[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03140450A - Wear resistant alloy powder and member - Google Patents

Wear resistant alloy powder and member

Info

Publication number
JPH03140450A
JPH03140450A JP1277215A JP27721589A JPH03140450A JP H03140450 A JPH03140450 A JP H03140450A JP 1277215 A JP1277215 A JP 1277215A JP 27721589 A JP27721589 A JP 27721589A JP H03140450 A JPH03140450 A JP H03140450A
Authority
JP
Japan
Prior art keywords
wear
alloy powder
resistant alloy
resistant
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1277215A
Other languages
Japanese (ja)
Other versions
JP2659825B2 (en
Inventor
Shigeyuki Toda
戸田 重行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1277215A priority Critical patent/JP2659825B2/en
Publication of JPH03140450A publication Critical patent/JPH03140450A/en
Application granted granted Critical
Publication of JP2659825B2 publication Critical patent/JP2659825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To enlarge the tolerance for Fe and C contents and to improve wear resistance and corrosion resistance by increasing Cr content, combinedly adding specific amounts of B, Si, Ni, and Nb, and mixing a boride phase into an amorphous phase. CONSTITUTION:A wear resistant alloy powder has a composition consisting of, by weight, <=0.06% C, <=1.2% Mn, 3-4% Si, 3-4% B, 20-35% Cr, 2-3% Mo, 2-3% Nb, <=2% Fe, <=0.006% oxygen, <=0.006% nitrogen, and the balance essentially Ni, and further, a boride phase is mixed into an amorphous phase, by which a highly corrosion- and wear-resistant alloy powder can be obtained even if Cr content is increased. By plasma-spraying this wear resistant alloy powder on a base material under reduced pressure, a wear resistant member can be obtained. This member can be suitably applied to non-magnetic corrosion- and wear-resistant members applied to equipment operating in a magnetic field in high-temp. and high-pressure water and parts for plastic molding machine, concrete pump, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐摩耗合金粉末及び同粉末を適用した耐摩耗
部材に関し、特に高温高圧水中の磁界内で可動する機器
に適用される非磁性耐食耐摩耗部材、プラスチック成形
機、コンクリートポンプ、高温水仕切弁等のシリンダー
及び各種耐摩耗用部品に好適に適用することができる同
粉末及び部材に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a wear-resistant alloy powder and a wear-resistant member to which the same powder is applied, and in particular to a non-magnetic alloy powder applied to equipment that moves within a magnetic field in high-temperature, high-pressure water. The present invention relates to the same powder and members that can be suitably applied to corrosion-resistant and wear-resistant members, plastic molding machines, concrete pumps, cylinders such as high-temperature water gate valves, and various wear-resistant parts.

〔従来の技術〕[Conventional technology]

上記利用分野の従来技術としては、例えば特開昭48−
57818号、特開昭56−169740号及び特公昭
56−53626号の各公報で見られるように、耐摩耗
性を高めるために5〜45重量%のCOを含有する、ま
たはNiを主成分とする耐摩耗耐食合金がある。また、
これらの耐食性を改善するために、特開昭60〜130
42号公報にはCr含有量を最大20重量%まで増大し
た合金が提案されている。
As a conventional technology in the above field of application, for example, Japanese Patent Application Laid-open No. 48-
57818, JP-A No. 56-169740, and JP-B No. 56-53626, in order to improve wear resistance, carbon dioxide containing 5 to 45% by weight or containing Ni as the main component is disclosed. There are wear-resistant and corrosion-resistant alloys. Also,
In order to improve the corrosion resistance of these,
No. 42 proposes an alloy with an increased Cr content of up to 20% by weight.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記の従来合金はCoを含有するため、原子力発電プラ
ントでは被爆低減の観点から、Co量をできる限り削減
した改良合金又は皆無にした新しい合金による代替材の
使用が切望されている。
Since the above-mentioned conventional alloys contain Co, from the viewpoint of reducing radiation exposure in nuclear power plants, there is a strong desire to use improved alloys that reduce the amount of Co as much as possible or new alloys that eliminate Co as an alternative material.

しかし、Co量を削減し、これに代えてNi含有量を増
大する方法においては、厩舎のCr量を減じなければ従
来の高硬さ、高耐摩耗性を維持できないという不具合が
あり、この不具合は耐摩耗部材開発の障壁となっている
However, in the method of reducing the amount of Co and increasing the Ni content instead, there is a problem that the conventional high hardness and high wear resistance cannot be maintained unless the amount of Cr in the stable is reduced. is a barrier to the development of wear-resistant parts.

本発明者は先に、特願昭62−247694゜特願昭6
2−240675において、Cr量を減ぜずして高硬さ
を得る方法として、Mo及びNbの複合添加が有効であ
ることを示した。即ち、Cr量を14重量%に増大した
状態でHRC61,5の高硬さが確保できることを明ら
かにした。
The present inventor previously applied for Japanese Patent Application No. 62-247694.
In No. 2-240675, it was shown that combined addition of Mo and Nb was effective as a method of obtaining high hardness without reducing the amount of Cr. That is, it was revealed that high hardness of HRC61.5 can be ensured with the Cr content increased to 14% by weight.

本発明は上記技術水準に鑑み、かつ先に提案した特願昭
62〜247694号の発明よりFe及びC量に対する
許容範囲の拡大を図り、しかも耐曜耗性、耐食性に優れ
た耐摩耗性合金粉末及び該粉末を利用しての耐摩耗部材
を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention aims to expand the permissible range of Fe and C content from the invention of Japanese Patent Application No. 62-247694 proposed earlier, and is a wear-resistant alloy with excellent wear resistance and corrosion resistance. The present invention aims to provide a powder and a wear-resistant member using the powder.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は特願昭62〜247694号の合金の性能を
更に改善するため、厳しい腐食環境に対応できる高耐食
耐摩耗合金を得るためCr含有量を高めること\し、そ
の結果生ずる硬さの低下をカバーすべき手段につき鋭意
研究の結果、■先の発明で提案したMo、 Nbの複合
添加による硬さの低下を防止する手段を採用しつつ、■
更に半金属であるB、Si及び遷移金属同志のNi、 
Nbとの組合せにより部分アモルファス化が生ずるよう
にし、かつガスアトマイズ法による急冷手段を採用して
アモルファス相を混合させることにより、Cr含有量を
高めても高耐食耐摩耗合金が得られることの知見を得た
In order to further improve the performance of the alloy disclosed in Japanese Patent Application No. 62-247694, the present inventor increased the Cr content in order to obtain a highly corrosion-resistant and wear-resistant alloy that can withstand severe corrosive environments, and the resulting hardness As a result of intensive research into methods to compensate for the decrease in hardness, we have adopted the method proposed in the previous invention to prevent the decrease in hardness due to the combined addition of Mo and Nb.
Furthermore, B, which is a metalloid, Si, and Ni, which is a transition metal fellow,
We found that a highly corrosion-resistant and wear-resistant alloy can be obtained even if the Cr content is increased by causing partial amorphization in combination with Nb and by mixing the amorphous phase by using a rapid cooling method using gas atomization. Obtained.

本発明は上記知見に基いて完成されたものであって、 (1)重量%で、C:0.06%以下、Mn:1.2%
以下、Si:3〜4%、B:3〜4%、Cr:20〜3
5%、Mo:2〜3%、Nb:2〜3%、 Fe:2%
以下、酸素:0.006%以下、窒素:0゜006%以
下、残部が実質的にNiよりなる組成であって、アモル
ファス相に硼化物相が混在してなる耐摩耗合金粉末。
The present invention was completed based on the above findings, and includes: (1) In weight%, C: 0.06% or less, Mn: 1.2%
Below, Si: 3-4%, B: 3-4%, Cr: 20-3
5%, Mo: 2-3%, Nb: 2-3%, Fe: 2%
Hereinafter, a wear-resistant alloy powder having a composition consisting of oxygen: 0.006% or less, nitrogen: 0.006% or less, and the remainder substantially Ni, and in which a boride phase is mixed in an amorphous phase.

(2)上記耐摩耗合金粉末を母材上に減圧プラズマ溶射
してなる耐摩耗部材 である。
(2) A wear-resistant member formed by spraying the above-mentioned wear-resistant alloy powder onto a base material by low-pressure plasma spraying.

〔作用〕[Effect]

以下、本発明の合金組成及び溶射法の限定理由について
説明する。以下、%は重量%を意味する。
The reasons for limiting the alloy composition and thermal spraying method of the present invention will be explained below. Hereinafter, % means weight %.

Crは硼化物による硬さ向上及び耐食性向上に不可欠な
成分である。とくに耐食性、耐応力腐食割れの改善を重
要視する場合には20%以上の含有が必要である。しか
し35%を越えると溶射層の硬さが低下し始めるので、
Cr含有量は20〜35重量%に限定する。
Cr is an essential component for improving hardness and corrosion resistance by boride. Particularly when emphasis is placed on improving corrosion resistance and stress corrosion cracking resistance, the content should be 20% or more. However, if it exceeds 35%, the hardness of the sprayed layer will begin to decrease.
The Cr content is limited to 20-35% by weight.

Bは硼化物となって析出し合金の硬さを高めるものであ
るが、3%未満では高硬度Ni基合金としての硬さが不
十分であり、また、4%を越えると遊離Bが出現し合金
を脆くするので3〜4%とする。
B becomes boride and increases the hardness of the precipitated alloy, but if it is less than 3%, the hardness as a high hardness Ni-based alloy is insufficient, and if it exceeds 4%, free B appears. Since it makes the alloy brittle, it is set at 3 to 4%.

SiもNi基合金の高硬度化に効果的な成分で、B同様
に多量に添加することができ、高硬度化に果す役割は大
きく、また脱酸剤としても有効である。3%未満ではそ
の効果が不十分であり、また、4%を越えると合金が脆
くなるので3〜4%とする。
Si is also an effective component for increasing the hardness of Ni-based alloys, and like B, it can be added in large amounts, plays a large role in increasing the hardness, and is also effective as a deoxidizing agent. If it is less than 3%, the effect will be insufficient, and if it exceeds 4%, the alloy will become brittle, so the content is set at 3 to 4%.

B及びSiは、それぞれ単体にても上記の効果を奏する
が、複合して適宜含有させることにより、靭性を保った
まま加工性及び耐摩耗性に適した硬さを得ることができ
る。好ましくはその総量は6.5〜7.5程度がよい。
B and Si each have the above-mentioned effects when used alone, but by appropriately containing them in combination, it is possible to obtain hardness suitable for workability and wear resistance while maintaining toughness. Preferably, the total amount is about 6.5 to 7.5.

Moは本発明合金の硬度上昇に著しく貢献する重要な成
分であるが、2%未満ではその効果が不十分であり、ま
た3%を越えると逆に硬さが低下する。したがって、M
Oは2〜3%とする。
Mo is an important component that significantly contributes to increasing the hardness of the alloy of the present invention, but if it is less than 2%, its effect is insufficient, and if it exceeds 3%, the hardness decreases. Therefore, M
The content of O is 2 to 3%.

NbはMoの存在下においてその添加効果がある。Nb has an added effect in the presence of Mo.

すなわち、Moとの共存により硬度上昇に貢献する成分
である。また、アモルファス化に必要な成分の一つであ
る。添加量が2%未満では効果が不十分であり、また3
%を越えると逆に硬さが低下する。したがって、Nbは
2〜3%とする。
That is, it is a component that contributes to an increase in hardness by coexisting with Mo. It is also one of the components necessary for amorphization. If the amount added is less than 2%, the effect is insufficient;
%, on the contrary, the hardness decreases. Therefore, Nb is set at 2 to 3%.

Feは不純物であるが、20%以上のCrを含有する合
金では、2%を越えて含有すると非磁性化を害するので
2%以下とする。
Fe is an impurity, but in an alloy containing 20% or more of Cr, if it is contained in an amount exceeding 2%, it will impair demagnetization, so it should be kept at 2% or less.

Mnも不純物であるが、1.2%を越えると非磁性及び
耐食性を害するので1.2%以下とする。
Mn is also an impurity, but if it exceeds 1.2%, it will impair nonmagnetism and corrosion resistance, so it should be kept at 1.2% or less.

Coはゆれ自身又はNi、 Cr、 Si及びBと化合
物を形成し耐摩耗性、耐かじり性を向上させるが、誘導
放射化による被爆量の増大に繋がる。又材料コストが高
くなるので不可避な不純物量とする。
Co forms a compound with itself or with Ni, Cr, Si, and B to improve wear resistance and galling resistance, but it leads to an increase in radiation exposure due to induced activation. Also, since the material cost increases, the amount of impurities is unavoidable.

Cは耐食性に好ましくない炭化物(Cr枯渇部)が多量
に析出し、特にNbとの結合が強いために、NbCとな
りMoとの相乗作用が害されるので、できるだけ少ない
ほうがよく、0.06%以下とする。
C precipitates a large amount of carbides (Cr-depleted parts) which are unfavorable for corrosion resistance, and has a particularly strong bond with Nb, resulting in the formation of NbC, which impairs the synergistic effect with Mo, so it is better to keep it as low as possible, 0.06% or less. shall be.

酸素及び窒素は不純物であるが、溶射材とするためでき
るだけ少ないほうがよい。したがって、それぞれ0.0
06%未満にすべきである。
Oxygen and nitrogen are impurities, but since they are used as a thermal spray material, it is better to reduce them as much as possible. Therefore, each 0.0
It should be less than 0.6%.

本発明の耐摩耗合金粉はガスアトマイズ法によって得る
ものであるが、該法によって急速凝固、冷却されたこの
種合金の粉末粒子は、非平衡のアモルファス状組織とな
り、溶解材の硬さに比べ格段に高い硬さを得ることがで
きる。
The wear-resistant alloy powder of the present invention is obtained by the gas atomization method, and the powder particles of this type of alloy that are rapidly solidified and cooled by this method have a non-equilibrium amorphous structure, which is much harder than the molten material. High hardness can be obtained.

又、本発明の耐摩耗部材は減圧プラズマ溶射によって耐
摩耗合金粉末を適用されるものであるが、急速凝固、冷
却効果を再現する場合には、溶射速度が小さい(噴射粒
子の濃度が稀薄である)ために、溶射粒子に対する周囲
(母材を含む雰囲気)の冷却熱容量が相対的に大きくな
る減圧プラズマ溶射法が、他の燃焼ガス流溶射(例えば
ジェットコート、爆発溶射)、大気中プラズマ溶射等に
比べ有利である。また、母材の予熱温度制御が容易なこ
と、あるいは酸化物の介在や気孔が少なく、緻密な溶射
材が得られるので、耐割れ性、高靭性化はもとより、耐
剥離性に対して非常に有利であることから、溶射方法は
減圧プラズマ溶射法が不可欠である。
In addition, the wear-resistant alloy powder of the present invention is applied by low-pressure plasma spraying, but in order to reproduce rapid solidification and cooling effects, the spraying speed is low (the concentration of the sprayed particles is dilute). Because of this, the cooling heat capacity of the surrounding area (atmosphere including the base material) for the sprayed particles is relatively large. It is advantageous compared to etc. In addition, it is easy to control the preheating temperature of the base material, and it is possible to obtain a dense thermal sprayed material with few oxides and pores, so it has excellent cracking resistance, high toughness, and peeling resistance. Due to its advantages, low pressure plasma spraying is essential as a thermal spraying method.

〔実施例〕〔Example〕

8種類の合金組成を20kg容量の真空高周波誘導炉に
て溶製し、第1表に示す組成のインゴット(溶解材)を
得た。各インゴットについて初透磁率μ。の測定及び硬
さ試験を行った。その結果を第1表に併記する。次に各
インゴットをガスアトマイズリグにおいて、1500℃
で再溶解し、噴霧圧力25 kgf /Cd、噴霧時間
約3分、噴霧ガス量70m”の窒素ガスにより急冷した
。得られた合金粉末(平均φ42μm)を用いて、第2
図に示す温度履歴及びアルゴンガス10−’Torrの
雰囲気で減圧プラズマ溶射を行った。
Eight types of alloy compositions were melted in a 20 kg capacity vacuum high frequency induction furnace to obtain ingots (melted materials) having the compositions shown in Table 1. Initial permeability μ for each ingot. Measurements and hardness tests were conducted. The results are also listed in Table 1. Next, each ingot was heated to 1500℃ in a gas atomization rig.
The powder was remelted and quenched with nitrogen gas at a spray pressure of 25 kgf/Cd, a spray time of about 3 minutes, and a spray gas volume of 70 m''. Using the obtained alloy powder (average diameter: 42 μm), a second
Low-pressure plasma spraying was performed under the temperature history shown in the figure and an argon gas atmosphere of 10-' Torr.

なお、第2図は母材表面(境界面)に熱電対の温接点を
取りつけ、溶射前の合金の予熱開始段階から溶射終了ま
での時間的温度変化を示したもので、温度の周期的変化
は溶射ガンが往復移動を繰返すために生じるものである
Figure 2 shows the temperature change over time from the start of preheating the alloy before thermal spraying to the end of thermal spraying, with a hot junction of a thermocouple attached to the surface (boundary surface) of the base material. This occurs because the thermal spray gun repeatedly moves back and forth.

合金(母材)には高硬度溶射材に相応した高い硬さを有
し、かつ、ある程度の耐熱性(軟化せず、耐酸化性があ
る等)のある材質が望ましく、こ\ではインコネル71
8材熱合金を用いた。また溶射後では摩耗試験片に切断
、加工することは困難であり、予めインコネル718材
を所定の試験片形状寸法(摩耗試験片)に加工しておき
、試験面となる片側面に溶射し、溶射後は溶射層外表面
をダイヤモンド砥石で研摩するだけで摩耗試験に供せら
れるようにした。
It is desirable for the alloy (base material) to be a material that has high hardness commensurate with high-hardness thermal sprayed materials and has a certain degree of heat resistance (does not soften, has oxidation resistance, etc.), and in this case Inconel 71 is used.
An 8-material thermal alloy was used. In addition, it is difficult to cut and process into wear test pieces after thermal spraying, so Inconel 718 material is processed in advance into a predetermined test piece shape and size (wear test piece), and then thermal sprayed on one side that will be the test surface. After spraying, the outer surface of the sprayed layer was simply polished with a diamond grindstone so that it could be used for wear tests.

溶射後、試験片の外観、断面のミクロ組織及び硬さ試験
を行った結果、溶射材には熱応力による割れ、剥離等は
見られず、また組織は緻密であった。硬さは第1表及び
第1図に示すようにNbとMoとが複合添加されていな
い合金を除いては、いずれもHV (0,2)1000
以上の硬さを示し、またCr含有量を30%以下に制限
すればHV (0,2N 200の超高硬さが安定して
得られることがわかった。
After thermal spraying, the appearance, cross-sectional microstructure, and hardness of the test piece were tested. As a result, no cracks or peeling due to thermal stress were observed in the thermally sprayed material, and the structure was dense. As shown in Table 1 and Figure 1, the hardness is HV (0,2) 1000 for all alloys except for alloys in which Nb and Mo are not added in combination.
It was found that ultra-high hardness of HV (0.2N 200) can be stably obtained by limiting the Cr content to 30% or less.

さらに、合金4 (本発明外) 7(本発明)の溶射材
及び合金7 (本発明)の溶解材について、第3表に示
す試験条件により摩耗試験を行った結果、第2表に示す
ように合金7の溶射材は合金4の溶射材及び合金7の溶
解材に比べ1桁小さい比摩耗量と非常に小さい粗さ変化
〔摩耗試験後の粗さ(R,、、、)−摩耗試験前の粗さ
(R,、、、) 〕を示し、また、相手材の固定片(ス
テライトNα25)における摩耗量をも減じるなど、合
金7溶射材は優れた耐摩耗特性を有することが明らかに
なった。
Furthermore, wear tests were conducted on the thermal sprayed material of Alloy 4 (outside the invention) 7 (invention) and the melted material of Alloy 7 (invention) under the test conditions shown in Table 3. As a result, the results are shown in Table 2. The thermal sprayed material of Alloy 7 has a specific wear amount that is one order of magnitude smaller than that of the thermal sprayed material of Alloy 4 and the melted material of Alloy 7, and a very small change in roughness [Roughness after wear test (R, , , ) - Wear test It is clear that the Alloy 7 thermal sprayed material has excellent wear resistance properties, as it shows the previous roughness (R,,,,)] and also reduces the amount of wear on the fixed piece of the mating material (Stellite Nα25). became.

第  3 表 〔発明の効果〕 (1)  本発明によれば、耐摩耗性、耐食性の向上及
び不純物であるFe、 Cの許容量を大きくすることに
よる材料コストの低減を図るため、Cr量を最適量と云
われる量の2倍以上、即ち20〜35%に高めることが
でき、溶解材についてRe、 Cをそれぞれ2%、0.
06%まで増大しても、1.0023の低い初透磁率を
示し、所望の非磁性が保たれている耐摩耗、耐食性の合
金粉末が得られ、更に該合金粉末を減圧プラズマ溶射法
によって構造材である母材に溶射した結果、HV (0
,2)  1200の極めて高い硬さを有し、かつ接着
性のよい表面硬化処理層が得られることが明らかになっ
た。
Table 3 [Effects of the Invention] (1) According to the present invention, in order to improve wear resistance and corrosion resistance and reduce material costs by increasing the allowable amounts of impurities Fe and C, the amount of Cr is increased. The amount can be increased to more than twice the optimum amount, that is, 20 to 35%, and Re and C can be increased to 2% and 0.0%, respectively, for the melting material.
Even when increased to 0.06%, a wear-resistant and corrosion-resistant alloy powder is obtained that exhibits a low initial permeability of 1.0023 and maintains the desired non-magnetism. As a result of thermal spraying on the base material, HV (0
, 2) It was revealed that a surface hardened layer having an extremely high hardness of 1200 and good adhesiveness could be obtained.

(2)  また、耐摩耗用部材の耐かじり、耐摩耗性の
向上が摩耗試験により認められた。一方、耐食性につい
てはとくに試験を行っていないが、改善されることは明
らかである。同溶射材はMo及びNbの複合添加と減圧
プラズマ溶射の連携により、Cr量を増大した状態でも
、耐摩耗性に優れる硬さ及び靭性に優れる金属組織が得
られるもので、割れ・剥離・チッピング等の生じない耐
摩耗部材が提供される。
(2) In addition, improvements in galling resistance and abrasion resistance of the wear-resistant member were observed in a wear test. On the other hand, although no particular tests were conducted regarding corrosion resistance, it is clear that it is improved. This thermal sprayed material has a combination of Mo and Nb addition and low-pressure plasma spraying, and even with an increased amount of Cr, a metal structure with excellent hardness and toughness with excellent wear resistance can be obtained, resulting in cracking, peeling, and chipping. Provided is a wear-resistant member that does not cause such problems.

(3)  この溶射による硬さの著しい向上の理由とし
ては、減圧プラズマ溶射に起因する急冷(推定1000
°に/S以上)と、それによって生じるアモルファス(
非晶質)と硼化物の混合相が生成されることが考えられ
る。高硬度の材質であるにもか\わらず、割れ、剥離等
が認められないのは、結晶質に比べ粘く、加工性がよい
などアモルファスの特性に加え、約420℃以下の高温
溶射の適用が効を奏しているものと考えられる。
(3) The reason for the remarkable improvement in hardness due to thermal spraying is that the rapid cooling (estimated at 1000
°/S or more) and the resulting amorphous (
It is thought that a mixed phase of amorphous) and boride is generated. Although it is a highly hard material, no cracking or peeling is observed.In addition to the characteristics of amorphous, such as being more viscous and easier to work with than crystalline materials, it is also possible to use high-temperature thermal spraying at temperatures below approximately 420°C. It seems that the application is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る溶射材の硬さ分布図
表、第2図は減圧プラズマ溶射時の母材表面温度履歴図
表である。 第1図
FIG. 1 is a hardness distribution chart of the thermal spray material according to the first embodiment of the present invention, and FIG. 2 is a base material surface temperature history chart during reduced pressure plasma spraying. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C:0.06%以下,Mn:1.2%
以下,Si:3〜4%,B:3〜4%,Cr:20〜3
5%,Mo:2〜3%,Nb:2〜3%,Fe:2%以
下,酸素:0.006%以下,窒素:0.006%以下
,残部が実質的にNiよりなる組成であって、アモルフ
ァス相に硼化物相が混在してなる耐摩耗合金粉末。
(1) In weight%, C: 0.06% or less, Mn: 1.2%
Below, Si: 3-4%, B: 3-4%, Cr: 20-3
5%, Mo: 2 to 3%, Nb: 2 to 3%, Fe: 2% or less, oxygen: 0.006% or less, nitrogen: 0.006% or less, and the balance consists essentially of Ni. A wear-resistant alloy powder consisting of an amorphous phase mixed with a boride phase.
(2)請求項(1)記載の耐摩耗合金粉末を母材上に減
圧プラズマ溶射してなる耐摩耗部材。
(2) A wear-resistant member obtained by spraying the wear-resistant alloy powder according to claim (1) onto a base material by low-pressure plasma spraying.
JP1277215A 1989-10-26 1989-10-26 Wear-resistant alloy powder and components Expired - Lifetime JP2659825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277215A JP2659825B2 (en) 1989-10-26 1989-10-26 Wear-resistant alloy powder and components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277215A JP2659825B2 (en) 1989-10-26 1989-10-26 Wear-resistant alloy powder and components

Publications (2)

Publication Number Publication Date
JPH03140450A true JPH03140450A (en) 1991-06-14
JP2659825B2 JP2659825B2 (en) 1997-09-30

Family

ID=17580418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277215A Expired - Lifetime JP2659825B2 (en) 1989-10-26 1989-10-26 Wear-resistant alloy powder and components

Country Status (1)

Country Link
JP (1) JP2659825B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733306C1 (en) * 1997-08-01 1999-05-06 Juergen Dr Ing Roethig Iron-based additive material is used for thermal coating of components exposed to friction
EP1559808A1 (en) * 2004-01-28 2005-08-03 Ford Global Technologies, LLC Iron containing coating applied by thermal spraying on a sliding surface,especially on cylinder boxes of engine blocks
WO2006034054A1 (en) * 2004-09-16 2006-03-30 Belashchenko Vladimir E Deposition system, method and materials for composite coatings
JP2007508455A (en) * 2003-10-17 2007-04-05 シーメンス アクチエンゲゼルシヤフト Protective layer for structural members
WO2007059062A2 (en) * 2005-11-14 2007-05-24 The Regents Of The University Of California Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
US7361411B2 (en) 2003-04-21 2008-04-22 Att Technology, Ltd. Hardfacing alloy, methods, and products
KR100862550B1 (en) * 2006-06-27 2008-10-09 한국생산기술연구원 Fe-based amorphous-nano composite alloys with excellent hardness and toughness
JP2012521526A (en) * 2009-03-24 2012-09-13 アルストム テクノロジー リミテッド Metal tube coating with fatigue corrosion cracking
CN104028743A (en) * 2014-05-28 2014-09-10 河海大学 Ferrochromium-based powder core wire and preparing method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773474B (en) * 2012-08-09 2013-10-30 华北电力大学 Powder for wear-resistant anti-corrosion protection of water wall tube and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733306C1 (en) * 1997-08-01 1999-05-06 Juergen Dr Ing Roethig Iron-based additive material is used for thermal coating of components exposed to friction
US7361411B2 (en) 2003-04-21 2008-04-22 Att Technology, Ltd. Hardfacing alloy, methods, and products
JP2007508455A (en) * 2003-10-17 2007-04-05 シーメンス アクチエンゲゼルシヤフト Protective layer for structural members
EP1559808A1 (en) * 2004-01-28 2005-08-03 Ford Global Technologies, LLC Iron containing coating applied by thermal spraying on a sliding surface,especially on cylinder boxes of engine blocks
WO2006034054A1 (en) * 2004-09-16 2006-03-30 Belashchenko Vladimir E Deposition system, method and materials for composite coatings
US7670406B2 (en) 2004-09-16 2010-03-02 Belashchenko Vladimir E Deposition system, method and materials for composite coatings
WO2007059062A2 (en) * 2005-11-14 2007-05-24 The Regents Of The University Of California Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
WO2007059062A3 (en) * 2005-11-14 2007-08-02 Univ California Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
US7618500B2 (en) 2005-11-14 2009-11-17 Lawrence Livermore National Security, Llc Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
US8778459B2 (en) 2005-11-14 2014-07-15 Lawrence Livermore National Security, Llc. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
KR100862550B1 (en) * 2006-06-27 2008-10-09 한국생산기술연구원 Fe-based amorphous-nano composite alloys with excellent hardness and toughness
JP2012521526A (en) * 2009-03-24 2012-09-13 アルストム テクノロジー リミテッド Metal tube coating with fatigue corrosion cracking
CN104028743A (en) * 2014-05-28 2014-09-10 河海大学 Ferrochromium-based powder core wire and preparing method and application thereof

Also Published As

Publication number Publication date
JP2659825B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP5497884B2 (en) Nitritable steel composition for the production of piston rings and cylinder liners
US4731253A (en) Wear resistant coating and process
JP2022532738A (en) Nickel-based alloy for powder and manufacturing method of powder
JPH03140450A (en) Wear resistant alloy powder and member
US20230129247A1 (en) High-boron cast steel material resisting high-temperature molten aluminum corrosion-abrasion and preparation method thereof
EP1696045A1 (en) Hot work tool steel and mold member excellent in resistance to melting
JPS6256561A (en) Method for hardening surface of ti or ti alloy
US5076863A (en) Joined body of ceramic member and metallic member, and process for joining ceramic member and metallic member
EP0765703B1 (en) Sleeve for die casting machines and die casting machine using the same
JPH09263906A (en) Iron-nickel-chrome-alum. ferritic alloy and its production
JP3029642B2 (en) Casting molds or molten metal fittings with excellent erosion resistance to molten metal
JP2004019001A (en) Tool steel for hot-working superior in erosion resistance, and die member
JP2003154437A (en) Metallic mold for casting and its producing method
He et al. Carbide reinforced Ni–Cr–B–Si–C composite coating on 4Cr5MoSiV1 steel by comprehensive plasma melt injection method
JP2792379B2 (en) Ti alloy member excellent in wear resistance and method of manufacturing the same
JP6520518B2 (en) Mold repair welding material
Spies et al. Nitriding of Aluminum and its Alloys
CA2456764A1 (en) Furnace run length extension by fouling control
JP5779749B2 (en) Cast iron material manufacturing method, cast iron material and die casting machine sleeve
JPH10118764A (en) Method for joining tial turbine impeller with rotor shaft
JPH09108807A (en) Sleeve for pressure casting excellent in erosion resistance and heat retaining property
JP3460160B2 (en) Manufacturing method of mold for continuous casting
JP5449936B2 (en) Co-based alloy excellent in wear resistance and lubricity, its production method and its sintered body
JPH0195896A (en) Composite welding material for welded overlay
JPH0693379A (en) Erosion-corrosion resistant material against aluminum