JPH03131591A - Method for growing crystal and device for dissolving crystal raw material - Google Patents
Method for growing crystal and device for dissolving crystal raw materialInfo
- Publication number
- JPH03131591A JPH03131591A JP26695089A JP26695089A JPH03131591A JP H03131591 A JPH03131591 A JP H03131591A JP 26695089 A JP26695089 A JP 26695089A JP 26695089 A JP26695089 A JP 26695089A JP H03131591 A JPH03131591 A JP H03131591A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- melted
- layer
- raw material
- crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000002994 raw material Substances 0.000 title claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000007787 solid Substances 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 14
- 230000008018 melting Effects 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims description 16
- 238000002109 crystal growth method Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000002178 crystalline material Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract 1
- 239000000155 melt Substances 0.000 description 16
- 239000012535 impurity Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000011343 solid material Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 2
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 206010042135 Stomatitis necrotising Diseases 0.000 description 1
- 241000190020 Zelkova serrata Species 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000008710 crystal-8 Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 201000008585 noma Diseases 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
C産業上の利用分野〕
本発明は、例えば半導体材料として使用される−、シリ
コン単結晶等の結晶を成長させる方法及びそれに用いる
結晶原料溶解装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for growing a crystal such as a silicon single crystal used as a semiconductor material, for example, and a crystal raw material melting apparatus used therefor.
結晶成長法には種々の方法があるが、その一つに引き上
げ法(チックラルスキー法)がある、引き上げ法は第3
図に示すように、坩堝1内に挿入した結晶原料を全部溶
融させた後、その溶融液4を引き上げ欅又はワイヤ10
の先に取りつけた種結晶6により導いて上方へ引き上げ
ることにより、種結晶6の下端に溶融液4が凝固して結
晶7が成長する。There are various crystal growth methods, one of which is the pulling method (Chickralski method).
As shown in the figure, after all of the crystal raw material inserted into the crucible 1 is melted, the molten liquid 4 is pulled up into a keyaki or wire 10.
By guiding the seed crystal 6 attached to the tip of the seed crystal 6 and pulling it upward, the melt 4 solidifies at the lower end of the seed crystal 6 and a crystal 7 grows.
半導体単結晶をこの方法で成長させる場合、結晶の電気
抵抗率、電気伝導型を調整するため引き上げ前に溶融液
中に不純物元素を添加する場合が多い、しかし、一般に
この不純物は結晶の引き上げ方向に偏析し、チックラル
スキー法では、引き上げ方向の電気抵抗が均一とならな
い。When growing semiconductor single crystals using this method, impurity elements are often added to the melt before pulling in order to adjust the electrical resistivity and electrical conductivity type of the crystal. In the Chickralski method, the electrical resistance in the pulling direction is not uniform.
不純物の偏析が生じるのは、結晶成長の際の溶融液と結
晶との界面における結晶中不純物濃度Csと溶融液中不
純m濃度CZの比C3/CI!、すなわち実効偏析係数
Keが1でないため、結晶の成長に伴い、溶融液中ひい
ては結晶中に生じる不純物濃度が変化するからである。Segregation of impurities occurs due to the ratio C3/CI! of impurity concentration Cs in the crystal to impurity concentration CZ in the melt at the interface between the melt and the crystal during crystal growth. That is, since the effective segregation coefficient Ke is not 1, the concentration of impurities in the melt and eventually in the crystal changes as the crystal grows.
この不純物の偏析を防止した結晶成長方法として溶融層
法が知られている。溶融層法は、第4図に示すように、
溶融液層4の下部に溶融液とほぼ同材質の固体層5を形
成し、溶融液層4から結晶7を引き上げる方法である。A fused layer method is known as a crystal growth method that prevents the segregation of impurities. The fused layer method, as shown in Figure 4,
This is a method in which a solid layer 5 made of substantially the same material as the melt is formed below the melt layer 4, and the crystals 7 are pulled up from the melt layer 4.
溶融層法としては、引き上げに伴って下部の固体層5を
溶融しつつ溶融液層40体積を一定に保ち、結晶引き上
げ中に不純物を連続的に添加して溶融液中不純物濃度を
一定に保つ溶融層厚一定法(特公昭34−8242号。In the molten layer method, the volume of the molten liquid layer 40 is kept constant while the lower solid layer 5 is melted as the crystal is pulled up, and impurities are continuously added during crystal pulling to keep the impurity concentration in the molten liquid constant. Constant melt layer thickness method (Japanese Patent Publication No. 34-8242).
特開昭63−252989号、特公昭62−880号、
実願昭60−32474号)、又は、意図的に溶融液層
の体積を変化させることにより、結晶引き上げ中に不純
物添加することなく溶融液中不純物濃度を一定に保つ溶
融層厚変化法(特願昭60−45602号、特願昭60
45603号、特願昭60−57174号)が知られて
いる。JP 63-252989, JP 62-880,
Utility Model Application No. 60-32474) or the melt layer thickness variation method (special application method) in which the impurity concentration in the melt is kept constant without adding impurities during crystal pulling by intentionally changing the volume of the melt layer. Patent application No. 1983-45602, patent application No. 1983
No. 45603 and Japanese Patent Application No. 60-57174) are known.
以上のような従来の溶融層法では、最初に固体層5の原
料として坩堝に詰めた顆粒状小片(チップ)、塊状原料
(ランプ)等の上方のみを熔かした時点で結晶引き上げ
を開始するために固体層5に空隙が生じ、その中のガス
が浮かび上がって場面を変動させ、引き上げ開始時にお
ける種結晶へのシード付けが困難であり、また、結晶成
長中に引き上げ中の結晶が途切れて中断するという問題
があった。In the conventional molten layer method as described above, crystal pulling is started when only the upper part of the granular pieces (chips), bulk materials (lamps), etc. packed in the crucible as the raw material for the solid layer 5 is melted. Therefore, voids are created in the solid layer 5, and the gas inside them floats up and changes the scene, making it difficult to seed the seed crystal at the beginning of pulling, and also causing the crystal being pulled to break during crystal growth. There was a problem that the program would be interrupted.
本発明はこのような問題を解決するためになされたもの
であって、固体層となる原料を一旦全部熔かして空隙を
なくし、これを再凝固して用いることにより、結晶成長
時間が短く結晶の歩留りが高い結晶成長方法及びそれに
用いる前処理用結晶原料溶解装置の提供を目的とする。The present invention was made to solve this problem, and by melting all the raw materials that will become the solid layer to eliminate voids, and then resolidifying the material, the crystal growth time can be shortened. The purpose of the present invention is to provide a crystal growth method with a high yield of crystals and a crystal raw material melting device for pretreatment used therein.
本発明の結晶成長方法は、結晶材料を溶融した溶融液層
の下部に、該溶融液層とほぼ同材質の固体層を形成し、
該固体層を溶解して溶融液層の体積を制御しつつ、溶融
液を引き上げて凝固させ結晶を成長させる方法において
、溶融液として、結晶原料を一旦溶解・凝固した材料を
再溶解して用いることを特徴とする。The crystal growth method of the present invention includes forming a solid layer of substantially the same material as the melt layer below the melt layer in which the crystal material is melted;
In a method in which the solid layer is melted and the volume of the molten liquid layer is controlled while the molten liquid is pulled up and solidified to grow crystals, a material that has been once melted and solidified is used as the molten liquid by remelting the crystal raw material. It is characterized by
また、本発明の結晶成長方法の実施に用いる結晶原料溶
解装置は、結晶原料を収納する坩堝と、坩堝に収納した
結晶原料を加熱溶解するヒータと、加熱溶解された結晶
原料を冷却する冷却系とを備えたことを特徴とする。Further, the crystal raw material melting apparatus used to carry out the crystal growth method of the present invention includes a crucible that stores the crystal raw material, a heater that heats and melts the crystal raw material stored in the crucible, and a cooling system that cools the heated and melted crystal raw material. It is characterized by having the following.
第1の発明の結晶成長方法は、結晶原料を一旦溶解・凝
固した材料を再溶解して結晶の引き上げを行うから、原
料中のガスが浮上して場面を変動させることがなく、引
き上げ開始時のシード付けが容易になり、引き上げ中に
結晶が途切れることもない、従って、操業上のトラブル
が減少して結晶成長の能率が向上する。In the crystal growth method of the first invention, the crystal raw material is once melted and solidified, and then the crystal is pulled up by remelting the material, so that the gas in the raw material does not float up and change the situation, and when the pulling starts. seeding becomes easier and the crystals do not break during pulling, thus reducing operational troubles and improving crystal growth efficiency.
第2の発明の装置で原料を一旦溶解・凝固させたものを
結晶成長装置に供すれば、結晶成長装置の時間損失を回
避することができる。また本装置は冷却系を有するから
、−旦溶解した原料の凝固に要する時間を一層短縮する
ことができる。If the raw material is once melted and solidified using the apparatus of the second aspect of the invention and is then provided to the crystal growth apparatus, time loss in the crystal growth apparatus can be avoided. Furthermore, since this apparatus has a cooling system, the time required for solidifying the once melted raw material can be further shortened.
(実施例〕
以下、本発明をその実施例を示す図面に基づいて説明す
る。(Example) Hereinafter, the present invention will be described based on drawings showing examples thereof.
第1図は本発明の結晶成長方法(以下、本発明方法とい
う)の実施状態を示す模式図であり、図中1は坩堝であ
る。坩堝1はチャンバ8内の中央に配され、その外周に
はこれを囲んで誘導加熱コイル等で構成される昇降可能
に配設されたヒータ2、さらにその外側に保温筒3が配
設されており、坩堝1とヒータ2との相対的な上、下方
向位置調節によって坩堝1内の溶融液層4の深さ、固体
層5の厚さを相対的に調節し得るようになっている。FIG. 1 is a schematic diagram showing the implementation state of the crystal growth method of the present invention (hereinafter referred to as the method of the present invention), and 1 in the figure is a crucible. The crucible 1 is placed in the center of the chamber 8, and surrounding it is a heater 2 that is movable up and down and is made up of an induction heating coil, etc., and a heat insulating tube 3 is placed outside of the crucible 1. By adjusting the relative upward and downward positions of the crucible 1 and the heater 2, the depth of the molten liquid layer 4 and the thickness of the solid layer 5 in the crucible 1 can be relatively adjusted.
坩堝1は黒鉛製の容器1aの内側に石英製の容器1bを
配した二重構造に構成され、黒鉛製の容器1aの底部に
は坩堝1を回転、並びに昇降させる軸1cが設けられて
おり、該軸1cによって坩堝1を回転及び/又は昇降さ
れるようになっている。The crucible 1 has a double structure with a quartz container 1b arranged inside a graphite container 1a, and a shaft 1c for rotating and raising and lowering the crucible 1 is provided at the bottom of the graphite container 1a. , the crucible 1 is rotated and/or raised and lowered by the shaft 1c.
坩堝1の上方にはチャンバ8の上部に設けたプルチャン
バ9を通して引き上げ軸10が回転、並びに昇降可能に
垂設され、その下端には種結晶6が着脱可能に装着され
ており、種結晶6の下端を溶融液層4中に浸漬した後、
これを回転させつつ上昇させることにより、種結晶6の
下端に単結晶7を成長させていくようになっている。A pulling shaft 10 is vertically installed above the crucible 1 so as to be able to rotate and move up and down through a pull chamber 9 provided at the top of a chamber 8. A seed crystal 6 is removably attached to the lower end of the pulling shaft 10. After dipping the lower end into the melt layer 4,
By raising this while rotating it, a single crystal 7 is grown at the lower end of the seed crystal 6.
結晶成長装置を使用する場合の第1の発明方法は、結晶
成長の本処理を開始する前に、まず坩堝l内に、ランプ
、又はチップである多結晶シリコンの固体材料を、引き
上げるべき単結晶の体積から求められる量を装入した後
、ヒータ2を上昇し、この固体材料を、その空隙が全て
なくなるよう下側から溶融さをた後、−度室温まで炉を
冷やして溶液を固めて固体層5を形成する前処理を行う
ものである。In the first invention method when using a crystal growth apparatus, before starting the main crystal growth process, first, a solid material of polycrystalline silicon, which is a lamp or a chip, is placed in a crucible l, and a single crystal to be pulled is placed in a crucible l. After charging the amount determined from the volume of , the heater 2 is raised and the solid material is melted from the bottom so that all the voids are eliminated.Then, the furnace is cooled to -degree room temperature to solidify the solution. This is a pretreatment for forming the solid layer 5.
その後はヒータ2の温度制御及び/又はその位置制御に
よって坩堝1内の上部に溶融液層4を、またその下部に
固体層5を夫々所要深さ、又は厚さに存在させた状態で
溶融液層4に種結晶6を浸した後、これを回転させつつ
引上げその下端に単結晶7を成長させていく。Thereafter, by controlling the temperature and/or position of the heater 2, the molten liquid layer 4 is formed in the upper part of the crucible 1, and the solid layer 5 is formed in the lower part thereof to the required depth or thickness. After a seed crystal 6 is immersed in the layer 4, it is pulled up while being rotated, and a single crystal 7 is grown at its lower end.
直径6インチの単結晶シリコンを約80aIl引上げる
場合、従来の方法では平均的5同程度の結晶成長中断が
あったが、本発明方法によりほとんど中断がなくなった
。又、引上げ開始時のシード付けにおいては、従来は平
均7〜8時間を要したのに対して、本発明方法によれば
2〜3時間で完了する。When pulling about 80 aIl of single-crystal silicon with a diameter of 6 inches, the conventional method had an average of 5 interruptions in crystal growth, but the method of the present invention almost eliminates the interruptions. Furthermore, while seeding at the start of pulling conventionally required an average of 7 to 8 hours, according to the method of the present invention, it can be completed in 2 to 3 hours.
又、固体材料を溶融して固める前処理作業を第2図に示
すような装置にて行い、再凝固された空隙除去済みの固
体材料を第1図に示す本処理用の結晶成長装置の坩堝1
に入れるようにしたところ、ランプ、チップを直接、本
処理用の結晶成長装置の坩堝1に詰める従来の方法に比
べ、約40分の時間短縮に成功し、上記実施例と同様の
効果が得られた。In addition, the pretreatment work of melting and solidifying the solid material is performed using the apparatus shown in Figure 2, and the re-solidified solid material from which voids have been removed is placed in the crucible of the crystal growth apparatus for main processing as shown in Figure 1. 1
Compared to the conventional method of putting the lamps and chips directly into the crucible 1 of the crystal growth apparatus for main processing, we succeeded in reducing the time by about 40 minutes, and obtained the same effect as in the above example. It was done.
第2図は第2の発明の結晶桑科溶解装置の構成を示す模
式的断面図であって、基本的には第1図に示した結晶成
長装置の加熱部と類似の構成である。図中1は坩堝であ
って、坩堝1はチャンバ8内の中央に配され、その外周
にはこれを囲んで誘導加熱コイル等で構成される昇降可
能に配設されたヒータ2、さらにその外側に昇降可能な
保温筒3が配設されており、坩堝1とヒータ2との相対
的な上、下方向位置調節によって坩堝1内の溶融液層1
2の位置、厚み及び再凝固層11の厚さを相対的に調節
し得るようになっている。坩堝1は黒鉛製の容器1aの
内側に石英製の容器1bを配した二重構造に構成され、
黒鉛製の容器1aの底部には支持台13と、支持台13
に載置された坩堝1を回転、並びに昇降させる軸1cが
設けられており、該軸1cによって坩堝lを回転及び/
又は昇降させられるようになっている。FIG. 2 is a schematic cross-sectional view showing the configuration of the crystal mulberry melting apparatus of the second invention, which is basically similar in configuration to the heating section of the crystal growth apparatus shown in FIG. 1. 1 in the figure is a crucible, and the crucible 1 is placed in the center of the chamber 8, and on its outer periphery there is a heater 2, which is movably arranged to be raised and lowered and is made up of an induction heating coil, and further outside the crucible. A heat insulating cylinder 3 that can be raised and lowered is disposed in the holder, and the melt layer 1 in the crucible 1 is adjusted by adjusting the relative upward and downward positions of the crucible 1 and the heater 2.
2 and the thickness of the resolidified layer 11 can be relatively adjusted. The crucible 1 has a double structure in which a quartz container 1b is arranged inside a graphite container 1a,
A support stand 13 and a support stand 13 are provided at the bottom of the graphite container 1a.
A shaft 1c is provided for rotating and raising/lowering the crucible 1 placed on the shaft 1c.
Or it can be raised and lowered.
支持台13は軸1cと接続されて、冷却材を循環供給す
る、図示しない冷却材供給装置に接続されている冷却系
を有している。冷却材は冷却材通路14を通って支持台
13を冷却し、溶解終了後の結晶原料の冷却速度を早め
ることにより操業時間の短縮を図ることができる。支持
台13の必要な機能は、坩堝を支持することと、冷却速
度を早めることにあるから、黒鉛製の容器1aと一体構
造であっても良いことはもちろんである。The support stand 13 is connected to the shaft 1c and has a cooling system connected to a coolant supply device (not shown) that circulates and supplies coolant. The coolant passes through the coolant passage 14 to cool the support stand 13, and by accelerating the cooling rate of the crystal raw material after melting, the operating time can be shortened. Since the necessary functions of the support stand 13 are to support the crucible and to accelerate the cooling rate, it goes without saying that it may have an integral structure with the graphite container 1a.
この前処理用の装置では、坩堝1に詰めたランプ、チッ
プを下側から熔かして空隙をなくし、その後溶液を固め
る前処理を行う。This pretreatment device performs pretreatment to melt the lamps and chips packed in the crucible 1 from below to eliminate voids, and then solidify the solution.
なお、本実施例では、溶融液の加熱に誘導加熱コイルを
用いたが、抵抗加熱式ヒータであっても本発明が可能な
事はもちろんである。In this embodiment, an induction heating coil was used to heat the molten liquid, but it goes without saying that the present invention is also possible with a resistance heating type heater.
本発明方法及び装置は、固体層内のガス沸き上がりによ
る湯面撮動を防止して、結晶成長中断防止により結晶の
歩留りを向上させ、さらにシード付けに要する時間を短
縮するという優れた効果を奏する。The method and apparatus of the present invention have the excellent effect of preventing the hot water level from being captured due to the boiling up of gas in the solid layer, improving the yield of crystals by preventing interruption of crystal growth, and shortening the time required for seeding. play.
第1図は本発明方法の実施状態を示す結晶成長装置の模
式的断面図、第2図は本発明の前処理用装置の模式的断
面図、第3図及び第4図従来方法の実施状態を示す結晶
成長装置の模式的断面図である。
1・・・坩堝 1a・・・黒鉛製容器 1b・・・石英
製容器1c・・・軸 2・・・ヒータ 3・・・保温筒
4・・・溶融液層5・・・固体層 6・・・種結晶
7・・・単結晶 8・・・チャンノマ
9・・・プルチャンバ
10・・・引き上げ軸
11・・・再凝固層
12・・・溶融液層
13・・・支持台
14・・・冷却材通路
特
許FIG. 1 is a schematic cross-sectional view of a crystal growth apparatus showing the implementation state of the method of the present invention, FIG. 2 is a schematic cross-sectional view of the pretreatment apparatus of the present invention, and FIGS. 3 and 4 are the implementation states of the conventional method. FIG. 2 is a schematic cross-sectional view of a crystal growth apparatus showing. 1... Crucible 1a... Graphite container 1b... Quartz container 1c... Shaft 2... Heater 3... Heat retention cylinder 4... Molten liquid layer 5... Solid layer 6.・・Seed crystal
7... Single crystal 8... Channel noma 9... Pull chamber 10... Pulling shaft 11... Resolidified layer 12... Molten liquid layer 13... Support stand 14... Coolant passage patent
Claims (1)
とほぼ同材質の固体層を形成し、該固体層を溶解して溶
融液層の体積を制御しつつ、溶融液を引き上げて凝固さ
せ結晶を成長させる方法において、 溶融液として、結晶原料を一旦溶解・凝固 した材料を再溶解して用いることを特徴とする結晶成長
方法。 2、結晶原料を収納する坩堝と、坩堝に収納した結晶原
料を加熱溶解するヒータと、加熱溶解された結晶原料を
冷却する冷却系とを備えたことを特徴とする結晶原料溶
解装置。[Claims] 1. A solid layer made of substantially the same material as the molten liquid layer is formed below a molten liquid layer obtained by melting a crystalline material, and the volume of the molten liquid layer is controlled by melting the solid layer. A method for growing crystals by pulling up and solidifying a molten liquid, the crystal growth method being characterized in that a crystal raw material that has been once melted and solidified is remelted and used as the molten liquid. 2. A crystal raw material melting device characterized by comprising a crucible for storing a crystal raw material, a heater for heating and melting the crystal raw material stored in the crucible, and a cooling system for cooling the heated and melted crystal raw material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26695089A JPH03131591A (en) | 1989-10-13 | 1989-10-13 | Method for growing crystal and device for dissolving crystal raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26695089A JPH03131591A (en) | 1989-10-13 | 1989-10-13 | Method for growing crystal and device for dissolving crystal raw material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03131591A true JPH03131591A (en) | 1991-06-05 |
Family
ID=17437942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26695089A Pending JPH03131591A (en) | 1989-10-13 | 1989-10-13 | Method for growing crystal and device for dissolving crystal raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03131591A (en) |
-
1989
- 1989-10-13 JP JP26695089A patent/JPH03131591A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8216372B2 (en) | Apparatus for growing high quality silicon single crystal ingot and growing method using the same | |
JPH092897A (en) | Production of polycrystalline semiconductor and manufacturing equipment therefor | |
JP4810346B2 (en) | Method for producing sapphire single crystal | |
US5057287A (en) | Liquid encapsulated zone melting crystal growth method and apparatus | |
JP5163386B2 (en) | Silicon melt forming equipment | |
JPH0971497A (en) | Production of polycrystal semiconductor | |
JP3152971B2 (en) | Manufacturing method of high purity copper single crystal ingot | |
US5007980A (en) | Liquid encapsulated zone melting crystal growth method and apparatus | |
CN213203273U (en) | Double-layer crucible for continuously pulling crystal | |
JPH03131591A (en) | Method for growing crystal and device for dissolving crystal raw material | |
JP4461699B2 (en) | Method for producing single crystal | |
KR20130007354A (en) | Apparatus for growing silicon crystal and method for growing silicon crystal using the same | |
CN105887187B (en) | Method for stably controlling concentration of dopant for silicon single crystal growth | |
JP2837903B2 (en) | Method for producing silicon single crystal | |
JPH09309791A (en) | Method for producing semiconducting single crystal | |
KR100304291B1 (en) | Silicon crystal and its manufacturing apparatus, manufacturing method | |
KR100581045B1 (en) | Method for porducing silicon single crystal | |
JPH0259494A (en) | Production of silicon single crystal and apparatus | |
JPH09208360A (en) | Growth of single crystal | |
JP4157934B2 (en) | Metal single crystal manufacturing method and apparatus | |
JPH11130579A (en) | Production of compound semiconductor single crystal and apparatus for producing the same | |
JPH0782084A (en) | Single crystal growing method and single crystal growing apparatus | |
JP2024504533A (en) | Thermal field adjustment device and method for single crystal growth | |
JP2004277267A (en) | Apparatus for manufacturing compound semiconductor single crystal | |
JPH0475880B2 (en) |