[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03133939A - Production of partially chlorinated methane - Google Patents

Production of partially chlorinated methane

Info

Publication number
JPH03133939A
JPH03133939A JP27183289A JP27183289A JPH03133939A JP H03133939 A JPH03133939 A JP H03133939A JP 27183289 A JP27183289 A JP 27183289A JP 27183289 A JP27183289 A JP 27183289A JP H03133939 A JPH03133939 A JP H03133939A
Authority
JP
Japan
Prior art keywords
group element
catalyst
carbon tetrachloride
methane
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27183289A
Other languages
Japanese (ja)
Other versions
JP2737308B2 (en
Inventor
Ryutaro Takei
武居 龍太郎
Yoichi Yoshida
陽一 吉田
Kouichi Yanase
簗瀬 ▲こう▼一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1271832A priority Critical patent/JP2737308B2/en
Publication of JPH03133939A publication Critical patent/JPH03133939A/en
Application granted granted Critical
Publication of JP2737308B2 publication Critical patent/JP2737308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce a partially chlorinated methane such as chloroform, methylene chloride or methyl chloride in high efficiency by reacting CCl4 with H2 in the presence of an iron-group element or platinum-group element catalyst supported on activated carbon, etc. CONSTITUTION:The subject substance is produced by reacting CCl4 with H2 at a molar ratio of 1:(1-3) at 150-350 deg.C preferably in gaseous phase in the presence of an iron group element catalyst (e.g. Fe. Co or Ni) or a platinum-group element catalyst (e.g. Pd, Pt, Ru or Rh) supported on activated carbon, diatomaceous earth, alumina, etc. The catalyst is preferably a platinum-group element catalyst having high acid resistance to withstand HCl produced as a by-product of the above reaction. The amount of H2 is dependent on the kind of the most desirable product.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は部分塩素化メタンであるクロロホルム、塩化メ
チレン、塩化メチルの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing partially chlorinated methane such as chloroform, methylene chloride, and methyl chloride.

[従来の技術及び発明が解決しようとする課題]クロロ
ホルム、塩化メチレン、塩化メチルの製造方法としては
、従来、メタンを塩素と 400〜500℃高温条件下
又は3000〜5000人の波長の光照射下で反応させ
る方法が知られている。更に、メタノールを出発原料と
して用い塩酸と反応させることにより、塩化メチルを製
造し、次いでこれを塩素化して高次塩素化メタンを製造
するいわゆるメタノール法が知られている。
[Prior art and problems to be solved by the invention] Conventionally, chloroform, methylene chloride, and methyl chloride have been produced by mixing methane with chlorine under high-temperature conditions of 400 to 500°C or under irradiation with light having a wavelength of 3,000 to 5,000 degrees Celsius. A method of reacting is known. Furthermore, a so-called methanol method is known in which methyl chloride is produced by using methanol as a starting material and reacting it with hydrochloric acid, and then chlorinating this to produce highly chlorinated methane.

しかしながら、いずれの方法においても生成する塩素化
メタンの組成比率は反応条件の調整により変化させるこ
とは可能であるが、単一化合物だけを生成させることは
できず、必ず複数の塩素化メタンの混合物が得られる。
However, although it is possible to change the composition ratio of chlorinated methane produced by either method by adjusting the reaction conditions, it is not possible to produce only a single compound, and a mixture of multiple chlorinated methane is always produced. is obtained.

より高次に塩素化されたメタンを得たい場合には生成物
をリサイクルすることによりその目的を達成することが
できるが完全に塩素化されてしまった四塩化炭素を部分
的に塩素化されたメタン(クロロホルム、塩化メチレン
、塩化メチル)に転化させることは従来の塩素化プロセ
スでは不可能である。四塩化炭素を部分的に還元する方
法としては、塩酸を鉄と反応させて生ずる発生期の水素
による還元やメタンやエタン等の低級アルカンの共存下
に高温に加熱する方法等が知られている。しかしながら
、前者は多量の鉄を消費するうえ副生ずる多量の塩化鉄
を処理せねばならずコスト的に工業的規模で採用するこ
とは不可能であり、後者は塩素化エチレン等の副生を伴
う等の問題点を有している。
If you want to obtain more highly chlorinated methane, you can achieve that goal by recycling the product, but you can replace completely chlorinated carbon tetrachloride with partially chlorinated carbon tetrachloride. Conversion to methane (chloroform, methylene chloride, methyl chloride) is not possible with conventional chlorination processes. Known methods for partially reducing carbon tetrachloride include reducing it with nascent hydrogen produced by reacting hydrochloric acid with iron, and heating it to high temperatures in the coexistence of lower alkanes such as methane and ethane. . However, the former consumes a large amount of iron and must process a large amount of iron chloride produced as a by-product, making it impossible to use on an industrial scale due to cost considerations, and the latter involves producing by-products such as chlorinated ethylene. It has the following problems.

[課題を解決するための手段] 本発明は前述のような従来技術の問題点を解決すべくな
されたものであり、完全に塩素化された四塩化炭素を部
分的に塩素化されたメタン(クロロホルム・塩化メチレ
ン・塩化メチル)に転化させる製造方法を新規に提供す
ることを目的とするものである。
[Means for Solving the Problems] The present invention has been made to solve the problems of the prior art as described above. The purpose of this project is to provide a new manufacturing method for converting chloroform, methylene chloride, and methyl chloride.

即ち、本発明は鉄族元素又は白金族元素触媒の存在下に
、四塩化炭素を水素と反応せしめて部分塩素化メタンを
得ることを特徴とする部分塩素化メタンの製造方法に関
するものである。
That is, the present invention relates to a method for producing partially chlorinated methane, which is characterized by reacting carbon tetrachloride with hydrogen in the presence of an iron group element or platinum group element catalyst to obtain partially chlorinated methane.

本発明における鉄族元素触媒としては、Fe。The iron group element catalyst in the present invention is Fe.

Co、Niを、白金族元素触媒としてはPd、 Pt、
 Ru。
Co, Ni, as platinum group element catalysts Pd, Pt,
Ru.

Rh等を挙げることができる。これらの鉄族元素や白金
族元素触媒は2種以上併用してもよ(、また、活性炭、
ケイソウ土あるいはアルミナ等の担体に担持させること
ができ、これにより触媒活性を高め、触媒寿命をのばす
ことができる。本発明反応においては、塩化水素が副生
ずるため、耐酸性の高い白金族元素触媒が好ましい。
Examples include Rh. Two or more of these iron group element and platinum group element catalysts may be used in combination (also, activated carbon,
It can be supported on a carrier such as diatomaceous earth or alumina, thereby increasing the catalyst activity and extending the catalyst life. In the reaction of the present invention, since hydrogen chloride is produced as a by-product, a platinum group element catalyst with high acid resistance is preferred.

本発明における反応温度としては、あまり低い場合には
反応率が充分得られず、高すぎる場合には、反応率は高
いものの副反応による高沸点成分が生成し、選択率を低
下させたり、触媒寿命を短くしたりするので、 100
〜400’C1好ましくは150〜350℃の範囲から
選択するとよい。反応は、常圧又は加圧下に液相でも気
相でも可能であるが、選択率や触媒寿命の観点から気相
法が好ましい。気相での反応時間はおよそ5〜600秒
好ましくは10〜100秒が適当である。
In the present invention, if the reaction temperature is too low, a sufficient reaction rate cannot be obtained, and if it is too high, although the reaction rate is high, high-boiling components are generated due to side reactions, which may reduce the selectivity or catalyze the reaction. 100 as it may shorten the lifespan.
-400'C1, preferably from the range of 150-350°C. Although the reaction can be carried out in a liquid phase or a gas phase under normal pressure or increased pressure, a gas phase method is preferred from the viewpoint of selectivity and catalyst life. The reaction time in the gas phase is approximately 5 to 600 seconds, preferably 10 to 100 seconds.

使用する水素の量は、使用する四塩化炭素の1倍モル未
満では四塩化炭素の反応率を100%にすることはでき
ず、又、多すぎる場合には、不必要なメタンの生成量を
多くしてしまう結果となる。従って、使用する水素の量
は、最も得たい生成物がクロロホルムであるか、塩化メ
チレンであるか、塩化メチルであるかにより最適屋とす
ればよいが、およそ四塩化炭素の1〜3倍モルとするこ
とが好ましい。
If the amount of hydrogen used is less than 1 mole of carbon tetrachloride to be used, the reaction rate of carbon tetrachloride will not be 100%, and if it is too large, the amount of unnecessary methane produced will be reduced. The result is that you end up spending too much. Therefore, the amount of hydrogen to be used can be optimized depending on whether the desired product is chloroform, methylene chloride, or methyl chloride, but it is approximately 1 to 3 times the molar amount of carbon tetrachloride. It is preferable that

[実施例] 実施例1 直径1インチ長さ1mの鉄製反応器に活性炭に0.5w
t%のパラジウムを担持した触媒を充填し、これをマン
トルヒーターにより 250’Cに加熱した。この反応
器に気化させた四塩化炭素154g (1モル)/hr
を水素 34Nl/hrとともに供給した。四塩化炭素
と水素のモル比は1:1.5である。反応器出口からの
ガスを5%NaOH除害びん中バブルさせることにより
、その底部に油状生成物が得られ、又凝縮しないガスが
除害びんから出てきた。30分間のサンプリングにより
油状生成物45gと非凝縮ガス14I2を得た。
[Example] Example 1 0.5 W of activated carbon was placed in a steel reactor with a diameter of 1 inch and a length of 1 m.
A catalyst supporting t% of palladium was charged and heated to 250'C with a mantle heater. 154g (1 mol)/hr of carbon tetrachloride vaporized in this reactor
was supplied together with 34 Nl/hr of hydrogen. The molar ratio of carbon tetrachloride to hydrogen is 1:1.5. Bubbling the gas from the reactor outlet into a 5% NaOH abatement bottle resulted in an oily product at the bottom, and non-condensable gas came out of the abatement bottle. Sampling for 30 minutes yielded 45 g of oily product and 14 I2 of non-condensable gas.

ガスクロマトグラフィー分析によると油状生成物の組成
は面積比をモル比に補正後四塩化炭素15%、クロロホ
ルム68%、塩化メチレン14%、塩化メチル3%であ
った。
According to gas chromatography analysis, the composition of the oily product, after correcting the area ratio to the molar ratio, was 15% carbon tetrachloride, 68% chloroform, 14% methylene chloride, and 3% methyl chloride.

一方、非凝縮ガスの組成は同様にクロロホルム8%、塩
化メチレン23%、塩化メチル54%、メタン15%で
あったが、このガスクロマトグラフィーの分析条件では
水素は検出できないので組成にはカウントされていない
On the other hand, the composition of the non-condensable gas was similarly 8% chloroform, 23% methylene chloride, 54% methyl chloride, and 15% methane, but hydrogen cannot be detected under these gas chromatography analysis conditions, so it is not counted in the composition. Not yet.

実施例2 実施例1で用いた反応器を200’Cに加熱し、これに
四塩化炭素70g (0,45モル) /hr、水素2
5N1/hrを供給した。四塩化炭素と水素のモル比は
1:2.5である。実施例1と同様に30分間のサンプ
リングにより除害びんの底部に26gの油状生成物を得
た。実施例1と同様なガスクロマドグラフィー分析によ
れば油状生成物の組成は四塩化炭素38%、クロロホル
ム43%、塩化メチレン18%、塩化メチル2%メタン
痕跡であった。また除害びんから出たガスはほとんど水
素であったため捕捉できなかった。
Example 2 The reactor used in Example 1 was heated to 200'C, and 70 g (0.45 mol) of carbon tetrachloride/hr and 2 hydrogen were added to it.
5N1/hr was supplied. The molar ratio of carbon tetrachloride to hydrogen is 1:2.5. As in Example 1, 26 g of oily product was obtained at the bottom of the abatement bottle by sampling for 30 minutes. According to the same gas chromatography analysis as in Example 1, the composition of the oily product was 38% carbon tetrachloride, 43% chloroform, 18% methylene chloride, 2% methyl chloride, and traces of methane. Furthermore, the gas that came out of the abatement bottle was mostly hydrogen, so it could not be captured.

実施例3 実施例1で用いた反応器に2wt%の白金を活性炭に担
持した触媒を充填し、これをマントルヒーターにより 
250℃に加熱した。この反応器に気化させた四塩化炭
素154g (1モル)/hrを水素34N1/hrと
ともに供給した。四塩化炭素と水素のモル比はl:1.
5である0反応語呂口からの5%NaOH除害びん中バ
ブルさせることにより、その底部に油状生成物が得られ
、又凝縮しないガスが除害びんから出てきた。30分間
のサンプリングにより油状生成物52gを得た非凝縮ガ
スは水素がほとんどであり分析できなかった。ガスクロ
マトグラフィー分析では油状生成物の組成は四塩化炭素
38%、クロロホルム48%、塩化メチレン12%、塩
化メチル2%であった。
Example 3 The reactor used in Example 1 was filled with a catalyst in which 2 wt% of platinum was supported on activated carbon, and this was heated using a mantle heater.
It was heated to 250°C. 154 g (1 mol)/hr of vaporized carbon tetrachloride was fed into this reactor together with 34 N1/hr of hydrogen. The molar ratio of carbon tetrachloride and hydrogen is 1:1.
By bubbling 5% NaOH into the abatement bottle from the 0 reaction mouthpiece, an oily product was obtained at its bottom, and non-condensable gas came out of the abatement bottle. The non-condensable gas from which 52 g of oily product was obtained by sampling for 30 minutes was mostly hydrogen and could not be analyzed. Gas chromatography analysis revealed that the composition of the oily product was 38% carbon tetrachloride, 48% chloroform, 12% methylene chloride, and 2% methyl chloride.

[発明の効果] 本発明は実施例にも示されるように四塩化炭素を有効に
クロロホルム、塩化メチレン、塩化メチルに変換するこ
とができろ。本発明に従えば、メタンまたは塩素化反応
によって得られる四塩化炭素を部分的に還元することが
でき、従来の塩素化反応による四塩化炭素の製法と併用
することにより、任意の部分塩素化メタンをメタン又は
メタノールから効率よく製造することが可能である。
[Effects of the Invention] As shown in the Examples, the present invention can effectively convert carbon tetrachloride into chloroform, methylene chloride, and methyl chloride. According to the present invention, it is possible to partially reduce methane or carbon tetrachloride obtained by a chlorination reaction, and by using it together with the conventional method for producing carbon tetrachloride by a chlorination reaction, any partially chlorinated methane can be reduced. can be efficiently produced from methane or methanol.

Claims (1)

【特許請求の範囲】 1、鉄族元素又は白金族元素触媒の存在下に、四塩化炭
素を水素と反応せしめて部分塩素化メタンを得ることを
特徴とする部分塩素化メタンの製造方法。 2、鉄族元素又は白金族元素触媒が活性炭、ケイソウ土
、又はアルミナに担持されている請求項1に記載の製造
方法。 3、反応温度が150℃〜350℃の範囲から選ばれる
請求項1に記載の製造方法。 4、水素を四塩化炭素の1〜3倍モル使用する請求項1
に記載の製造方法。
[Claims] 1. A method for producing partially chlorinated methane, which comprises reacting carbon tetrachloride with hydrogen in the presence of an iron group element or platinum group element catalyst to obtain partially chlorinated methane. 2. The manufacturing method according to claim 1, wherein the iron group element or platinum group element catalyst is supported on activated carbon, diatomaceous earth, or alumina. 3. The manufacturing method according to claim 1, wherein the reaction temperature is selected from the range of 150°C to 350°C. 4.Claim 1 in which hydrogen is used in an amount of 1 to 3 times the mole of carbon tetrachloride.
The manufacturing method described in.
JP1271832A 1989-10-20 1989-10-20 Method for producing partially chlorinated methane Expired - Lifetime JP2737308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1271832A JP2737308B2 (en) 1989-10-20 1989-10-20 Method for producing partially chlorinated methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1271832A JP2737308B2 (en) 1989-10-20 1989-10-20 Method for producing partially chlorinated methane

Publications (2)

Publication Number Publication Date
JPH03133939A true JPH03133939A (en) 1991-06-07
JP2737308B2 JP2737308B2 (en) 1998-04-08

Family

ID=17505484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271832A Expired - Lifetime JP2737308B2 (en) 1989-10-20 1989-10-20 Method for producing partially chlorinated methane

Country Status (1)

Country Link
JP (1) JP2737308B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018447A1 (en) * 1991-04-23 1992-10-29 Ag Technology Co., Ltd. Process for producing hydrochloromethanes
JP2009298772A (en) * 2008-06-10 2009-12-24 John E Stauffer Methanol synthesis method
CN107876046A (en) * 2017-10-27 2018-04-06 江苏理文化工有限公司 A kind of effective catalyst of preparing chloroform by carbon tetrachloride gaseous phase hydrogenation and dechlorination

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018447A1 (en) * 1991-04-23 1992-10-29 Ag Technology Co., Ltd. Process for producing hydrochloromethanes
US5334782A (en) * 1991-04-23 1994-08-02 Ag Technology Co., Ltd. Method for producing a hydrogen-containing chloromethane
JP2009298772A (en) * 2008-06-10 2009-12-24 John E Stauffer Methanol synthesis method
CN107876046A (en) * 2017-10-27 2018-04-06 江苏理文化工有限公司 A kind of effective catalyst of preparing chloroform by carbon tetrachloride gaseous phase hydrogenation and dechlorination

Also Published As

Publication number Publication date
JP2737308B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
Prati et al. Reductive catalytic dehalogenation of light chlorocarbons
AU633295B2 (en) Improved hydrogenolysis/dehydrohalogenation process
JP6673413B2 (en) Method for producing fluoroolefin
AU641704B2 (en) Halocarbon hydrogenolysis
US20020013227A1 (en) Rhodium foam catalyst for the partial oxidation of hydrocarbons
EP0662941B1 (en) Processes for converting chlorinated alkane byproducts or waste products to useful, less chlorinated alkenes
EP1008575A1 (en) Preparation of 1-chloro-2,2-difluoroethane ("142")
JPH04211027A (en) Method for preparation of 1,1,1,3,3,3- hexafluoropropane and 2-chloro-1,1,1,3,3,3- hexafluoropropane
JPH03133939A (en) Production of partially chlorinated methane
WO1996017813A1 (en) Halofluorocarbon hydrogenolysis
US5637548A (en) Preparation of bimetallic catalysts for hydrodechlorination of chlorinated hydrocarbons
KR100978775B1 (en) Mixed metal oxide catalyst and process for production of acetic acid
US5300712A (en) Homogeneous catalytic hydrodechlorination of chlorocarbons
JPH07275711A (en) Nickel-supported catalyst for modifying hydrocarbon and production thereof
JP2020508206A (en) Activation energy reducer for solvent oxidation of gas mixtures
WO1996017814A1 (en) Halofluorocarbon hydrogenolysis
JP4432390B2 (en) Method for producing chlorobenzene
EP2062866B1 (en) Gas phase synthesis of 2,3,3,3-tetrafluoro-1-propene from 2-chloro-3,3,3-trifluoro-1-propene
JPH08510738A (en) Homogeneous catalytic hydrodechlorination of chlorocarbons
JP2000053597A (en) Production of cyclopentene
US3042705A (en) Preparation of aryl nitriles by catalyzed reaction of aromatic hydrocarbons with hydrogen cyanide
EP0677501A1 (en) Hydrodechlorination process
CN118084609A (en) Production method of 1,2, 3-tetrachloropropene
KR950011099B1 (en) Preparation of 1,1,1-trifluoro-2,2-dichloroethane
JP5041012B2 (en) Method for producing chlorobenzene

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

EXPY Cancellation because of completion of term