JPH03139125A - Digital synchronous parallel-in apparatus - Google Patents
Digital synchronous parallel-in apparatusInfo
- Publication number
- JPH03139125A JPH03139125A JP27596589A JP27596589A JPH03139125A JP H03139125 A JPH03139125 A JP H03139125A JP 27596589 A JP27596589 A JP 27596589A JP 27596589 A JP27596589 A JP 27596589A JP H03139125 A JPH03139125 A JP H03139125A
- Authority
- JP
- Japan
- Prior art keywords
- phase difference
- loop
- voltage
- outputs
- seconds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims description 23
- 238000001514 detection method Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は連系されていない2つの電力系統を連系する場
合に使用されるディジタル同期並入装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a digital synchronous parallelization device used when interconnecting two power systems that are not interconnected.
(従来の技術)
第3図は同期並入装置の一例のブロック図、第4図は同
期並入装置の系統適用国例である。第4図において母線
側電圧VBと送電線ffII電圧vLが同期した時、同
期並入装置はしゃ断器CBへの投入指令を出力し、母線
側系統と送電線側系統を並入する。第3図において同期
並入装置は、母線(111電圧VB、送電線側電圧vL
がそれぞれ定格電圧の80%以上1120%以下の範囲
にある時、送電線電圧検出要素1.母線電圧検出要素2
は出力する。(Prior Art) FIG. 3 is a block diagram of an example of a synchronous parallel entry device, and FIG. 4 is an example of countries where the synchronous parallel entry device is applied. In FIG. 4, when the bus side voltage VB and the transmission line ffII voltage vL are synchronized, the synchronous parallel connection device outputs a closing command to the breaker CB and connects the bus side system and the power transmission line side system in parallel. In Fig. 3, the synchronous paralleling device is connected to the bus line (111 voltage VB, transmission line side voltage VL
are in the range of 80% or more and 1120% or less of the rated voltage, respectively, the transmission line voltage detection element 1. Bus voltage detection element 2
outputs.
ここで、系統並入装置への起動指令が行なわれるとへN
Oロジック10は出力する。まず、第5図のようなルー
プ系統の場合の投入について説明する。At this point, if a startup command is given to the system parallel device, go to N
O logic 10 outputs. First, input in the case of a loop system as shown in FIG. 5 will be explained.
この場合、母線側電圧■8と送電線側電圧VLとの同期
は常時とれており、各要素、各ロジックの動きは以下の
々口くなる。母線側周波数fBと送電線側周波数fLは
等しいので周波数差検出要素3は出力する。母線側周波
数f8に異常がない限り、周波数下限以上確認要素4は
出力する。母線側電圧VBと送電線側電圧vLの差に異
常がない限り、電圧差確認口F!?15は出力する。母
線側電圧アングルθθと送電線側電圧アングルθLの位
相差θが一定値以下なら位相差確認要素6は出力する。In this case, the bus line side voltage 8 and the transmission line side voltage VL are always synchronized, and the operations of each element and each logic are as follows. Since the bus line side frequency fB and the power line side frequency fL are equal, the frequency difference detection element 3 outputs. As long as there is no abnormality in the bus line side frequency f8, the frequency lower limit or higher check element 4 outputs. As long as there is no abnormality in the difference between the bus side voltage VB and the transmission line side voltage VL, the voltage difference check port F! ? 15 outputs. If the phase difference θ between the bus line side voltage angle θθ and the power line side voltage angle θL is below a certain value, the phase difference confirmation element 6 outputs.
前記位相差θの時間的変化が一定値以下ならループ判定
要素9は出力し、フリップフロップ15は出力保持する
。以上により、ANDロジック11が出力し、へNDロ
ジック13が出力し、ループ系続投入用ANDロジック
16が出力し、投入指令用ORロジック18が出力し、
同期並入装置は投入指令を出力する。If the temporal change in the phase difference θ is below a certain value, the loop determination element 9 outputs an output, and the flip-flop 15 holds the output. As a result of the above, the AND logic 11 outputs, the ND logic 13 outputs, the AND logic 16 for loop connection connection outputs, the OR logic 18 for input command outputs,
The synchronous parallel entry device outputs an entry command.
次に、第6図のような異系統の場合の投入について説明
する。異系統の場合、母線側周波数fBと送電線側周波
数f、は相異し、スリップ周波数fsを持っているのが
一般的である。そのため、ループ判定要素9は出力せず
、フリップフロッグ15も出力しない。前述のループ系
統での各要素の動きは同様に理解できるので説明は省略
する。このような状態でスリップ周波数fSに基づくサ
イクルで同期を繰り返し、同期点に向って行く過程では
位相差θは減少方向となるため位相差減少方向確認要素
8が出力し、しゃ断器の投入時間(前進時間)を考慮し
た出力を行なう位相差零予測用カフが位相差零の点から
前進時間分だけ前に出力を行ない、ANDロジック12
が出力する。従ってANDロジック14が出力し、異系
統投入用インヒビットロジック17が出力し、投入指令
用ORロジック18が出力し、同期並入装置は投入指令
を出力する。Next, input in the case of different systems as shown in FIG. 6 will be explained. In the case of different systems, the bus side frequency fB and the transmission line side frequency f are different and generally have a slip frequency fs. Therefore, the loop determination element 9 does not output, and the flip-flop 15 also does not output. Since the movement of each element in the loop system described above can be similarly understood, the explanation will be omitted. In this state, synchronization is repeated in a cycle based on the slip frequency fS, and in the process of moving toward the synchronization point, the phase difference θ is in the decreasing direction, so the phase difference decreasing direction confirmation element 8 outputs, and the breaker closing time ( The cuff for predicting zero phase difference, which outputs in consideration of the forward time), outputs an output ahead of the point of zero phase difference by the forward time, and AND logic 12
outputs. Therefore, the AND logic 14 outputs, the inhibit logic 17 for different system input outputs, the OR logic 18 for input command outputs, and the synchronous parallel input device outputs an input command.
以上が従来の同期並入装置の一例の構成及び動作の説明
である。The above is an explanation of the configuration and operation of an example of a conventional synchronous parallel entry device.
(発明が解決しようとする課題)
第3図においてループ判定要素9の構成は例えば、0.
5度/S程度の値となるので位相差θの分解能の限界か
ら、例えば位相差θの測定間隔を5秒間として位相差θ
が2.5度末溝の変化であったかを判定する手法が用い
られる。ところがこの手法を用いると位相差θの分解能
の問題は解決されるが、第7図に示すようにスリップ周
期の整数倍が5秒となる場合には、045度/S以上の
変化があるにも拘らず、変化がない、すなわち0,5度
/S未満と見做してしまい、ループ判定要素9は出力し
、フリップフロッグ15は出力保持することとなる。こ
のような状態になった後で、前述した異系統並入の条件
が成立しても、異系統投入用インヒビットロジック17
はロックされているので投入することができないという
問題を生じる。(Problems to be Solved by the Invention) In FIG. 3, the configuration of the loop determination element 9 is, for example, 0.
Since the value is about 5 degrees/S, due to the resolution limit of the phase difference θ, for example, if the measurement interval of the phase difference θ is 5 seconds, the phase difference θ
A method is used to determine whether or not the change was a 2.5 degree end groove change. However, using this method solves the problem of resolution of the phase difference θ, but as shown in Figure 7, when the integral multiple of the slip period is 5 seconds, there is a change of more than 045 degrees/S. Nevertheless, it is assumed that there is no change, that is, less than 0.5 degrees/S, so the loop determination element 9 outputs and the flip-frog 15 maintains its output. After such a state occurs, even if the above-mentioned conditions for parallel input of different systems are met, the inhibit logic 17 for inputting different systems
The problem arises in that it cannot be input because it is locked.
本発明は前記問題を解決するもので、位相差θがどんな
値であっても、誤ってルーズ判定保持しないディジタル
同期並入装置を提供することを目的としている。The present invention solves the above problem, and aims to provide a digital synchronous parallelization device that does not erroneously hold a loose determination, no matter what value the phase difference θ is.
[発明の構成] (課題を解決するための手段) 本発明の一実施例である第1図に基づき説明する。[Structure of the invention] (Means for solving problems) An explanation will be given based on FIG. 1, which is an embodiment of the present invention.
第1図に示す如〈従来の同期並入装置に対して、位相差
θ測定間隔の異なる2つ以上の例えばループ判定要素9
.19が両方共に動作したときのみ、ループ系統と判定
し、フリップフロップ15が出力保持するように構成し
たものである。As shown in FIG.
.. Only when both 19 operate, it is determined that the system is a loop system, and the flip-flop 15 holds the output.
(作 用)
このようにすればスリップ周期の整数倍が一方のループ
判定要素の位相差θ測定間隔と等しくなっても、他方の
ループ判定要素については等しくならないので前述した
異系統並入ができないという問題は解消される。(Function) In this way, even if the integral multiple of the slip period becomes equal to the phase difference θ measurement interval for one loop determination element, it will not be equal for the other loop determination element, so the above-mentioned parallelization of different systems will not be possible. This problem is solved.
(実施例)
本発明の一実施例である第1図、第2図に基づき以下説
明する。(Example) An explanation will be given below based on FIGS. 1 and 2, which are an example of the present invention.
第2図はディジタル形同期並人装置の一例である。PT
から入力された母線側電圧■8は補助PT21を介して
フィルタF22に導入され、フィルタ「22の出力はサ
ンプルホールド回路23に導入される。FIG. 2 is an example of a digital synchronous parallel processing device. P.T.
The bus line side voltage 8 inputted from the auxiliary PT 21 is introduced into the filter F22, and the output of the filter F22 is introduced into the sample and hold circuit 23.
同様にPTから入力された送電線側電圧■Lは補助PT
21を介してフィルタF22に導入され、フィルタ「2
2の出力はサンプルホールド回路23に導入される。2
個のサンプルホールド回路の出力はマルチプレクサ24
に導入される。マルチプレクサ24の出力はA/D変換
器25に導入される。A/D変換器25の出力はCPt
126に導入される。起動指令はI10バッファー30
に導入され、I10バッファー30の出力もCPU26
ニ導入すレル。CPU26 ハROM27 及びRA
M28と接続されており、また、I10バッファー29
にも接続されており、投入指令出力可能な構成となでい
る。Similarly, the power transmission line side voltage input from PT ■L is auxiliary PT
21 to the filter F22, and filter "2" is introduced into the filter F22.
The output of 2 is introduced into a sample hold circuit 23. 2
The outputs of the sample and hold circuits are sent to the multiplexer 24.
will be introduced in The output of multiplexer 24 is introduced into A/D converter 25. The output of the A/D converter 25 is CPt
126. Start command is I10 buffer 30
The output of the I10 buffer 30 is also input to the CPU 26.
Introducing 2. CPU26 ROM27 and RA
Connected to M28 and also I10 buffer 29
It is also connected to the system, and is configured to be able to output a closing command.
次に作用を説明する。Next, the effect will be explained.
第2図において母線側電圧VB及び系統側電圧vLはそ
れぞれ補助PT21で絶縁され、アナログフィルタ[2
2へ導入される。アナログフィルタF22では折り返し
周波数誤差を発生する高調渡分のカットが行なわれる。In Fig. 2, the bus side voltage VB and the system side voltage vL are each insulated by the auxiliary PT21, and the analog filter [2
2 will be introduced. The analog filter F22 cuts out harmonic components that cause aliasing frequency errors.
次にそれぞれサンプルホールド回路23に導入され、一
定間隔毎にサンプリングされ保持される(一般に時間角
30°がサンブリング間隔として用いられる)。マルチ
プレクサ24はそれぞれのサンプルホールド回路から順
次データを取り込みへ/D変換器25に導入する。A/
D変換器25では順次、導入されるアナログデータを順
次ディジタルデータに変換し出力する。該データはCP
O26を介してRAM28にストアされる。このような
状態で起動指令カ月70バッファー30へ入力されると
、CPU26はそれを信号入力しRAM28にストアす
る。CPU26はROM27に予め書き込まれたプログ
ラムに従い演算を行ない、投入指令出力の粂件が成立す
ると、170バツフアー29を介して投入指令出力を行
なう。CPUの実行するプログラムの内容の一実施例は
第1図の如きブロック図である。Next, each signal is introduced into the sample-and-hold circuit 23, where it is sampled and held at regular intervals (generally, a time angle of 30° is used as the sampling interval). The multiplexer 24 sequentially inputs data from each sample and hold circuit to the input/D converter 25 . A/
The D converter 25 sequentially converts the introduced analog data into digital data and outputs the digital data. The data is CP
It is stored in RAM28 via O26. When the activation command is input to the buffer 30 in this state, the CPU 26 inputs it as a signal and stores it in the RAM 28. The CPU 26 performs calculations in accordance with a program written in advance in the ROM 27, and when the conditions for outputting the inputting command are established, outputting the inputting command via the 170 buffer 29. An example of the contents of a program executed by a CPU is shown in a block diagram as shown in FIG.
以下、第1図に基づき説明する。第1図の中で従来の実
施例である第3図と同じ部分については〈従来の技術)
の項で説明済みであるため説明は省略する。This will be explained below based on FIG. The parts in Fig. 1 that are the same as those in Fig. 3, which is a conventional example, are referred to as (prior art).
Since this has already been explained in the section above, the explanation will be omitted.
第1図においてループ判定要素9.19の構成は例えば
ループ判定要素9の位相差θ測定間隔を5秒とした場合
は、ループ判定要素19の位相差θ測定間隔を5,1秒
とする。なお、2つの位相差θ測定間隔の差5.1秒−
5,0秒=0.1秒は系統上想定される最小スリップ周
期未満の値に選ぶものとする。こうすればスリップ周期
の整数倍が一方のループ判定要素の位相差θ測定間隔と
等しくなっても、他方のループ判定要素については等し
くならないため、両方のルーズ判定要素が同時に誤って
ルーズ判定を行なうことはない。故にループ判定要素9
及びループ判定要素1つの出力はANDロジック20に
導入され、AND条件が成立したときのみ、フリップフ
ロップ15は保持され異系統投入用インヒビットロジッ
ク17はロックされて、異系統投入時にロックされてい
て投入できないというようなことはなくなる。In FIG. 1, the loop determination element 9.19 has a configuration such that, for example, if the phase difference θ measurement interval of the loop determination element 9 is 5 seconds, the phase difference θ measurement interval of the loop determination element 19 is 5.1 seconds. In addition, the difference between the two phase difference θ measurement intervals is 5.1 seconds -
5.0 seconds = 0.1 seconds shall be selected as a value that is less than the minimum slip period assumed in the system. In this way, even if the integral multiple of the slip period becomes equal to the phase difference θ measurement interval for one loop determination element, it will not be equal for the other loop determination element, so both loose determination elements will mistakenly perform a loose determination at the same time. Never. Therefore, loop determination element 9
and the output of one loop determination element are introduced into the AND logic 20, and only when the AND condition is satisfied, the flip-flop 15 is held and the inhibit logic 17 for inputting a different system is locked, and when the input of a different system is applied, it is locked and the output is not activated. There will be no more saying that you can't do it.
前述したように同期並入装置がある条件下で実際には投
入可能な系統状態にあるにも拘らず、投入不能となるこ
とがなくなる。As described above, even though the synchronous parallel entry device is actually in a system state where it can be entered under certain conditions, it will no longer become impossible to make entry.
[発明の効果]
以上説明したように、本発明によれば同期並入装置の投
入の確実性が向上し、電力系統の運用がより一層向上す
る。[Effects of the Invention] As explained above, according to the present invention, the reliability of inputting the synchronous parallel device is improved, and the operation of the power system is further improved.
第1図は本発明によるディジタル同期並入装置の一実施
例のブロック図、第2図はディジタル形同期並人装置の
ハード構成開国、第3図は従来の同期並入装置のブロッ
ク開国、第4図は同期並入装置の系統適用例図、第5図
は異系統の系統例、第6図はルーズ系統の系統例、第7
図はスリップ周期の整数倍が5秒となる例である。
9.19・・・ループ系統判定要素
15・・・フリップフロッグFIG. 1 is a block diagram of an embodiment of a digital synchronous parallel entry device according to the present invention, FIG. 2 shows the hardware configuration of a digital synchronous parallel entry device, and FIG. 3 shows a block diagram of a conventional synchronous parallel entry device. Figure 4 is an example of a system application of a synchronous parallel entry device, Figure 5 is an example of a system with different systems, Figure 6 is an example of a loose system, and Figure 7 is an example of a system with a loose system.
The figure shows an example where the integral multiple of the slip period is 5 seconds. 9.19...Loop system determination element 15...Flip frog
Claims (2)
圧を入力し、それらの各位相差、周波数差及び電圧値範
囲を検定して投入指令を導出するディジタル同期並入装
置において、各電力系統の電圧の位相差θの変化を異な
る時間間隔t_1、t_2で測定する位相差変化検出要
素を少なくとも備え、前記時間間隔差|t_1−t_2
|が電力系統上で想定される前記2つの電力系統の最小
のスリップ周期未満であることを特徴とするディジタル
同期並入装置。(1) In order to synchronize two power systems, a digital synchronous paralleling device inputs the voltage of each system, verifies their phase difference, frequency difference, and voltage value range to derive a power-on command. It comprises at least a phase difference change detection element that measures a change in the phase difference θ of the voltage of the power system at different time intervals t_1 and t_2, and the time interval difference |t_1−t_2
A digital synchronous parallelization device characterized in that | is less than a minimum slip period of the two power systems assumed on the power system.
圧を入力し、それらの各位相差、周波数差及び電圧値範
囲を検定して投入指令を導出するディジタル同期並入装
置において、各電力系統の電圧の位相差θの変化を異な
る時間間隔t_1、t_2で測定する位相差変化検出要
素を少なくとも備え、前記時間間隔差|t_1−t_2
|の自然数倍がt_1あるいはt_2とならないよう設
定することを特徴とするディジタル同期並入装置。(2) In order to synchronously connect two power systems, a digital synchronous paralleling device inputs the voltage of each system, verifies their phase difference, frequency difference, and voltage value range to derive a power-on command. It comprises at least a phase difference change detection element that measures a change in the phase difference θ of the voltage of the power system at different time intervals t_1 and t_2, and the time interval difference |t_1−t_2
A digital synchronous parallelization device characterized in that it is set so that a natural number multiple of | is not t_1 or t_2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27596589A JP2644347B2 (en) | 1989-10-25 | 1989-10-25 | Digital synchronization device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27596589A JP2644347B2 (en) | 1989-10-25 | 1989-10-25 | Digital synchronization device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03139125A true JPH03139125A (en) | 1991-06-13 |
JP2644347B2 JP2644347B2 (en) | 1997-08-25 |
Family
ID=17562887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27596589A Expired - Lifetime JP2644347B2 (en) | 1989-10-25 | 1989-10-25 | Digital synchronization device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2644347B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019530394A (en) * | 2016-08-18 | 2019-10-17 | ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH | Enhanced single grid management application for power grid systems |
US11181166B2 (en) | 2018-11-30 | 2021-11-23 | Toyota Jidosha Kabushiki Kaisha | Crank cap assembly |
-
1989
- 1989-10-25 JP JP27596589A patent/JP2644347B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019530394A (en) * | 2016-08-18 | 2019-10-17 | ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH | Enhanced single grid management application for power grid systems |
US11181166B2 (en) | 2018-11-30 | 2021-11-23 | Toyota Jidosha Kabushiki Kaisha | Crank cap assembly |
Also Published As
Publication number | Publication date |
---|---|
JP2644347B2 (en) | 1997-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02212941A (en) | Method and circuit for synchronizing signal in modular redundant fault tolerance computer system | |
JPWO2007060756A1 (en) | Phase comparator and phase adjustment circuit | |
JPH03139125A (en) | Digital synchronous parallel-in apparatus | |
CN110504968B (en) | Double-asynchronous signal sampling counting device and method | |
JPH03127526A (en) | Synchronizing device | |
JPH0370434A (en) | Digital synchronous simultaneous parallel supply device | |
JPH03135333A (en) | Digital synchronous parallel making apparatus | |
TWI763411B (en) | Linearity test method and system for chip, and linearity signal providing device | |
JP2571007B2 (en) | Bipolar signal switch | |
JPH0282812A (en) | Clock switching system | |
JP2023005569A (en) | Data input/output apparatus and data input/output method | |
JPH03245736A (en) | Digital synchronous parallel closing device | |
JPH0540916U (en) | Processor | |
JP3036223B2 (en) | Clock transfer circuit | |
JPH01149517A (en) | System for detecting clock phase difference | |
JP2874632B2 (en) | Clock switching circuit | |
JPH04247719A (en) | Detection circuit for phase-lock loop condition | |
JPH03218113A (en) | Clock signal switching circuit | |
JPH10190676A (en) | Atm communication interface | |
JPS59225617A (en) | Phase locked loop | |
JPH0451716A (en) | Plo changeover circuit | |
JPH02176916A (en) | Clock switching system | |
JPH04169957A (en) | Microprocessor | |
JPH04117730A (en) | Data input processing method | |
JPH01252085A (en) | Teletext data sampling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090502 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090502 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100502 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100502 Year of fee payment: 13 |