JPH03130132A - Natural fiber reinforced molded product and manufacture thereof - Google Patents
Natural fiber reinforced molded product and manufacture thereofInfo
- Publication number
- JPH03130132A JPH03130132A JP2169850A JP16985090A JPH03130132A JP H03130132 A JPH03130132 A JP H03130132A JP 2169850 A JP2169850 A JP 2169850A JP 16985090 A JP16985090 A JP 16985090A JP H03130132 A JPH03130132 A JP H03130132A
- Authority
- JP
- Japan
- Prior art keywords
- pellets
- urethane resin
- molded product
- strength
- natural fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000008188 pellet Substances 0.000 claims abstract description 58
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims abstract description 45
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 17
- 239000000057 synthetic resin Substances 0.000 claims abstract description 17
- 239000000919 ceramic Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 229920005989 resin Polymers 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 239000012948 isocyanate Substances 0.000 claims description 6
- -1 isocyanate compound Chemical class 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 230000002195 synergetic effect Effects 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 description 9
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 244000198134 Agave sisalana Species 0.000 description 1
- 240000006248 Broussonetia kazinoki Species 0.000 description 1
- 235000006716 Broussonetia kazinoki Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 244000299507 Gossypium hirsutum Species 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000010303 mechanochemical reaction Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Moulding By Coating Moulds (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電子機器のケース等に使用する天然繊維補強
成形物とその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a natural fiber-reinforced molded product used for cases of electronic devices, etc., and a method for manufacturing the same.
今日において、合成樹脂(合成ゴムを含む)は生活や産
業に広く使用されているが、多くの長所を有しながら金
属に比較して機械的な強度や耐摩耗性が落るという欠点
がある。また、セラミックもその長所を利用して広範囲
に応用されているが、!!!1械的にもろいという欠点
がある。Today, synthetic resins (including synthetic rubber) are widely used in daily life and industry, but while they have many advantages, they have the disadvantage of lower mechanical strength and wear resistance than metals. . Ceramics are also widely applied due to their advantages, but! ! ! It has the disadvantage of being mechanically fragile.
これらの合成樹脂、セラミック等の成形物の中から一例
として硬質発泡性ウレタン樹脂について従来の技術を説
明する。The conventional technology of hard foamable urethane resin will be explained as an example of molded products of synthetic resins, ceramics, and the like.
近年、OA電子機器のケースに硬質発泡性ウレタン樹脂
成形物が広く使用されている。このウレタン樹脂成形品
は適度の耐衝撃性があり、軽く、装飾性も良い等の特徴
がある外、成形型が簡単で安価にできるので多種少量生
産の製品に適している。In recent years, hard foamable urethane resin moldings have been widely used for cases of office automation equipment. This urethane resin molded product has the characteristics of moderate impact resistance, lightness, and good decorative properties, as well as the fact that the mold is simple and inexpensive, making it suitable for products produced in a wide variety of small quantities.
すなわち、硬質発泡性ウレタン樹脂成形物を製造する場
合は1発泡性のウレタン樹脂に硬化剤を混合して雌型に
塗布状に流した後、所定の形状を得るために雄型を雌型
に対向させる0発泡性のウレタン樹脂は硬化剤との反応
により発熱し発泡状態になって型内に充満し、所定の形
に成形される。この場合、型はウレタン樹脂の発泡によ
る膨張力に耐える程度の強度があれば十分であり、従来
の射出成形型のような強固な高精度のものは不要となる
。したがって、型は比較的安価に製作できる。In other words, when manufacturing a rigid foamable urethane resin molded product, first, mix a hardening agent with foamable urethane resin and pour it into a female mold, and then turn the male mold into a female mold to obtain a predetermined shape. The opposing zero-foaming urethane resin generates heat due to reaction with the curing agent, becomes foamed, fills the mold, and is molded into a predetermined shape. In this case, it is sufficient for the mold to have enough strength to withstand the expansion force due to foaming of the urethane resin, and there is no need for a strong, high-precision mold like a conventional injection mold. Therefore, the mold can be produced relatively inexpensively.
しかしながら、このような硬質発泡性のウレタン樹脂成
形物等の成形物は金属等に比較して強度や#摩耗性が落
るという欠点がある。However, molded products such as such hard foamable urethane resin molded products have a drawback that their strength and abrasion resistance are lower than those of metals and the like.
特に、成形されたウレタン樹脂成形物では、をに接触し
ていた両表面は硬質のウレタン樹脂からなるが、内部は
発泡性のウレタン樹脂からなるため、内部が機械的に弱
くなり全体の強度は相対的に低くなる。この結果、ケー
スを成形した場合、所望の強度を得るために厚さが厚く
なって形状が大きくなり、また、樹脂の材料も余計に必
要となるという問題があった。In particular, in a molded urethane resin molded product, both surfaces that were in contact with it are made of hard urethane resin, but the inside is made of foamable urethane resin, so the inside becomes mechanically weak and the overall strength is reduced. relatively low. As a result, when the case is molded, the thickness becomes thicker and the shape becomes larger in order to obtain the desired strength, and additional resin material is required.
また、合成樹脂等の成形物の強度を補強する手段として
、従来からガラス繊維を用いたものはあるが、製造工程
が非常に面倒でコストが高くなるという問題がある。In addition, glass fibers have been used as means for reinforcing the strength of molded products such as synthetic resins, but there are problems in that the manufacturing process is very complicated and costs are high.
このような、!!題を解決するために、本発明は合成捌
脂、セラミックの成形物の内部に天然m!Iを&ra本
束ねて同化したベレットを混在させて強度を補強したも
のである。like this,! ! In order to solve the problem, the present invention uses synthetic fat-repellent and natural m! It is made by bundling up &ra pieces of I and mixing in assimilated berets to strengthen its strength.
また、天然繊維を複数本束ねた状態の縁体を形威し、こ
の縁体を小さなベレットに裁断し、このベレットを脅威
樹脂、セラミックに混ぜて壓に流して天然繊維補強成形
物を製造するものである。In addition, we form a rim made by bundling multiple natural fibers, cut this rim into small pellets, mix the pellets with resin and ceramic, and pour them into a jar to produce a natural fiber-reinforced molded product. It is something.
また、天然繊維を複数本束ねた状態の縁体を形成し、こ
の縁体を心に合成樹脂の棒を形成した後に、小さな樹脂
ペレットに裁断し、この樹脂ベレットを型に流して天然
繊維補強成形物を製造するものである。In addition, we form an edge made by bundling multiple natural fibers, form a synthetic resin rod around this edge, cut it into small resin pellets, and pour this resin pellet into a mold to reinforce the natural fibers. It is used to manufacture molded products.
また、ベレットをイソシアネート化合物で処理してから
合成樹脂に混ぜて型に流すものである。Alternatively, the pellet is treated with an isocyanate compound, mixed with a synthetic resin, and poured into a mold.
また、ベレットをメカノケミカル処理するものである。Additionally, the pellet is mechanochemically treated.
また、イソシアネート化合物での処理を加圧状態で行な
うものである。Further, the treatment with an isocyanate compound is carried out under pressure.
本発明においては、成形物の中に天然繊維が含まれてい
るので樹脂と天然繊維の相乗効果により強度が増す、ま
た、天然amはばらでなくベレットになっているので成
形物の巾に混入しやすく、全体わたって均等に混入する
。In the present invention, since natural fibers are included in the molded product, the strength is increased due to the synergistic effect of the resin and natural fibers, and since the natural am is in the form of pellets rather than in pieces, it can be mixed into the width of the molded product. Easy to mix and mix evenly throughout.
以下、本発明を図面に示した実施例を用いて詳細に説明
する。Hereinafter, the present invention will be explained in detail using embodiments shown in the drawings.
第1図は本発明に係る天然m鍍捕強成形物の一実施例と
しての硬質発泡性ウレタン樹脂成形物の断面図、第2図
はその成形時の説明図である。FIG. 1 is a cross-sectional view of a hard foamable urethane resin molded product as an example of the natural m-penetration reinforced molded product according to the present invention, and FIG. 2 is an explanatory diagram of the molded product.
これらの図において、■は雌型と接触していた前表面の
硬質ウレタン樹脂屑、2は雄型と接触していた裏表面の
硬質ウレタン樹脂屑、3は両硬質ウレタン樹脂層の間の
発泡ウレタン樹脂屑、4はこの発泡ウレタン樹脂層の中
に所定の割合で混入した天然HAMからなるベレットで
ある。このような硬質発泡性のウレタン樹rri’を成
形物はウレタン樹脂とペレットとの相乗効果により機械
的負荷に対する力が大きくなり、強度が増す、このため
、このウレタン樹脂成形物の厚さは従来よりも小さくな
っている。In these figures, ■ is hard urethane resin debris on the front surface that was in contact with the female mold, 2 is hard urethane resin debris on the back surface that was in contact with the male mold, and 3 is foaming between both hard urethane resin layers. The urethane resin waste 4 is a pellet made of natural HAM mixed in a predetermined ratio in this foamed urethane resin layer. A molded product made of such hard foamable urethane resin rri' has a greater strength against mechanical loads due to the synergistic effect of the urethane resin and the pellets, and therefore has increased strength. It is smaller than.
第2図において、5は雌型、6は雄型、7は硬化剤を加
えたウレタン樹脂を流す吐出口、8はペレット4を出す
吐出口である。吐出ロアからウレタン樹脂を雌型5Fに
流し、このときウレタン樹脂に対して所定の割合で制御
してペレット4を吐出口8から落下させる。ペレット4
が混合したウレタン樹脂を雌型5の全面に流した後、雄
型6を下降して雌型5と所定間隔で対向させる。このと
き、両型とウレタン樹脂との間には部分的に隙間がある
。やがて、ウレタン樹脂は硬化剤との反応により発熱し
発泡して膨張し、両型内に充満して成形される。In FIG. 2, 5 is a female mold, 6 is a male mold, 7 is a discharge port through which the urethane resin containing a curing agent flows, and 8 is a discharge port from which the pellets 4 are discharged. The urethane resin is poured from the discharge lower into the female mold 5F, and at this time, the pellets 4 are dropped from the discharge port 8 by controlling the urethane resin at a predetermined ratio. pellet 4
After pouring the mixed urethane resin over the entire surface of the female mold 5, the male mold 6 is lowered to face the female mold 5 at a predetermined distance. At this time, there is a partial gap between both molds and the urethane resin. Eventually, the urethane resin generates heat due to the reaction with the curing agent, foams, and expands, filling both molds and being molded.
ペレット4は固形なのでウレタン樹脂に良くすじみ円滑
に混在される。Since the pellets 4 are solid, they blend well into the urethane resin and are mixed smoothly.
もし、繊維のままで樹脂に混入させると、mtaが部分
的に固まりになって均一に分布されず、所望の強度は得
られない。If the fibers are mixed into the resin as they are, the mta will partially clump together and will not be uniformly distributed, making it impossible to obtain the desired strength.
次にペレットについて詳細に説明する。Next, pellets will be explained in detail.
原料となる天然繊維としては、緒(こうぞ)や三極のよ
うな植物の靭皮、サイザル等の植物の葉柄及び葉脈、綿
等の植物の果実、松やブナ等の材部の木質繊維、生糸等
の動物の排出物等が使用される。Natural fibers used as raw materials include the bast of plants such as kozo and santoku, the petioles and veins of plants such as sisal, the fruits of plants such as cotton, and the wood fibers of wood such as pine and beech. Animal excreta such as raw silk are used.
これらの天然wi雑をペレットにするのに次の3つの方
法が考えられる。The following three methods are conceivable for making these natural wisps into pellets.
(1)繊維原料を通常の製紙方法と同様に一度紙に抄い
た後、撚糸にして鐘体となし、これをペレットに裁断す
る。(1) After the fiber raw material is once made into paper in the same manner as in a normal paper manufacturing method, it is twisted into a bell body, which is then cut into pellets.
(2)繊維材をそのまま直接に撚糸にして鐘体となし、
これをペレットに裁断する。(2) Twisting the fiber material directly into a bell body,
Cut this into pellets.
(3)繊維原料を莫留こう解した後、撚糸にして鐘体と
なし、これをペレットに裁断する。(3) After cracking the fiber raw material, twist it into a bell body and cut it into pellets.
いずれの方法においても、鐘体を裁断する前に、成形主
材であるウレタン樹脂と化学的に反応を起さないで、か
つ、ウレタン樹脂となじみ易い摺面、例えばウレタン系
の樹脂をコーティングする。これにより、ペレットの固
化ができるとともに、成形時にウレタン樹脂に混入する
際に混入が容易となり、かつ、ペレットが型の末端まで
むらなく行きわたるようになる。In either method, before cutting the bell body, the sliding surface is coated with a urethane-based resin that does not chemically react with the urethane resin that is the main molding material and is compatible with the urethane resin. . As a result, the pellets can be solidified, the pellets can be easily mixed into the urethane resin during molding, and the pellets can evenly spread to the end of the mold.
このような天然繊維からなるペレットは、ガラスram
等に比して非常に軽いので、ペレットの混入率が高くて
も成形物は軽くなる。Pellets made of such natural fibers are made of glass ram.
Because it is very light compared to other materials, the molded product will be light even if the pellet content is high.
また、コーティング樹脂にアルミニュームやカーボン等
の導電性材料を混ぜれば、成形物が導電性を帯びて、″
im子機器のケースに使用した場合に電磁波や電界に対
するシールド効果を有するようになる。In addition, if a conductive material such as aluminum or carbon is mixed with the coating resin, the molded product will become conductive and
When used in the case of an im child device, it has a shielding effect against electromagnetic waves and electric fields.
次に実際に作った実施例を説11する。Next, an example actually made will be explained.
「実施例1」
天然繊維として緒を使用し、l*径が約0.3mm、長
さが約5■■のペレットをウレタン樹脂に対17て重蓋
比で0.5%混入した場合、天然繊維無配合の従来のも
のに比して引張強度(JIS K7113 )は約30
%向上し、藺げ強度(JIS K?203 )は約15
%向りした。"Example 1" When cord was used as a natural fiber and pellets with a l* diameter of about 0.3 mm and a length of about 5 mm were mixed into urethane resin at a ratio of 17 to 17 and 0.5%, Tensile strength (JIS K7113) is approximately 30 compared to conventional products that do not contain natural fibers.
% improvement, and the scratching strength (JIS K?203) is approximately 15
% headed.
なお、ペレットは成形物の大きさや用途により、直径は
0.1〜0.5mm 、長さは1〜lO■程度から適当
な値が選らばれる。ウレタン樹脂成形の場合は、長さは
1〜5■■が好ましい。The diameter of the pellet is selected from 0.1 to 0.5 mm, and the length is selected from approximately 1 to 10 cm, depending on the size and purpose of the molded product. In the case of urethane resin molding, the length is preferably 1 to 5 mm.
「実施例2」
拷ramを2〜51璽に裁断したペレットを約60℃に
加熱されたオーブンで2時間乾燥した。このペレット5
0g、粗製ジフェニルメタンジイソシアネート(MDI
)300gを、約500mMの研磨剤(3〜5mm )
と共に、容15fLのボウルミル型グラインダ(バレル
研磨機)に投入し、約24時間メカノケミカル反応処理
を行なった0繊維ペレットに付着している過剰のMDI
は不活性溶剤で洗浄除去した。"Example 2" Pellets obtained by cutting ram into 2 to 51 pieces were dried in an oven heated to about 60° C. for 2 hours. This pellet 5
0 g, crude diphenylmethane diisocyanate (MDI
) 300g, approximately 500mM abrasive (3-5mm)
At the same time, excess MDI attached to the zero fiber pellets was placed in a bowl mill type grinder (barrel polishing machine) with a capacity of 15 fL and subjected to mechanochemical reaction treatment for about 24 hours.
was removed by washing with an inert solvent.
次に1分子量700のポリプロピレン付加ポリエーテル
ポリオール100部、界面活性剤シリコンオイル1.5
部、ジブチル錫ジラウレート触媒0.1部を、上記処理
済の繊維ペレット15部に混合したものを準備した。そ
して、この混合液全鱗に粗製MD1105部を速やかに
混合し高速攪拌した後、予め準備された試験片を作るた
めの71j (JIS K1113の1号型)に注入し
て、ウレタン樹脂成形試験片を製作した。1週間放置後
に引張強度測定を行なった。Next, 100 parts of polypropylene-added polyether polyol with a molecular weight of 700, and 1.5 parts of surfactant silicone oil.
A mixture of 15 parts of the treated fiber pellets and 0.1 part of dibutyltin dilaurate catalyst was prepared. Then, after quickly mixing 1105 parts of crude MD into all the scales of this mixed liquid and stirring at high speed, it was poured into a 71J (JIS K1113 type 1) prepared in advance to make a test piece, and a urethane resin molded test piece was prepared. was produced. Tensile strength was measured after being left for one week.
「実施例3」
I繊維を2〜5■に裁断したペレットを約60℃に加熱
されたオーブンで2時間乾燥した。このペレット50g
、粗製ジフェニルメタンジイソシアネート(MDI)1
00gをオートクレーブに入れ、7kg/am の圧
力下で約2時間撹拌処理を行なった。amペレットに付
着している過剰のMDIは不活性溶剤で洗浄除去した。"Example 3" I fibers were cut into pellets of 2 to 5 squares and dried in an oven heated to about 60°C for 2 hours. 50g of this pellet
, crude diphenylmethane diisocyanate (MDI) 1
00g was placed in an autoclave and stirred for about 2 hours under a pressure of 7 kg/am. Excess MDI adhering to the am pellet was removed by washing with an inert solvent.
次に1分子量700のポリプロピレン付加ポリエーテル
ポリオール100部、界面活性剤シリコンオイル1.5
部、ジブチル錫ジラウレート触媒0.1部を、上記処理
済の繊維ペレット15部に混合したものを準備した。そ
して、この混合液全量に粗製MDIIQ5部を速やかに
混合し高速撹拌した後、予め準備された試験片を作るた
めの型(JIS K7113の1号型)に注入して、ウ
レタン樹脂成形試験片を製作した。1週間放置後に引張
強度測定を行なった。Next, 100 parts of polypropylene-added polyether polyol with a molecular weight of 700, and 1.5 parts of surfactant silicone oil.
A mixture of 15 parts of the treated fiber pellets and 0.1 part of dibutyltin dilaurate catalyst was prepared. Then, 5 parts of crude MDIIQ was quickly mixed into the entire mixed solution, stirred at high speed, and then poured into a mold for making test pieces (JIS K7113 type 1) prepared in advance to form urethane resin molded test pieces. Manufactured. Tensile strength was measured after being left for one week.
また、比較例として実施例2と同様の配合、処理で、緒
繊維を全く含まないウレタン樹脂試験片を製作し、1週
間放置後に引張強度測定を行なった。Further, as a comparative example, a urethane resin test piece containing no fibers was prepared using the same formulation and treatment as in Example 2, and the tensile strength was measured after leaving it for one week.
以下、実施例2.実施例3.比較例の3つの試験片につ
いて、JIS K7113の試験法で測定した引張強度
を表に示す。Below, Example 2. Example 3. The table shows the tensile strength of the three test pieces of the comparative example measured by the JIS K7113 test method.
このように、この実施例では、天然繊維のペレットを磨
砕する時に有機イソシアネート化合物を供存させて処理
することにより、極めて有効な補強効果を有するウレタ
ン成形駒を得ることができる。また、この処理を加圧下
で行なうことにより、さらに優れた効果を得ることがで
きる。As described above, in this example, by treating the natural fiber pellets with an organic isocyanate compound present when the pellets are ground, a urethane molded piece having an extremely effective reinforcing effect can be obtained. Moreover, even better effects can be obtained by performing this treatment under pressure.
また、このような処理をなしたペレットをL記実施例の
ようにウレタン組成液に混合して使用する外にも、イソ
シアネー14分液に混合攪拌してウレタン樹脂成形型に
供給することもでき、これは非常に好ましい方法である
。供存させて用いることができる有機イソシアネート化
合物としては、例えば、メタフェニレンジイソシアネー
ト、トリレンジイソシアネート、キシレンジイソシアネ
ート、ヘキサメチレンジイソシアネート、ナフチレンジ
イソシアネート等周知の化合物が全て適応できる。In addition to using the pellets treated in this way by mixing them with the urethane composition liquid as in Example L, they can also be mixed and stirred into the isocyanate 14-part liquid and supplied to the urethane resin mold. , this is a highly preferred method. As the organic isocyanate compound that can be used, for example, all known compounds such as metaphenylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, and naphthylene diisocyanate can be used.
以上の実施例ではウレタン樹脂について説明したが、そ
の他の合成ゴムを含む各種合成樹脂に適応できるのは勿
論のこと、セラミックの焼成粉末に混入して焼成成形す
ることもできる。セラミックに適応する場合、高温で焼
成してもセラミックの中まで酸素が入らないので天然繊
維が燃焼するようなことはない。Although urethane resin has been described in the above embodiments, it is of course applicable to various synthetic resins including other synthetic rubbers, and can also be mixed into fired ceramic powder and fired and molded. When applied to ceramics, even if fired at high temperatures, oxygen does not penetrate into the ceramic, so the natural fibers will not burn.
また、以上の実施例では1合成樹脂にペレットを混入す
る場合、出来上ったペレットを樹脂に混入していたが、
インジェクション成形に使用する熱可塑性樹脂の場合は
、天然繊維からなる長い縁体をそのままの状態でこれを
心にして熱可塑性樹脂を棒状に成形し、この棒状の樹脂
を所定の長さに切断して樹脂ペレットを製作することも
できる。そして、この樹脂ペレットを通常の材料ペレッ
トとして使用して成形型に流すと、樹脂が主材となって
天然繊維のペレットがこの中に混イ[する第1図のよう
な補強された合成樹脂成形品ができる。この例では天然
amの縁体を切断する作業が不要になり、また、繊維を
含む樹脂ペレットは通常の射出成形工程と全く同様に扱
えるので作業性もよい。In addition, in the above examples, when mixing pellets into one synthetic resin, the finished pellets were mixed into the resin.
In the case of thermoplastic resin used for injection molding, the thermoplastic resin is molded into a rod shape with a long edge made of natural fibers as it is, and this rod-shaped resin is cut to a predetermined length. It is also possible to produce resin pellets. When these resin pellets are used as ordinary material pellets and poured into a mold, the resin becomes the main material and the natural fiber pellets are mixed in [reinforced synthetic resin as shown in Figure 1]. Molded products can be made. In this example, there is no need to cut the edges of the natural am, and the resin pellets containing fibers can be handled in exactly the same way as in a normal injection molding process, resulting in good workability.
本成形物の応用用途は、L記の電子機器のほかにも自動
車等の輸送機器やその他の各分野にも広く応用できる。The present molded product can be widely applied to transportation equipment such as automobiles and other fields in addition to the electronic devices listed in L.
以上説明したように、本発明に係る天然繊維補強成形物
によると、天然繊維のペレットが内部に補強されている
ので、強度が大幅に向ヒして成形物の厚さを薄くできる
とともにπ量も軽くなる。As explained above, according to the natural fiber-reinforced molded product according to the present invention, since the natural fiber pellets are internally reinforced, the strength is significantly improved, the thickness of the molded product can be reduced, and the π amount It also becomes lighter.
また、天然1a維をペレットにしてから成形物に混入さ
せているので、全体にむらなく十分な竜の天然繊維を均
一に分布して混入させることができる。In addition, since the natural 1a fibers are pelletized and then mixed into the molded product, it is possible to evenly distribute and mix sufficient natural fibers throughout the molded product.
また、処理された天然mmのペレットに同時にアルミニ
ュームやカーボン等の導電性材料を混ぜれば、成形物が
導電性を帯びて、電子機器のケースに使用した場合に電
磁波や電界に対するシールド効果を有するようになる。Additionally, if a conductive material such as aluminum or carbon is mixed with the treated natural mm pellets at the same time, the molded product will become conductive and will have a shielding effect against electromagnetic waves and electric fields when used in the case of electronic devices. It becomes like this.
第1図は本発明に係る天然繊維補強成形物の一実施例の
断面図、第2図はその成形時の説1J!図である。
1.2・・・硬質ウレタン樹断層、3・・・発泡性ウレ
タン樹脂層、4・・・ペレット、5・・・雌型、6・・
・雄型、7,8・・・吐出口。
弔
図
第2
図Fig. 1 is a cross-sectional view of one embodiment of the natural fiber reinforced molded product according to the present invention, and Fig. 2 is a view of the molded product 1J! It is a diagram. 1.2... Hard urethane tree layer, 3... Foaming urethane resin layer, 4... Pellet, 5... Female mold, 6...
・Male type, 7, 8...Discharge port. Funeral map 2nd figure
Claims (1)
たペレットを混在させて強度を補強した天然繊維補強成
形物。 (2)天然繊維を複数本束ねた状態の線体を形成する工
程と、 この線体を小さなペレットに裁断する工程と、このペレ
ットを合成樹脂に混ぜて型に流す工程と を含むことを特徴とする天然繊維補強成形物の製造方法
。 (3)天然繊維を複数本束ねた状態の線体を形成する工
程と、 この線体を心にして合成樹脂を棒状に形成した後、小さ
な樹脂ペレットに裁断する工程と、この樹脂ペレットを
型に流す工程と を含むことを特徴とする天然繊維補強成形物の製造方法
。 (4)請求項1において、合成樹脂をセラミックにした
天然繊維補強成形物。 (5)請求項2において、合成樹脂をセラミックにした
天然繊維補強成形物の製造方法。(6)請求項2におい
て、ペレットをイソシアネート化合物で処理してから合
成樹脂に混ぜ、また、合成樹脂をウレタン樹脂にした天
然繊維補強成形物の製造方法。 (7)請求項6において、ペレットをさらにメカノケミ
カル処理する天然繊維補強成形物の製造方法。 (8)請求項6において、ペレットを加圧状態で処理す
る天然繊維補強成形物の製造方法。[Claims] (1) A natural fiber-reinforced molded product in which strength is reinforced by mixing pellets made by bundling and solidifying a plurality of natural fibers inside a synthetic resin. (2) The feature is that it includes the steps of forming a wire body by bundling a plurality of natural fibers, cutting the wire body into small pellets, and mixing the pellets with synthetic resin and pouring them into a mold. A method for producing a natural fiber reinforced molded article. (3) A process of forming a wire body by bundling a plurality of natural fibers, a process of forming a synthetic resin into a rod shape around this wire body, and then cutting it into small resin pellets, and a process of molding the resin pellets. A method for producing a natural fiber-reinforced molded product, comprising the step of pouring into a molded product. (4) The natural fiber-reinforced molded article according to claim 1, in which the synthetic resin is made of ceramic. (5) A method for producing a natural fiber-reinforced molded article according to claim 2, in which the synthetic resin is made of ceramic. (6) A method for producing a natural fiber-reinforced molded article according to claim 2, wherein the pellets are treated with an isocyanate compound and then mixed with a synthetic resin, and the synthetic resin is a urethane resin. (7) The method for producing a natural fiber-reinforced molded product according to claim 6, wherein the pellets are further mechanochemically treated. (8) A method for producing a natural fiber-reinforced molded article according to claim 6, wherein the pellets are treated under pressure.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-168909 | 1989-06-30 | ||
JP16890989 | 1989-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03130132A true JPH03130132A (en) | 1991-06-03 |
Family
ID=15876812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2169850A Pending JPH03130132A (en) | 1989-06-30 | 1990-06-29 | Natural fiber reinforced molded product and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03130132A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001076841A3 (en) * | 2000-04-12 | 2002-08-15 | Dsm Nv | Plastic granulate |
JP2006222081A (en) * | 2005-02-08 | 2006-08-24 | General Electric Canada Co | Disconnector switch |
JP2008303486A (en) * | 2007-06-06 | 2008-12-18 | Green Material Corp | Method for producing fiber and apparatus therefor |
-
1990
- 1990-06-29 JP JP2169850A patent/JPH03130132A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001076841A3 (en) * | 2000-04-12 | 2002-08-15 | Dsm Nv | Plastic granulate |
JP2006222081A (en) * | 2005-02-08 | 2006-08-24 | General Electric Canada Co | Disconnector switch |
JP2008303486A (en) * | 2007-06-06 | 2008-12-18 | Green Material Corp | Method for producing fiber and apparatus therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4005035A (en) | Composition for reinforced and filled high density rigid polyurethane foam products and method of making same | |
US6821623B2 (en) | Recycled rubber products | |
DE69114621T2 (en) | Process for the production of moldings provided with an integral polyurethane outer layer and moldings produced in this way. | |
JPS624064B2 (en) | ||
EP1078724A3 (en) | Method of manufacturing sound-proof products and the sound-proof products | |
EP0946351B1 (en) | Method for producing reactive plastic molded bodies with highly filled coarse-grained filling material | |
CA2361309A1 (en) | Process for preparing moulded polyurethane material | |
JPH03130132A (en) | Natural fiber reinforced molded product and manufacture thereof | |
US4060580A (en) | Process for the production of shaped components of wood material, especially boards, bound with a hydraulic binder, preferably cement | |
DE69312399T2 (en) | Process for the production of flexible foams based on MDI | |
DE2021632A1 (en) | Process for the production of plastic or rubber-bonded grinding tools | |
EP2623532A1 (en) | Polyurethane composite material and method for manufacturing the same | |
JPH05212707A (en) | Matrix for wood pattern and manufacture thereof | |
DE1165852B (en) | Process for the production of storable thermoplastic polyurethane masses that can be deformed solely by heat and pressure | |
CN105237728B (en) | A kind of material and its rigid foam preparation method for manufacturing rigid foam | |
WO2012114865A1 (en) | Method for manufacturing powder compact, and powder compact | |
CN102838878B (en) | Microcrystal puffing straw composite powder molding product and preparation method thereof | |
KR100573748B1 (en) | A manufacturing method of chemical free starch-vessel | |
CN110885416A (en) | High-density block foam polyurethane material and preparation method thereof | |
DE19919111C2 (en) | Composition containing leather pulp for the production of moldings, process for the production or use of the moldings | |
JPS5857457B2 (en) | rigid polyurethane syntact foam | |
JP6731139B2 (en) | Biodegradable resin composition and method for producing the same | |
JP6539368B2 (en) | Biodegradable resin composition and method for producing the same | |
RU1836391C (en) | Composition for obtaining polyurethane foam materials | |
AT224916B (en) | Process for the production of composite bodies from foams |