JPH03136467A - Picture processor - Google Patents
Picture processorInfo
- Publication number
- JPH03136467A JPH03136467A JP1273840A JP27384089A JPH03136467A JP H03136467 A JPH03136467 A JP H03136467A JP 1273840 A JP1273840 A JP 1273840A JP 27384089 A JP27384089 A JP 27384089A JP H03136467 A JPH03136467 A JP H03136467A
- Authority
- JP
- Japan
- Prior art keywords
- random number
- binary
- data
- binarized
- average value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009792 diffusion process Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000010130 dispersion processing Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 6
- 238000004321 preservation Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
Landscapes
- Facsimile Image Signal Circuits (AREA)
- Image Processing (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はファクシミリ、デジタル複写機等の画像処理装
置、特に疑似中間調処理装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image processing apparatus such as a facsimile machine or a digital copying machine, and particularly to a pseudo halftone processing apparatus.
[従来の技術]
従来この種の疑似中間調処理方法として、■誤差拡散法
と■平均濃度近似法(特開昭57−1043693号)
とが知られている。[Prior Art] Conventionally, as this type of pseudo halftone processing method, ■Error diffusion method and ■Average density approximation method (Japanese Patent Application Laid-Open No. 1043693/1983)
is known.
前者は注目画素の多値画素データを一定しきい値で2値
化し、該2値化レベルと注目画素の多値画素データの誤
差を所定分配率で注目画素近傍の画素に分配して加算す
る2値化方法である。後者は注目画素近傍の既に2値化
された2値データを用いて、注目画素を黒又は白に2値
化した場合の両者の重み付は近傍平均値を求め、該平均
値のうち注目画素レベルに近い方を選択して注目画素を
2値化する方法である。The former binarizes the multi-value pixel data of the pixel of interest using a fixed threshold, and distributes and adds the error between the binarization level and the multi-value pixel data of the pixel of interest to pixels near the pixel of interest at a predetermined distribution rate. This is a binarization method. The latter uses binary data that has already been binarized near the pixel of interest, and when the pixel of interest is binarized into black or white, the weighting of both is determined by the neighborhood average value, and the average value of the pixel of interest is calculated from the average value. This is a method of selecting the one closer to the level and binarizing the pixel of interest.
前者は多値データに対する二次元演算が必要であり、そ
の処理量の多さにより安価にハード化出来ない欠点を有
し、後者はなだらかな濃度変化を有する画像に対して本
方式特有の低周波数のテクスチャーが発生し、実質的に
再生可能な階調数が前者に比べて極めて劣る。The former requires two-dimensional calculations on multivalued data, and has the disadvantage that it cannot be made into hardware at low cost due to the large amount of processing. texture occurs, and the number of gradations that can be reproduced is actually extremely inferior to the former.
[発明が解決しようとしている課題]
そこで、単一の平均濃度を求めて、該値をしきい値とし
て画像を2値化すると共に、2値化誤差の補正処理を付
加した平均濃度保存法と呼ぶ新規な2値化方法が考えら
れている。[Problems to be Solved by the Invention] Therefore, an average density preservation method is proposed in which a single average density is determined, the image is binarized using this value as a threshold value, and a binarization error correction process is added. A new binarization method is being considered.
ところが、CG画像のように広い面積にわたり均一な濃
度レベルを有する画像を2値化する際に、特に低ノード
又は高ノード部に黒又は白の整列する極めて規則的パタ
ーンに2値化されてしまい、非常に不自然となる欠点が
存在する。However, when binarizing an image that has a uniform density level over a wide area, such as a CG image, the image is binarized into a very regular pattern with black or white aligned especially at low nodes or high nodes. , there are drawbacks that make it look very unnatural.
本発明は、前記従来の欠点を除去し、CG画像のように
広い面積にわたり均一な濃度レベルを有する画像に対し
、規則的パターンのない高品位な2値化再生を実現する
画像処理装置を提供する。The present invention eliminates the drawbacks of the conventional art and provides an image processing device that realizes high-quality binarized reproduction without regular patterns for images having uniform density levels over a wide area, such as CG images. do.
[課題を解決するための手段]
この課題を解決するために、本発明の画像処理装置は、
既に2値化された所定範囲の2値化データに基づく平均
値により、多値画像データを2値化する画像処理装置で
あって、
疑似乱数を発生する乱数発生手段と、該疑似乱数に基づ
いて、前記平均値を補正する平均値補正手段とを備える
。[Means for Solving the Problem] In order to solve this problem, the image processing device of the present invention has the following features:
An image processing device that binarizes multivalued image data using an average value based on binarized data in a predetermined range that has already been binarized, comprising: a random number generating means that generates pseudo-random numbers; and an average value correction means for correcting the average value.
又、既に2値化された所定範囲の2値化データに基づく
平均値により、多値画像データを2値化する画像処理装
置であって、
前記2値化により発生する誤差を周辺画素に拡散する誤
差拡散手段と、疑似乱数を発生する乱数発生手段と、該
疑似乱数に基づいて、拡散される前記誤差を補正する誤
差補正手段とを備える。Also, an image processing device that binarizes multivalued image data using an average value based on binarized data in a predetermined range that has already been binarized, and which diffuses errors caused by the binarization to surrounding pixels. A random number generating means generates a pseudo-random number, and an error correcting means corrects the error to be diffused based on the pseudo-random number.
[実施例]
以下、添付図面を参照しながら、本発明の実施例を詳細
に説明する。[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
く画像処理装置の構成例〉
第1図は本実施例の画像処理装置の構成を示すブロック
図である。Example of Configuration of Image Processing Apparatus> FIG. 1 is a block diagram showing the configuration of an image processing apparatus of this embodiment.
画像データ入力部100から入力された、例えば原稿か
らの読取り画像データ等の多値画像データ100aは疑
似中間調処理として2値化処理部200で2値化され、
画像データ出力部300より表示画面あるいは印刷物等
として出力される。ここで、2値化処理部200は、以
下に詳細に説明するように、2値化しきい値としての平
均濃度を求める平均濃度演算処理部200aと誤差補正
処理を行う誤差拡散処理部200bとが一体となった処
理を行う。以下、本実施例ではこの処理方法を平均濃度
保存法と呼ぶ。Multivalued image data 100a, such as image data read from a document, input from the image data input section 100 is binarized by the binarization processing section 200 as pseudo halftone processing,
The image data output unit 300 outputs it as a display screen, printed matter, or the like. Here, as will be described in detail below, the binarization processing unit 200 includes an average density calculation processing unit 200a that calculates an average density as a binarization threshold, and an error diffusion processing unit 200b that performs error correction processing. Perform integrated processing. Hereinafter, in this embodiment, this processing method will be referred to as the average density preservation method.
本実施例では、2値化処理部200が更に乱数発生部2
00cを有し、この乱数発生部200cからの乱数によ
り2値化結果の規則的パターンを防ぐ。In this embodiment, the binarization processing section 200 further includes a random number generation section 2.
00c, and the random number from the random number generator 200c prevents regular patterns in the binarization result.
く平均濃度保存法の原理〉
本方式の平均濃度保存法の原理について第2A図〜第2
C図を参照して説明する。Principle of average concentration preservation method〉 About the principle of average concentration preservation method of this method
This will be explained with reference to Figure C.
本方式は、金策2A図に示す入力多値データf(i、j
)(0〜255)を2値化しようとする場合、第2B図
に示すようにその近傍に位置し既に2値化された複数個
の2値データB (i、j)と、第2C図に示すあらか
じめ用意した重みマスクR(x、y)とにより重み付き
平均値m (i、j)を求め、該平均値m(i。This method uses input multi-value data f(i, j
) (0 to 255), a plurality of binary data B (i, j) located in the vicinity and already binarized as shown in Fig. 2B, and a plurality of binary data B (i, j) as shown in Fig. 2C A weighted average value m (i, j) is calculated using a weight mask R (x, y) prepared in advance as shown in FIG.
j)をしきい値として2値化すると共に、該平均値m(
i、j)と入力画像データf (i、j)との差分値で
これから2値化する隣接した入力多値データを補正して
濃度を保存する方法である。j) as a threshold value, and the average value m(
This is a method of correcting adjacent input multi-value data to be binarized using the difference value between input image data f (i, j) and input image data f (i, j) and preserving the density.
第2A図〜第2C図に示す例で示せば、f(i、j)+
E(i、j) >m(i、j)の時、B(i、j)lと
するf (i、 j) +E (i、 j)5m(i、
j)の時、B (i、 j)−0とするE+(i、j+
1) ・−[f(i、j)+E(i、j)−m(i、
j)] −■震Ex(i日、j)
ただし、 E(i、j)・E+ (i、J) +Ei
(i、 j)・・・■さて、上記原理を第3図で説明す
る。In the example shown in FIGS. 2A to 2C, f(i, j)+
When E (i, j) > m (i, j), set B (i, j) l f (i, j) + E (i, j) 5 m (i,
j), then B (i, j)-0 and E+(i, j+
1) ・-[f(i,j)+E(i,j)-m(i,
j)] −■ Earthquake Ex (i day, j) However, E (i, j)・E+ (i, J) +Ei
(i, j)...■ Now, the above principle will be explained with reference to FIG.
用いた重みマスクは、図示するように注目画素近傍12
画素に対し総和が255となるよう設定される。従って
、m(i、j)は0〜255間の値のしきい値としてそ
のまま2値化に使用できる。今、第3図の注目画素位置
の多値データ20を2値化するしきい値m(i、j)は
、図示する2値データB (i、j)を用いれば、B
(i、 i) = (37x O+27X 1)+
(16x O+27x O+37x 1+27x O
+15x l)+ (6xO+16xO+27xO+
15xO+ 5x 1)=84
従って、B (i、j)はOと2値化され、発生する誤
差は2O−84=−64であり、E+(i。The weight mask used is 12 in the vicinity of the pixel of interest as shown in the figure.
The total sum is set to 255 for each pixel. Therefore, m(i, j) can be used as is for binarization as a threshold value between 0 and 255. Now, the threshold value m (i, j) for binarizing the multi-value data 20 at the pixel position of interest in FIG.
(i, i) = (37x O+27X 1)+
(16x O+27x O+37x 1+27x O
+15x l)+ (6xO+16xO+27xO+
15xO+ 5x 1) = 84 Therefore, B (i, j) is binarized with O, the error generated is 2O-84 = -64, and E + (i.
j+t)=Ez(i+1.j)=−32となる。j+t)=Ez(i+1.j)=-32.
この誤差拡散によって、f(i+1.j)は25から2
5−32=−7に、f (i、j+1)は3oから3O
−32=−2に補正される。Due to this error diffusion, f(i+1.j) changes from 25 to 2
5-32=-7, f (i, j+1) is 3o to 3O
It is corrected to -32=-2.
く本実施例の2値化処理の原理〉
本実施例では、上記処理をCG(コンピュータグラフィ
ックス)等の出力多値画像に対して施す場合、面状に均
一で一定の多値データを2値化すると、規則的に直行す
る不自然なテクスチャーを有する2値画像になる欠点を
解決する為に、前記0式に従う2値化の際に疑似乱数発
生器からの出力に応じてデイザ信号P、4(i、j)を
付与する。Principle of binarization processing in this embodiment> In this embodiment, when performing the above processing on an output multi-value image such as CG (computer graphics), uniform and fixed multi-value data is converted into two In order to solve the problem that when converted into a binary image, a binary image having an unnatural texture that goes regularly orthogonally is generated, the dither signal P is generated according to the output from the pseudo-random number generator during the binarization according to the above formula 0. , 4(i, j).
つまり、前述の■式、■式は、
f (i、 j) +E (i、 j) ”Ps (i
、 l > m (i、 j)の時、 B (i、 j
) =1f (i、 j) +E (i、 j) +P
N (i、 j)6m(i、j)の時、 B (i、
j) ・0・・・■
E+ (i、 j+1) =1/2 (f (i、 j
) +E (i、 j) +PN (i、 l −m
(i、 j) )=Ez (i+1. j)
ただし、E (i、 j)・E+ (1,J) ”E2
(i、 j) ・・・■となる。In other words, the aforementioned equations ■ and ■ are f (i, j) + E (i, j) ”Ps (i
, when l > m (i, j), B (i, j
) =1f (i, j) +E (i, j) +P
When N (i, j)6m(i, j), B (i,
j) ・0...■ E+ (i, j+1) = 1/2 (f (i, j
) +E (i, j) +PN (i, l -m
(i, j) )=Ez (i+1. j) However, E (i, j)・E+ (1, J) ”E2
(i, j) ...■.
本実施例で用いた疑似乱数発生器は、公知のM系列符号
(S、W、Golomb、 ”Shift−Regis
ter 5equences” Ho1den−Day
、Inc、、San Francisco、1967)
を用い、A4原稿を400dp iで処理した際に、そ
の周期性に基づくテクスチャーを発生させない為に、1
周期を225−1としその1bit出力の0と1に対応
して±δ(δは2〜4レベルとする)の濃度レベル幅を
持たせる。The pseudo-random number generator used in this example is a known M-sequence code (S, W, Golomb, “Shift-Regis
ter 5equences”Ho1den-Day
, Inc., San Francisco, 1967)
When processing an A4 document at 400dpi using
The cycle is set to 225-1, and a density level width of ±δ (δ is assumed to be 2 to 4 levels) is provided corresponding to 0 and 1 of the 1-bit output.
〈2値化処理部の構成例〉
本実施例の2値化処理部のハードウェア構成例を第4図
を用いて詳説する。<Example of configuration of binarization processing unit> An example of the hardware configuration of the binarization processing unit of this embodiment will be explained in detail using FIG. 4.
まず、比較器10で2値化された2値デークはDタイプ
・フリップフロップ(以下、D −F/F)31及びラ
インメモリ2に人力され、順次10個のD 4/F3
a〜3j及びラインメモリ1にシフトすることで、各々
の出力端子は第3図に示す重みマスク領域の12個の2
値データを同時に出力する。First, the binary data converted into a binary data by the comparator 10 is manually inputted to a D type flip-flop (hereinafter referred to as D-F/F) 31 and a line memory 2, and sequentially converted into 10 D4/F3 data.
By shifting to a to 3j and line memory 1, each output terminal corresponds to 12 2 of the weight mask area shown in FIG.
Output value data at the same time.
同出力を入力する平均濃度演算装置部8は、あらかじめ
重みマスクによって平均濃度を0式に従い演算して格納
するROMで実施すれば、テーブル変換手法に基づきそ
の出力で平均値m (i、j)が得られる。前記比較器
10の一入力端に該出力を入力してしきい値とすると共
に、■式に従う減算を減算器9で行なう。その出力は、
誤差ROM12に入力され該ROM内で■式に示すよう
に、E、とE2に2分し、E+(i、j)は誤差メモリ
14に入力され、次ラインの2値化まで約1ラインに相
当する量遅延保持される。一方、E+(t + 1 、
J )は同誤差メモリ14より既に1ライン分遅延保
持し出力されたE+(i+ 1 、 J )と共に加算
器13を用いて人力データf (i+1.j)を補正す
る。If the average density calculating unit 8 inputting the same output is implemented in a ROM that calculates and stores the average density in advance according to the formula 0 using a weight mask, the average density m (i, j) will be calculated based on the table conversion method based on the output. is obtained. The output is inputted to one input terminal of the comparator 10 and used as a threshold value, and the subtracter 9 performs subtraction according to equation (2). Its output is
It is input to the error ROM 12, and within the ROM it is divided into two parts, E and E2, as shown in equation (2), and E+(i, j) is input to the error memory 14, where it is divided into approximately one line until the next line is binarized. The corresponding amount of delay is held. On the other hand, E+(t + 1,
J) is already held delayed by one line from the error memory 14 and is used together with the output E+(i+1, J) to correct the manual data f(i+1.j) using the adder 13.
さて、破線で囲む疑似乱数発生部19は、25個の1ビ
ツト入出力D −F/Fl 7−t〜17−zsと3個
の排他論理和(EXOR) 18−1+ 1 s−z
、 1 s−8及びマルチプレクサ16とで構成され
る。同25個のD−F/Fは図示されないプリセット回
路により、その出力が全てOとなることが防止される。Now, the pseudo-random number generation section 19 surrounded by a broken line has 25 1-bit input/output D-F/Fl7-t to 17-zs and three exclusive ORs (EXOR) 18-1+1s-z
, 1 s-8 and a multiplexer 16. The 25 D-F/Fs are prevented from having their outputs all set to O by a preset circuit (not shown).
従って、1周期T=2”−1とするM系列符号がD −
F/Fl 7−25出力端子に得られる。マルチプレク
サ16は同1ビツトの疑似乱数の0と1の状態に応じて
、あらかじめ設定された±δ(本実施例では±2〜4)
の数ビットの値に変換され、前述の加算器13で補正デ
ータと共にf (i+1゜j)に加算される。Therefore, the M-sequence code with one period T=2''-1 is D −
F/Fl is obtained at the 7-25 output terminal. The multiplexer 16 selects a preset value of ±δ (in this embodiment, ±2 to 4) depending on the state of 0 and 1 of the same 1-bit pseudo-random number.
is converted into a several-bit value, and added to f (i+1°j) together with the correction data in the adder 13 described above.
尚、本乱数発生部は、A4原稿を2値化時に周期性を発
生することなく平均値0で入力画像に付与される為に、
平均濃度として見た場合も画像を乱す事なく、特に均一
で同一のレベルを面状に有するCG画像を2値化した際
に、規則性が乱れた2値画像が得られる。該乱数で補正
したデータはD−F/Filでタイミングを合わされて
減算器9及び比較器10に入力され、次画素の2値化が
行なわれる。Note that this random number generation unit adds an average value of 0 to the input image without generating periodicity when binarizing an A4 document.
Even when viewed as an average density, the image is not disturbed, and in particular, when a CG image that is uniform and has the same level in a plane is binarized, a binary image with disordered regularity is obtained. The data corrected with the random numbers is input to the subtracter 9 and the comparator 10 with the timing adjusted by DF/Fil, and the next pixel is binarized.
以上の処理は図示しない全F/Fに印加される画素クロ
ックに同期し、1画素毎くり返し実行される。The above processing is repeated for each pixel in synchronization with a pixel clock applied to all F/Fs (not shown).
く2値化処理部の他の構成例〉
前記実施例では乱数に基づく±δのデイザ信号PNを入
力画像データに付与したが、式■においてP、4(i、
j)を右辺に移行しても、■式が成立するように、つま
りしきい値m(’i、j)に加えても同様の効果が得ら
れる。Other configuration examples of the binarization processing unit> In the embodiment described above, a dither signal PN of ±δ based on random numbers was given to the input image data.
Even if j) is moved to the right-hand side, the same effect can be obtained by adding it to the threshold value m('i, j) so that equation (2) holds true.
第5図は、上記しきい鎖側にPNを加えた実施例であり
、前記実施例と同様の疑似乱数発生部19の出力デイザ
信号PNは、加算器15で平均濃度m(i、j)に加え
られる。本実施例では前者の加算器13の負担を軽減す
るメリットを有する。FIG. 5 shows an embodiment in which PN is added to the threshold chain side, and the output dither signal PN of the pseudorandom number generator 19 similar to the embodiment described above is converted to the average concentration m(i, j) by the adder 15. added to. This embodiment has the advantage of reducing the burden on the former adder 13.
く±δの値について〉
デイザ信号の振幅δは一般に入力データfの値に応じて
、つまりfが小の時小さくなる様にすることで、相対的
に乱数によるドツトの乱れが濃度値にかかわらず一定と
なり得る。Regarding the value of ±δ> Generally, the amplitude δ of the dither signal is made to decrease according to the value of the input data f, that is, when f is small, so that the disturbance of dots due to relative random numbers can be avoided regardless of the density value. can be constant.
<2.4発生器の他側〉
本実施例では、T=2”−1とA4原稿処理時にそのデ
ータ量に比べて同期を大と設定したが、例えばT=2”
−1程度に小としてハード規模を削減し、かつ画像の2
値化の最中に他のデータ、例えば注目画素の絶対アドレ
スあるいは画像多値データそのもの等でD−F/F17
をプリセットすれば、疑似的に周期Tを長くすることが
可能となる。<2.4 Other side of the generator> In this embodiment, when T=2"-1, the synchronization is set to be large compared to the amount of data when processing an A4 document. For example, when T=2"
-1 to reduce the hardware scale and reduce the image size to 2.
During value conversion, other data such as the absolute address of the pixel of interest or the image multilevel data itself is used to convert D-F/F17.
By presetting , it becomes possible to lengthen the period T in a pseudo manner.
[発明の効果]
本発明により、CG画像のように広い面積にわたり均一
な濃度レベルを有する画像に対し、規則的パターンのな
い高品位な2値化再生を実現する画像処理装置を提供で
きる。[Effects of the Invention] According to the present invention, it is possible to provide an image processing device that realizes high-quality binarized reproduction without regular patterns for images having uniform density levels over a wide area, such as CG images.
すなわち、演算装置量が小であるにもかかわらず、ED
法に比して高画質化可能な疑似中間調処理装置が提供出
来る。又、簡単な疑似乱数を付与することで、CG画像
に対して規則性が乱された2値画像が得られる。In other words, despite the small amount of processing equipment, the ED
It is possible to provide a pseudo halftone processing device that can achieve higher image quality than the conventional method. Furthermore, by adding simple pseudo-random numbers, a binary image with irregularities can be obtained with respect to the CG image.
第1図は本実施例の画像処理装置の構成を示すブロック
図、
第2A図〜第2C図は平均誤差保存法を説明する図、
第3図は平均濃度演算を説明する図、
第4図は本実施例の2値化処理部のハードウェア構成を
示す図、
第5図は他側の2値化処理部のハードウェア構成を示す
図である。
図中、100・・・画像データ入力部、200・・・2
値化処理部、200a・・・平均濃度演算処理部、20
0b・・・誤差拡散処理部、200c・・・乱数発生部
、300・・・画像データ出力部である。
−51(
第3
図FIG. 1 is a block diagram showing the configuration of the image processing device of this embodiment. FIGS. 2A to 2C are diagrams explaining the average error preservation method. FIG. 3 is a diagram explaining the average density calculation. 5 is a diagram showing the hardware configuration of the binarization processing unit of this embodiment, and FIG. 5 is a diagram showing the hardware configuration of the binarization processing unit on the other side. In the figure, 100...image data input section, 200...2
Value conversion processing unit, 200a... Average concentration calculation processing unit, 20
0b...error diffusion processing section, 200c...random number generation section, 300...image data output section. -51( Figure 3
Claims (2)
く平均値により、多値画像データを2値化する画像処理
装置であつて、 疑似乱数を発生する乱数発生手段と、 該疑似乱数に基づいて、前記平均値を補正する平均値補
正手段とを備えることを特徴とする画像処理装置。(1) An image processing device that binarizes multivalued image data using an average value based on binarized data in a predetermined range that has already been binarized, comprising: random number generation means for generating pseudorandom numbers; An image processing apparatus comprising: average value correction means for correcting the average value based on random numbers.
く平均値により、多値画像データを2値化する画像処理
装置であつて、 前記2値化により発生する誤差を周辺画素に拡散する誤
差拡散手段と、 疑似乱数を発生する乱数発生手段と、 該疑似乱数に基づいて、拡散される前記誤差を補正する
誤差補正手段とを備えることを特徴とする画像処理装置
。(2) An image processing device that binarizes multivalued image data using an average value based on binarized data in a predetermined range that has already been binarized, and which converts errors caused by the binarization into peripheral pixels. An image processing apparatus comprising: an error diffusion means for diffusing; a random number generation means for generating a pseudo-random number; and an error correction means for correcting the error to be diffused based on the pseudo-random number.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1273840A JP2848569B2 (en) | 1989-10-23 | 1989-10-23 | Image data binarization method and image processing apparatus |
US08/460,821 US5577136A (en) | 1989-09-27 | 1995-06-02 | Image processing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1273840A JP2848569B2 (en) | 1989-10-23 | 1989-10-23 | Image data binarization method and image processing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03136467A true JPH03136467A (en) | 1991-06-11 |
JP2848569B2 JP2848569B2 (en) | 1999-01-20 |
Family
ID=17533278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1273840A Expired - Fee Related JP2848569B2 (en) | 1989-09-27 | 1989-10-23 | Image data binarization method and image processing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2848569B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005070796A (en) * | 2000-03-24 | 2005-03-17 | Sharp Corp | Image processing apparatus and image display apparatus equipped with the same |
US7502140B2 (en) | 1998-12-04 | 2009-03-10 | Ricoh Company, Ltd. | Image processing apparatus |
JP2011211503A (en) * | 2010-03-30 | 2011-10-20 | Kyocera Mita Corp | Image processing apparatus and image forming apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53136424A (en) * | 1977-05-02 | 1978-11-29 | Nippon Telegr & Teleph Corp <Ntt> | Correlative processing system for picture signal |
JPS58186265A (en) * | 1982-04-24 | 1983-10-31 | Toshiba Corp | Binary-coding device for shaded picture |
JPS63102473A (en) * | 1986-10-17 | 1988-05-07 | Matsushita Electric Ind Co Ltd | Picture signal processor |
JPS63106304A (en) * | 1986-10-23 | 1988-05-11 | Toshiba Corp | Denitration control device for combined power plant |
JPS63155952A (en) * | 1986-12-19 | 1988-06-29 | Matsushita Electric Ind Co Ltd | Picture signal processor |
JPS63209370A (en) * | 1987-02-26 | 1988-08-30 | Matsushita Electric Ind Co Ltd | Image signal processor |
-
1989
- 1989-10-23 JP JP1273840A patent/JP2848569B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53136424A (en) * | 1977-05-02 | 1978-11-29 | Nippon Telegr & Teleph Corp <Ntt> | Correlative processing system for picture signal |
JPS58186265A (en) * | 1982-04-24 | 1983-10-31 | Toshiba Corp | Binary-coding device for shaded picture |
JPS63102473A (en) * | 1986-10-17 | 1988-05-07 | Matsushita Electric Ind Co Ltd | Picture signal processor |
JPS63106304A (en) * | 1986-10-23 | 1988-05-11 | Toshiba Corp | Denitration control device for combined power plant |
JPS63155952A (en) * | 1986-12-19 | 1988-06-29 | Matsushita Electric Ind Co Ltd | Picture signal processor |
JPS63209370A (en) * | 1987-02-26 | 1988-08-30 | Matsushita Electric Ind Co Ltd | Image signal processor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7502140B2 (en) | 1998-12-04 | 2009-03-10 | Ricoh Company, Ltd. | Image processing apparatus |
JP2005070796A (en) * | 2000-03-24 | 2005-03-17 | Sharp Corp | Image processing apparatus and image display apparatus equipped with the same |
JP2011211503A (en) * | 2010-03-30 | 2011-10-20 | Kyocera Mita Corp | Image processing apparatus and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2848569B2 (en) | 1999-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1248878A (en) | System for reproducing multi-level digital images on a bi-level printer of fixed dot size | |
US5835687A (en) | Methods and apparatus for providing digital halftone images with random error diffusion dithering | |
EP0781034B1 (en) | Image processing apparatus and method | |
JP2005065227A (en) | Image processing method, program, storage medium, and apparatus | |
JP3810835B2 (en) | Image processing method using error diffusion and halftone processing | |
JP2011114413A (en) | Image processing unit and method of processing image | |
JPH03136467A (en) | Picture processor | |
US7161708B2 (en) | Image processing apparatus and method allowing control of edge enhancement effect | |
JP3461247B2 (en) | Image processing apparatus and image processing method | |
JP3428822B2 (en) | Image processing apparatus and image processing method | |
JP3225099B2 (en) | Image processing device | |
JP2570890B2 (en) | Image processing device | |
JP2831573B2 (en) | Pseudo halftone image processing system | |
JP2848567B2 (en) | Image processing device | |
JPH03243063A (en) | Method for binarizing multilevel image | |
JPH0197650A (en) | Image processing method | |
JPH0350960A (en) | Picture signal processing unit | |
JPH07184050A (en) | Image processor | |
JPH03140061A (en) | Picture processor | |
JPH01109963A (en) | Picture signal processing unit | |
JPS63155954A (en) | Picture signal processor | |
JPH0828812B2 (en) | Halftone image processor | |
JPH02285773A (en) | Picture processing unit | |
JPS63155950A (en) | Picture signal processor | |
JPH05122507A (en) | Enlargement processing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081106 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |