

Publication number
JPH03142928A
JPH03142928A JP28280889A JP28280889A JPH03142928A JP H03142928 A JPH03142928 A JP H03142928A JP 28280889 A JP28280889 A JP 28280889A JP 28280889 A JP28280889 A JP 28280889A JP H03142928 A JPH03142928 A JP H03142928A
Authority
JP
Japan
Prior art keywords
cutting
ingot
cut
wafer
abutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28280889A
Other languages
Japanese (ja)
Inventor
Shinji Sekiya
臣二 関家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP28280889A priority Critical patent/JPH03142928A/en
Publication of JPH03142928A publication Critical patent/JPH03142928A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/02Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills
    • B28D5/022Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels
    • B28D5/028Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels with a ring blade having an inside cutting edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To contrive the improvement of the plane accuracy of the butting surface of an ingot by a method wherein when the ingot is cut into a wafer of a prescribed thickness, the cutting is performed by a cutting means in a state that an abutting means is abutted on the end surface, which is cut, of the ingot. CONSTITUTION:Each time an ingot 1 is cut into a water of a prescribed thickness, the cutting is performed by a cutting means 3 in a state that a proper abutting means 4 is abutted on the end surface, which is cut, of the ingot. Accordingly, both ends of the ingot 1 result in being supported substantially and vibrations which are generated by the drive of the means 3 and the cutting result in being dispersed equally on the side of the ingot 1 and the side of the wafer. Thereby, the cutting surface of the ingot is not formed into a waveform, the ingot does never bend as a whole and each wafer can be cut in almost parallel to the cutting surface.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、シリコン等のインゴットから薄いウェーハを
順次スライス状に切り出す方法に関するものである。
The present invention relates to a method of sequentially cutting thin wafers into slices from an ingot of silicon or the like.

【従来技術】[Prior art]

この種のウェーハを切り出す方法としては、例えば特開
昭61−106207号公報に開示されたものが従来例
として周知である。この従来例の方法においては、イン
ゴットから一枚のウェーハを切り出す毎に、そのインゴ
ットの端面を研削して平面にし、切り出されたウェーハ
の片面の平面度を高めると云うものである。 つまり、従来例においては、第6〜7図に示したように
、インゴットaから切り出したウェーハbはその片面C
が、切り出す前にインゴットaの端面を研削することで
平面になっており、他方の面即ち切り出し面dはインゴ
ット側においても、依然として反り又は凹凸状態になっ
ている。つまり、インゴットaを内周刃のブレードeに
よって切削切断する際に、該ブレードの駆動及び切削の
ために生ずる振動が、薄く切り出される且つ支持されて
いないウェーハ部側に集中して伝達され、ウェーハbl
がより一層振動することになり、それによって切り出し
面dが波形になると共に全体的に撓みが生ずる。 従って、切り出されたウェーハbにおいては、その後の
工程でこの切り出し而dを研削して平坦にし、インゴッ
ト部側においてはその切り出し面dの波形凹凸を、仮想
線fで示した位置まで、端面研削砥石で研削して平面に
してから、次のつ工−ハの切り出しを行うようにしてい
る。
As a method of cutting out this type of wafer, the method disclosed in, for example, Japanese Unexamined Patent Publication No. 106207/1983 is well known as a conventional example. In this conventional method, each time a wafer is cut from an ingot, the end face of the ingot is ground to make it flat, thereby increasing the flatness of one side of the cut wafer. That is, in the conventional example, as shown in FIGS. 6 and 7, a wafer b cut out from an ingot a has one side C.
However, the end face of the ingot a is ground before being cut into a flat surface, and the other face, that is, the cut face d, is still warped or uneven even on the ingot side. In other words, when the ingot a is cut by the blade e of the inner peripheral edge, the vibrations generated due to the drive and cutting of the blade are concentrated and transmitted to the thinly sliced and unsupported wafer part side, and the wafer bl
vibrates even more, and as a result, the cutting surface d becomes wavy and the entire surface is bent. Therefore, in the cut wafer b, the cut surface d is ground to make it flat in the subsequent process, and on the ingot part side, the wave-like unevenness of the cut surface d is removed by end face grinding to the position indicated by the imaginary line f. After grinding with a whetstone to make it flat, the next piece is cut out.

【発明が解決しようとする課題】[Problem to be solved by the invention]

前記従来例においても説明されているように、従来から
切削の際の諸条件により、切断面の平面精度が得られな
いのが実状である。そして、前記従来例においては、片
面だけでも平面精度をもったウェーハの切り出しをしよ
うとしているのである。しかしながら、そのウェーハの
切り出しにおいては、依然として切り出し面にかなりの
反り又は凹凸が生ずることについては解決されず、それ
によって、それ等の反り又は凹凸を研削砥石で削り取る
ことは、著しい材料無駄になっているのである。 ウェーハの切り出しにおいて、その切り出し面に反り又
は凹凸が生ずる要因としては、インゴットが片持ちの状
態で切削に供せられること、及び順次の切削進行によっ
て厚いインゴット側に比べ、自由端部側の支持されてい
ない薄いウェーハ側に振動伝達が集中し、且つ薄いウェ
ーハ側が強度的に弱く撓みが生ずるため、その弱い方に
切削刃が傾斜し易くなり、それによって反り又は凹凸が
生ずるものと考えられる。 このような実状を考慮した時に、従来例においては、イ
ンゴットからウェーハを切り出すこと自体に解決しなけ
ればならない重大な課題を有している。 [81題を解決するための手段] 前記従来例の課題を解決する具体的手段として本発明は
、インゴットを所定厚さのウェーハに切削する毎に、そ
の切削される端面に適宜の当接手段に当接させた状態で
切削手段により切削を遂行することを特徴とするウェー
ハの切り出し方法を提供するものであり、又、前配当接
手段は、予めインゴットを切削する切削手段によってそ
の当接面が切削又は研削され、該切削手段との平行度が
保たれた状態で当接するようにすると共に、当接手段は
、切削手段を交換する毎に少なくとも1回折たな切削手
段によってその当接面を切削又は研削するようにしたも
のであり、それによって切り出されるウェーハを支持し
て強度を付与するものであり、更にインゴットを所定厚
さのウェーハに切削する毎に、その切削される端面に所
定の厚みをもった板材を貼着して切削するようにするこ
とによっても切り出されるウェーハに対して強度を付与
し、振動の集中を防止すると共に切削手段の偏りを防止
して、切り出し面における反り又は凹凸の発生を解消し
ているのである。
As explained in the above-mentioned conventional example, the actual situation is that the flatness of the cut surface cannot be obtained due to various conditions during cutting. In the conventional example, an attempt is made to cut out a wafer with flatness accuracy even on just one side. However, in cutting out the wafer, there is still no solution to the problem that considerable warpage or unevenness occurs on the cut surface, and therefore, removing such warpage or unevenness with a grinding wheel results in a significant waste of material. There is. When cutting a wafer, the causes of warping or unevenness on the cutting surface are that the ingot is cut in a cantilevered state, and that as the cutting progresses sequentially, the support on the free end side is lower than on the thicker ingot side. It is thought that the vibration transmission is concentrated on the thinner wafer side that is not coated, and that the thinner wafer side is weaker in strength and bends, so the cutting blade tends to tilt toward the weaker side, which causes warping or unevenness. Considering these actual circumstances, in the conventional example, there is a serious problem that must be solved in cutting out wafers from an ingot itself. [Means for Solving the 81 Problems] As a specific means for solving the problems of the conventional example, the present invention provides an appropriate abutment means for the cut end face every time an ingot is cut into a wafer of a predetermined thickness. The present invention provides a wafer cutting method characterized in that cutting is carried out by a cutting means while the wafer is in contact with the ingot, and the pre-wetting means cuts the abutting surface of the ingot by the cutting means that cuts the ingot in advance. is cut or ground so as to contact the cutting means in a state where parallelism is maintained, and the contact means is cut or ground by the cutting means that is folded at least once every time the cutting means is replaced. It is designed to cut or grind the wafer, thereby supporting and adding strength to the cut wafer.Furthermore, each time the ingot is cut into a wafer of a predetermined thickness, a predetermined cut is applied to the end face of the ingot to be cut. By attaching and cutting a plate material with a thickness of Or, the occurrence of unevenness is eliminated.

【実施例】【Example】

次に本発明を図示の実施例により更に詳しく説明すると
、第1〜2図に示した第1実施例において、1はシリコ
ン等のインゴットであり、該インゴット1は上方の端部
が支持部材2により安定した状態で支持され、下方の端
部は順次ウェーハが切り出される、謂ゆる切削される端
部となるのである。この切削に関する切削手段3として
は、例えば内周縁に切削刃を有する周知のドーナツ状の
ブレードが使用される。 前記切削される端部側には、その端面に当接するターン
テーブルのような当接手段4が配設され、該当接手段4
が所定の押圧力で当接した状態で前記切削手段3による
切削がなされるのである。この場合に、当接手段4は、
予め前記切削手段3によってその上面が切削又は研削さ
れ、切削手段3と当接手段4の上面とが平行に位置した
状態にしである。勿論、切削手段3を新たなものに交換
したときには、その都度その新たな切削手段3によって
当接手段4の上面を切削又は研削して、新たな切削手段
3の特性に合わせた、平面度が保たれるようにしである
。ffで使用される当接手段4は、例えばセラミックス
、シリコン、アルミニウム等の材質のもので良く、前記
インゴット1の端面に対応する板状のもの、又は切り出
されたウェーハを保持するポーラス材若しくは吸着孔が
設けられた吸着テーブルであっても良い。いずれにして
も、インゴット1の切削端部にvI!s当接して、切削
手段によって生ずる振動を吸収し、且つ熱伝導率の高い
ものが好ましい。 このようにインゴット1の切削又は切断側の端面に当接
手段4を所定の押圧力をもって当接させ、前記切削手段
3で切削した場合に、第2図に示したように、薄く切り
出されるウェーハ5が、当接手段4によってその強度が
増大させられ、振動がインゴット1側とウェーハ5側と
に均等に分散することで、その切削面が波形にならず、
略平面状態で切削されるのである。そして又、薄く切り
出されるウェーハ5側が当接手段4で切断手段3と平行
に支持されているため、撓みもほとんど生じないように
なるのである。 又、第3図に示した第2実施例のように、当接手段4と
インゴットの切削端部との密着性を高めるために、基台
10と当接手段4との結合をフレキシブル°ジヨイント
としても良い。例えば、当接手段4の下部にボールジヨ
イント4aを形成し、該ボールジヨイント4aを基台1
0の端部で回動自在に受けさせて取り付け、当接手段4
がインゴット1の端部に当接した時に、その端部の状態
に追従して位鱈変更(回転によって)でき、それによっ
てインゴット1の端部に当接手段4が密着して当接する
ようになるのである。 第4〜5図に示した第3実施例は、前記当接手段4に代
えて、インゴット1の切削端面に所定厚さの板材6をワ
ックス等で一体的に貼着して切削するようにする。つま
り、インゴット1からつ工−ハを切削する毎に、インゴ
ットの端面に板材6を貼着して切削を遂行するものであ
り、それによって切り出される薄いウェーハが実質的に
板材6を含む厚さとなるため、ウェーハ側の強度が増大
し、切削手段3による振動が薄いウェーハ側に集中しな
くなり、偏った切削が解消され前記実施例と同様にその
切削面が略平行で、且つ撓みが生じないように切削切断
できるのである。この場合に貼着される板材6は、例え
ばシリコン、アルミニウム、鉄、セラミックス等の材質
であり、その厚みは材質によって異なるので、必ずしも
限定されるものではないが、切り出されるウェーハの数
倍の厚みのものであれば足りる。
Next, the present invention will be explained in more detail with reference to the illustrated embodiment. In the first embodiment shown in FIGS. The lower end becomes the so-called cutting end from which the wafers are successively cut out. As the cutting means 3 for this cutting, for example, a well-known doughnut-shaped blade having a cutting edge on the inner peripheral edge is used. A contact means 4 such as a turntable that comes into contact with the end surface is disposed on the end side to be cut, and the corresponding contact means 4
Cutting is performed by the cutting means 3 while the two are in contact with each other with a predetermined pressing force. In this case, the contact means 4 is
Its upper surface is cut or ground by the cutting means 3 in advance, so that the cutting means 3 and the upper surface of the abutment means 4 are positioned parallel to each other. Of course, each time the cutting means 3 is replaced with a new one, the upper surface of the abutment means 4 is cut or ground by the new cutting means 3 to obtain a flatness that matches the characteristics of the new cutting means 3. It is intended to be preserved. The contact means 4 used in ff may be made of a material such as ceramics, silicon, or aluminum, and may be a plate-shaped member corresponding to the end surface of the ingot 1, or a porous material or suction member that holds the cut wafer. It may also be a suction table provided with holes. In any case, vI! at the cut end of ingot 1! It is preferable to use a material that comes into contact with the material to absorb vibrations generated by the cutting means and has high thermal conductivity. When the abutting means 4 is brought into contact with the end face of the cutting or cutting side of the ingot 1 with a predetermined pressing force and the cutting means 3 cuts the ingot 1, a thin wafer is cut out as shown in FIG. 5 has its strength increased by the abutting means 4, and the vibrations are evenly distributed between the ingot 1 side and the wafer 5 side, so that the cut surface does not become corrugated.
It is cut in a substantially flat state. Moreover, since the side of the wafer 5 to be sliced thinly is supported by the abutting means 4 in parallel to the cutting means 3, almost no bending occurs. Further, as in the second embodiment shown in FIG. 3, in order to improve the adhesion between the abutting means 4 and the cut end of the ingot, the base 10 and the abutting means 4 are connected by a flexible joint. It's good as well. For example, a ball joint 4a is formed at the lower part of the contact means 4, and the ball joint 4a is connected to the base 1.
The abutment means 4 is rotatably received and attached at the end of 0.
When the ingot 1 contacts the end of the ingot 1, the position can be changed (by rotation) to follow the state of the end, so that the contact means 4 closely contacts the end of the ingot 1. It will become. In the third embodiment shown in FIGS. 4 and 5, instead of the abutting means 4, a plate material 6 of a predetermined thickness is integrally adhered to the cutting end surface of the ingot 1 with wax or the like for cutting. do. In other words, each time an ingot 1 is cut, a plate material 6 is attached to the end face of the ingot to perform the cutting, so that the thin wafer cut out has a thickness that substantially includes the plate material 6. As a result, the strength on the wafer side increases, the vibrations caused by the cutting means 3 are no longer concentrated on the thin wafer side, the uneven cutting is eliminated, and the cutting surface is approximately parallel and no deflection occurs as in the previous embodiment. It can be cut like this. The plate material 6 to be pasted in this case is made of a material such as silicon, aluminum, iron, or ceramics, and its thickness varies depending on the material, so it is not necessarily limited to a thickness several times that of the wafer to be cut out. It suffices if it is.

【発明の効果】【Effect of the invention】

以上説明したように、本発明に係るウェーハの切り出し
方法は、インゴットを所定厚さのウェーハに切削する毎
に、その切削される端面に適宜の当接手段に当接させた
状態で切削手段により切削を遂行するようにしたことに
より、インゴットの両端が実質的に支持されることにな
り、切削手段の駆動及、び切削によって生ずる振動がイ
ンゴット側とウェーハ側とに均等に分散されるようにな
り、それによって、切削面が波形にならず、且つ全体的
に撓むことがなく略平行に切削でき、その後の工程で研
削度が極端に少なくて済み、余分な研削代を必要とせず
、予定した厚さにウェーハを切り出すことができ、材料
無駄がなくなって、同じ大きさのインゴットから従来例
よりも略1.5倍の量めウェーへの切り出しが可能にな
ると云う優れた効果を奏する。 又、前記当接手段は、予めインゴットを切削する切削手
段によってその当接面が切削又は研削され、該切削手段
との平行度が保たれた状態で当接するようにすると共に
、当接手段は、切削手段を交換する毎に少なくとも1回
新たな切削手段によってその当接面を切削又は研削する
ようにしたものであり、それによって切り出されるウェ
ーハを切削手段と平行に支持して強度を付与しており、
前記同様に切削手段の駆動及び切削によって生ずる振動
がインゴット側とウェーハ側とに均等に分散され、切削
面が波形にならず、且つ撓みも生じなくなり、余分な研
削代を必要とせず、薄いつ工−ハを効率良く切り出すこ
とができ、材料無駄がなくなると云う優れた効果を奏す
る。 更にインゴットを所定厚さのウェーハに切削する毎に、
その切削される端面に所定の厚みをもった板材を貼着し
て切削するようにすることによっても切り出されるウェ
ーハに対して強度を付与し、振動の集中を防止すると共
に切削手段の偏りを防止して、切り出し面における反り
又は凹凸の発生を解消し、それによっても前記同様の効
果をするするのである。
As explained above, in the wafer cutting method according to the present invention, each time an ingot is cut into a wafer of a predetermined thickness, the end face to be cut is brought into contact with an appropriate contact means, and then the cutter is By carrying out the cutting, both ends of the ingot are substantially supported, so that vibrations caused by driving the cutting means and cutting are evenly distributed between the ingot side and the wafer side. As a result, the cutting surface does not become corrugated, and the cutting surface can be cut almost parallel without bending, and the degree of grinding in the subsequent process is extremely low, and no extra grinding allowance is required. It has the excellent effect of being able to cut wafers to a predetermined thickness, eliminating material waste, and making it possible to cut wafers approximately 1.5 times larger than conventional methods from an ingot of the same size. . Further, the abutting means has its abutting surface cut or ground in advance by a cutting means for cutting the ingot, so that the abutting means abuts while maintaining parallelism with the cutting means, and the abutting means Each time the cutting means is replaced, the contact surface is cut or ground by a new cutting means at least once, and the wafer to be cut out is thereby supported in parallel with the cutting means and given strength. and
Similarly to the above, vibrations generated by driving the cutting means and cutting are evenly distributed between the ingot side and the wafer side, the cut surface does not become corrugated, and no bending occurs. It has the excellent effect of being able to efficiently cut out the machining material and eliminating material waste. Furthermore, each time the ingot is cut into wafers of a predetermined thickness,
By attaching a plate material with a predetermined thickness to the end face to be cut and cutting the wafer, strength is imparted to the wafer being cut, preventing concentration of vibrations and also preventing deviation of the cutting means. This eliminates the occurrence of warpage or unevenness on the cut surface, thereby achieving the same effect as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る第1実施例の方法を実施する状態
を示す説明図、第2図は同方法によって切削される状態
を拡大して示した説明図、第3図は第2実施例の略示的
説明図、第4図は第3実施例の方法を実施する状態を示
す説明図、第5図は同方法によって切削切断されたウェ
ーハの状態を拡大して示した説明図、第6図は従来例の
実施状況を示す説明図、第7図は同従来例によって切削
切断されたウェーハの状態を拡大して示した説明図であ
る。 1・・・・・・インゴット 3・・・・・・切削手段 5・・・・・・ウェーハ 2・・・・・・支持部材 4・・・・・・当接手段 6・・・・・・板材
FIG. 1 is an explanatory diagram showing a state in which the method of the first embodiment of the present invention is implemented, FIG. 2 is an explanatory diagram showing an enlarged state of cutting by the same method, and FIG. A schematic explanatory diagram of an example; FIG. 4 is an explanatory diagram showing a state in which the method of the third embodiment is carried out; FIG. 5 is an explanatory diagram showing an enlarged state of a wafer cut by the same method; FIG. 6 is an explanatory diagram showing the implementation status of the conventional example, and FIG. 7 is an explanatory diagram showing an enlarged state of a wafer cut by the conventional example. 1... Ingot 3... Cutting means 5... Wafer 2... Support member 4... Contact means 6...・Plate material

Claims (4)

【特許請求の範囲】[Claims] (1)インゴットを所定厚さのウェーハに切削する毎に
、その切削される端面に適宜の当接手段を当接させた状
態で切削手段により切削を遂行することを特徴とするウ
ェーハの切り出し方法。
(1) A wafer cutting method characterized in that each time an ingot is cut into a wafer of a predetermined thickness, cutting is carried out by a cutting means with an appropriate contact means in contact with the end face to be cut. .
(2)当接手段は、予めインゴットを切削する切削手段
によってその当接面が切削又は研削され、該切削手段と
の平行度が保たれた状態で当接するようにした請求項(
1)記載のウェーハの切り出し方法。
(2) The abutting means has its abutting surface cut or ground by a cutting means that cuts the ingot in advance, and the abutment surface is brought into contact with the cutting means while maintaining parallelism (
1) The wafer cutting method described above.
(3)当接手段は、切削手段を交換する毎に少なくとも
1回新たな切削手段によってその当接面を切削又は研削
するようにした請求項(1)、(2)記載のウェーハの
切り出し方法。
(3) The wafer cutting method according to claim 1 or 2, wherein the abutting means cuts or grinds the abutting surface with a new cutting means at least once every time the cutting means is replaced. .
(4)インゴットを所定厚さのウェーハに切削する毎に
、その切削される端面に所定の厚みをもった板材を貼着
して切削することを特徴とするウェーハの切り出し方法
(4) A wafer cutting method characterized in that each time an ingot is cut into a wafer of a predetermined thickness, a plate material having a predetermined thickness is attached to the end face of the ingot to be cut.
JP28280889A 1989-10-30 1989-10-30 Cutting-out of wafer Pending JPH03142928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28280889A JPH03142928A (en) 1989-10-30 1989-10-30 Cutting-out of wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28280889A JPH03142928A (en) 1989-10-30 1989-10-30 Cutting-out of wafer

Publications (1)

Publication Number Publication Date
JPH03142928A true JPH03142928A (en) 1991-06-18

Family

ID=17657355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28280889A Pending JPH03142928A (en) 1989-10-30 1989-10-30 Cutting-out of wafer

Country Status (1)

Country Link
JP (1) JPH03142928A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06713U (en) * 1992-06-17 1994-01-11 いすゞ自動車株式会社 Cutting device
US5918587A (en) * 1995-02-28 1999-07-06 Shin-Etsu Handotai Co., Ltd. Method of producing slices
JP2008502153A (en) * 2004-06-03 2008-01-24 オウェンス テクノロジー インコーポレイテッド Method and apparatus for cleaving brittle materials
WO2013015053A1 (en) * 2011-07-27 2013-01-31 日産自動車株式会社 Device for producing field-pole magnet and method for producing same
JP2015529978A (en) * 2012-09-04 2015-10-08 ソイテックSoitec Pseudo substrate with improved utilization efficiency of single crystal material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06713U (en) * 1992-06-17 1994-01-11 いすゞ自動車株式会社 Cutting device
US5918587A (en) * 1995-02-28 1999-07-06 Shin-Etsu Handotai Co., Ltd. Method of producing slices
JP2008502153A (en) * 2004-06-03 2008-01-24 オウェンス テクノロジー インコーポレイテッド Method and apparatus for cleaving brittle materials
WO2013015053A1 (en) * 2011-07-27 2013-01-31 日産自動車株式会社 Device for producing field-pole magnet and method for producing same
JP2013031264A (en) * 2011-07-27 2013-02-07 Nissan Motor Co Ltd Apparatus for manufacturing magnet body for field pole and manufacturing method thereof
JP2015529978A (en) * 2012-09-04 2015-10-08 ソイテックSoitec Pseudo substrate with improved utilization efficiency of single crystal material
US10910256B2 (en) 2012-09-04 2021-02-02 Soitec Pseudo-substrate with improved efficiency of usage of single crystal material
US12112976B2 (en) 2012-09-04 2024-10-08 Soitec Pseudo-substrate with improved efficiency of usage of single crystal material

Similar Documents

Publication Publication Date Title
JP3397968B2 (en) Slicing method of semiconductor single crystal ingot
JPH081493A (en) Mirror finished surface polishing method for wafer chamfering part and mirror finished surface polishing device
JP3328193B2 (en) Method for manufacturing semiconductor wafer
JPH03142928A (en) Cutting-out of wafer
JP4406878B2 (en) Single crystal ingot cauldron
EP3804894B1 (en) Circular band saw blade manufacturing method and manufacturing method and apparatus
JP2636383B2 (en) Wafer processing method
JP3635870B2 (en) Method for bonding and slicing semiconductor single crystal ingot
JP2003313036A (en) Method for dividing glass and apparatus for the same
JP4471801B2 (en) Semiconductor wafer grinding apparatus and grinding method thereof
JPH10244449A (en) Gaas wafer machining method
JPH07156133A (en) Scriber
JP2005034926A (en) Polishing method of wafer substrate, and wafer
JP2021180206A (en) Grinding method for sapphire substrate
JPH01148514A (en) Device for assembling semiconductor
JPS5922345A (en) Dicing method of semiconductor substrate
JP3265963B2 (en) Wafer mirror chamfering device
JP2662699B2 (en) Slitter knife
JP2018148181A (en) Blade retainer and dicing device
JPH11179638A (en) Manufacture of semiconductor wafer and device therefor
JPH08316174A (en) Method of cutting semiconductor wafer having glass
KR20180097043A (en) Apparatus and method for slicing ingot
JPH0310810A (en) Slicing process for gallium phosphide single crystal
JPH06295890A (en) Machining method for semiconductor wafer
JP2001334444A (en) Curved surface machining method for thin plate