[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03122526A - Detection of level of molten metal - Google Patents

Detection of level of molten metal

Info

Publication number
JPH03122526A
JPH03122526A JP1260690A JP26069089A JPH03122526A JP H03122526 A JPH03122526 A JP H03122526A JP 1260690 A JP1260690 A JP 1260690A JP 26069089 A JP26069089 A JP 26069089A JP H03122526 A JPH03122526 A JP H03122526A
Authority
JP
Japan
Prior art keywords
molten metal
metal
level
mold
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1260690A
Other languages
Japanese (ja)
Inventor
Yoichi Naganuma
永沼 洋一
Masaki Motomura
元村 雅記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1260690A priority Critical patent/JPH03122526A/en
Priority to DE69025445T priority patent/DE69025445T2/en
Priority to EP90309880A priority patent/EP0419104B1/en
Priority to ES90309880T priority patent/ES2083434T3/en
Priority to CA002025187A priority patent/CA2025187C/en
Priority to AU62429/90A priority patent/AU618686B2/en
Priority to US07/584,114 priority patent/US5103893A/en
Priority to KR1019900014769A priority patent/KR930007115B1/en
Publication of JPH03122526A publication Critical patent/JPH03122526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To remove a delay in a time of detection, to increase responsiveness and to make measurement highly precise by a method wherein a change in the impedance of a receiving coil caused by an amplitude of an eddy current generated in a molten metal itself is measured as a change in a phase. CONSTITUTION:When a molten metal 1 is filled up in molds 2, 3 and a part of a magnetic flux transmitted through the mold 2 passes through the metal 1, an eddy current is generated in the metal 1 and the impedance of a receiving coil 7 changes. Then a phase shift occurs, compared with a case when only air 6 is present, the metal 1 being absent, in the molds 2, 3, and the value of this phase shift is outputted as a voltage value by a phase difference detector 9. In the case when a melt level is positioned near transmitting and receiving coils, the output voltage value of the detector 9 changes in a reverse order and continuously. By measuring this phase shift, accordingly, the position of the level of the molten metal in the vicinity of the transmitting and receiving coils 4 and 7 can be detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融金属の溶融面(レベル)位置の検出方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the position of a molten surface (level) of molten metal.

〔従来の技術〕[Conventional technology]

溶融金属の溶融面の位置を検出する方法としては、以下
に示すような手法がある。
As a method for detecting the position of the molten surface of molten metal, there are the following methods.

1)浮き子を利用するもの 溶融金属面に浮き子を浮かべこの浮き子の位置を棒また
はチェーンなどにより検出するもの。
1) Those that use a float A float is floated on the molten metal surface and the position of the float is detected using a rod or chain.

2)光学的(光電変換)手法 溶融金属上面と容器等との接触位置におけろ輝度の違い
に着目し、この境界線を例えばアレイセンサーあるいは
テレビカメラ等を用いて三角測量法によって測定するも
の。
2) Optical (photoelectric conversion) method A method that focuses on the difference in brightness at the point of contact between the top surface of the molten metal and a container, etc., and measures this boundary line by triangulation using an array sensor or television camera, etc. .

3)超音波によるもの 超音波を溶融金属の表面に照射し、その反射した音波が
戻ってくる時間を測ることで溶融金属表面までの距離を
測定するもの。
3) Using ultrasonic waves A method that measures the distance to the molten metal surface by irradiating the surface of the molten metal with ultrasonic waves and measuring the time it takes for the reflected sound waves to return.

4)放射線を利用するもの 溶融金属に対し斜め方向に放射線を透過させ。4) Items that use radiation Radiation is passed through the molten metal in an oblique direction.

この放射線の減衰量より溶融金属の表面位置を検出する
もの。
This method detects the surface position of molten metal based on the amount of attenuation of this radiation.

5)浸積電極式 電極と溶融金属により電気回路のON −OFF状態を
作って溶融金属のレベルを検出するもの。
5) An immersion electrode type that detects the level of molten metal by creating an ON-OFF state of an electric circuit using an electrode and molten metal.

6)サーモカップル方式 溶融金属の容器外側壁面に数組の熱電対を埋め込み、温
度分布の変化から間接的に溶融金属のレベルを検出する
ものである。
6) Thermocouple method Several sets of thermocouples are embedded in the outer wall of the molten metal container, and the level of molten metal is indirectly detected from changes in temperature distribution.

7)電磁誘導方式 特開昭48−93539号のものはモールド外壁面に深
さ方向に長いコイルを設け、該コイルをインピーダンス
ブリッジ回路の一辺に接続する構成で、モールド内の溶
鋼湯面高さの変化をモールド壁温度変化として捕られ、
これによって生じるモールド壁の固有抵抗変化によりモ
ールド内に発生する渦電流の変化を利用して溶鋼レベル
を検出するものである。
7) Electromagnetic induction method The method of JP-A No. 48-93539 has a configuration in which a coil long in the depth direction is provided on the outer wall of the mold, and the coil is connected to one side of an impedance bridge circuit, so that the height of the molten steel level in the mold is The change in is captured as the mold wall temperature change,
The molten steel level is detected by utilizing the change in eddy current generated within the mold due to the change in resistivity of the mold wall caused by this.

〔発明が解決しよとする課題〕[Problem that the invention seeks to solve]

従来の技術による溶融金属面の検出の方法は、各々以下
のような問題点があった。即ち、1)浮き子を利用する
もの 高温溶融金属に侵食されない浮き子材料がなく、またス
ラブ、メタル等が浮き子に付着し。浮き子の比重変化を
生じることがあり、その都度更正の必要を生じる。
Each of the conventional methods for detecting a molten metal surface has the following problems. Namely, 1) those using floats, there is no float material that is not corroded by high temperature molten metal, and slabs, metal, etc. adhere to the floats; The specific gravity of the float may change, requiring correction each time.

2)光学的(光電交換)手法 煙、粉塵等が存在する場合、あるいは溶融全屈表面にス
ラグ(一般に輝度が低く黒く見える)が浮上する場合は
測定が回連となるだけでなく、この煙等により光学セン
サ一部に汚れが生じ、また溶融金属が高温である場合は
その熱による陽炎によって光の屈折を生じ、このため測
定誤差を生じる。
2) Optical (photoelectric exchange) method If smoke, dust, etc. are present, or if slag (which generally has low brightness and appears black) floats on the molten total refractive surface, not only will the measurement be repeated, but this smoke If the molten metal is at a high temperature, haze caused by the heat causes refraction of light, resulting in measurement errors.

3)超音波によるもの 溶融金属が高温の場合は、その熱によって空気の揺らぎ
(空気密度変化)による複雑な音の屈折が生じ測定ス能
となる。
3) Using ultrasonic waves If the molten metal is at a high temperature, the heat causes complex sound refraction due to air fluctuations (changes in air density), which makes measurement difficult.

4)放射線を利用するもの 安全上の問題があることと、放射線源および検出器を設
置するスペースが無いような場所では使用不可である。
4) Items that use radiation There are safety issues and they cannot be used in places where there is no space to install the radiation source and detector.

5)浸積電極式 高温の溶融金属による電極消耗が著しく長期使用が不可
能である。
5) Immersed electrode type The electrode is severely worn out by the high-temperature molten metal, making long-term use impossible.

6)サーモカップル方式 高温溶融金属の場合は容器として耐火煉瓦を用いるため
に熱伝導が悪く、よって測定時間遅れが生じるばかりで
なく検出精度も悪い。またサーモカップルの容器壁内へ
の埋め込みや、サーモカップルが断線した時の交換は容
易でない。
6) Thermocouple method In the case of high-temperature molten metal, firebrick is used as the container, which has poor heat conduction, which not only causes a delay in measurement time but also has poor detection accuracy. Furthermore, it is not easy to embed the thermocouple in the container wall or to replace it when the thermocouple breaks.

7)電磁誘導式(特開昭48−93539号)メタル境
界の温度変化をモールド壁の温度変化として間接的に測
定するので、メタル境界におけるモールド壁の温度分布
が緩慢となるために測定誤差を生じ易くなるばかりでな
く、またモールドを冷却するために、この温度変化をイ
ンピーダンス変化として捕らえることは更に困雅となり
よって測定誤差を生じることは避けられなかった。
7) Electromagnetic induction method (JP-A No. 48-93539) Since the temperature change at the metal boundary is indirectly measured as the temperature change at the mold wall, the temperature distribution of the mold wall at the metal boundary becomes slow, resulting in measurement errors. Not only does this become more likely to occur, but it also becomes more difficult to capture this temperature change as an impedance change because the mold is cooled, and measurement errors are unavoidable.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するために、本発明においては溶融金属
が在中する容器等の外側を、左右もしくは前後から挟む
ように送信ならびに受信コイルを配置し、該送信コイル
に交番電圧を印加し、これによって生じる交番磁束を前
記溶融金属および容器に透過せしめ、この透過磁束によ
って受信コイルに誘過される交流信号と前記交番電圧と
の位相差を観測することによって溶融金属のレベルを観
測する。
In order to solve the above problem, in the present invention, transmitting and receiving coils are arranged so as to sandwich the outside of a container containing molten metal from the left and right or front and back, and an alternating voltage is applied to the transmitting coil. The level of the molten metal is observed by transmitting the alternating magnetic flux generated by the molten metal through the molten metal and the container, and observing the phase difference between the alternating current signal induced in the receiving coil by the transmitted magnetic flux and the alternating voltage.

〔実施例と作用〕[Example and operation]

以下、第1図に示す本発明の実施例の概要図に基づいて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A description will be given below based on a schematic diagram of an embodiment of the present invention shown in FIG.

第1図においてフェライトコアー上に捲いた送信コイル
4には交流電源5が印加されており、これによって交番
磁束が発生する。その交番磁束の一部はコイル4の直上
方向ならびに直下方向に分布し、また一部は鋼板からな
るモールド2の内部に入りそのモールド2の上方向なら
びに下方向に通過する。そして更に磁束密度は小ではあ
るが一部の磁束はモールド2を透過し溶鋼lまたは空気
中6(これは、その時の溶鋼のレベル位置によって、溶
鋼1中かまた空気中6か、あるいは第1図に示すように
中間的位置のいずれかである)内を通過し、モールド3
に達する6モールド3に達した磁束の一部はモールド3
内に入りモールド3の上方向ならびに下方向に通過する
。そしてごく−部の磁束は受信コイル7に達し誘起電圧
信号を発生する。この信号値は、受信コイル7に達する
磁束が微少であるが故に非常に小さく (発明者等によ
る実測結果によれば、受信コイル7に誘過される電圧値
は最適な測定条件下においても交流電源5の電圧値の約
1 /100であった)、よって実際の測定現場におい
ては溶鋼レベル測定信号と無関係な有害なノイズ成分の
影響を受は易い。そこで、受信コイル7の出力をず交流
電源5と同じ近辺の周波数のみを通過させるバンドパス
フィルター8によって有害ノイズ成分を除去する。バン
ドパスフィルター8を通過した信号は、公知の位相差検
出器9に入力し、交流電源5から導かれた信号との位相
のズレを電圧信号に変換する。
In FIG. 1, an alternating current power source 5 is applied to a transmitting coil 4 wound on a ferrite core, thereby generating an alternating magnetic flux. Part of the alternating magnetic flux is distributed directly above and below the coil 4, and another part enters the mold 2 made of a steel plate and passes above and below the mold 2. Furthermore, although the magnetic flux density is small, some of the magnetic flux passes through the mold 2 and enters the molten steel 1 or the air 6 (this depends on the level position of the molten steel at that time, either in the molten steel 1, in the air 6, or in the first mold 2). (in one of the intermediate positions as shown in the figure) and mold 3.
6 A part of the magnetic flux that reached mold 3 reaches mold 3
It enters the mold 3 and passes upward and downward. Then, the magnetic flux in the negative part reaches the receiving coil 7 and generates an induced voltage signal. This signal value is extremely small because the magnetic flux that reaches the receiving coil 7 is minute (according to actual measurement results by the inventors, the voltage value induced in the receiving coil 7 is (approximately 1/100 of the voltage value of the power supply 5), therefore, in an actual measurement site, it is easily affected by harmful noise components unrelated to the molten steel level measurement signal. Therefore, harmful noise components are removed from the output of the receiving coil 7 by a bandpass filter 8 that passes only the frequencies near the same as those of the AC power supply 5. The signal that has passed through the bandpass filter 8 is input to a known phase difference detector 9, which converts the phase difference with the signal derived from the AC power source 5 into a voltage signal.

さて、溶融金ff1lがモールド2.3内に充満してい
る場合は、モールド2を透過した一部の磁束が溶融金属
l内を通過する際、この磁束によって溶融金属l内に渦
電流が発生し、これはこの内部でジュール熱として消耗
されるため受信コイル7の等測的にL(インダクタンス
)、R(抵抗)からなるインピーダンスが変化し、よっ
て、モールド2,3内に溶融金属1が皆無で空気6のみ
の場合に比べて位相のズレを生じ(発明者等による実測
結果によれば交流電源5の出力する交番電圧の周波数が
600Hzである時、前記位相のズレは70〜90 d
egであった)、この位相ズレ値は位相差検出器9で電
圧値として出力される。
Now, when the mold 2.3 is filled with molten gold ff1l, when part of the magnetic flux that has passed through the mold 2 passes through the molten metal l, this magnetic flux generates an eddy current in the molten metal l. However, since this is consumed as Joule heat inside this, the impedance consisting of L (inductance) and R (resistance) of the receiving coil 7 changes isometrically, and therefore, the molten metal 1 is inside the molds 2 and 3. A phase shift occurs compared to the case where there is no air 6 only (According to actual measurement results by the inventors, when the frequency of the alternating voltage output from the AC power supply 5 is 600 Hz, the phase shift is 70 to 90 d.
eg), this phase shift value is output as a voltage value by the phase difference detector 9.

そして、この位相のズレ値即ち位相差検出器9の出力電
圧値は、第2図に示す実測データのごとく送、受信コイ
ルの近傍に溶鋼レベルがある場合においては、この溶鋼
レベル位置によって逆順且つ連続的に変化する。よって
、この位相のズレを測定すれば第2図に示す受信コイル
誘起電圧対溶鋼レベル特性より送、受信コイル4,7近
傍における溶融金属のレベル位置を検出することができ
る。
Then, this phase shift value, that is, the output voltage value of the phase difference detector 9 is transmitted and received as shown in the actual measurement data shown in FIG. Continuously changing. Therefore, by measuring this phase shift, the level position of the molten metal near the transmitting and receiving coils 4 and 7 can be detected from the receiving coil induced voltage versus molten steel level characteristics shown in FIG.

ところで、バンドパスフィルター8のバンド幅(帯域)
を狭くすると測定に有害なノズル信号を除去する効果が
大となるが、あまり狭くとると交流電源5の周波数がド
リフト等により変化した場合、このバンドパスフィルタ
ー8の中心通過周波数を境にして大きく位相が変化し、
本発明の意図する溶融金属レベル変化による位相の変化
より大となるため、この影響を受けないようにバンド幅
を広くするか若しくはこのバンドパスフィルター8の中
心周波数を交流電源5の周波数より若干ずらしておくよ
うにすると良い。
By the way, the bandwidth (bandwidth) of bandpass filter 8
If it is made narrower, the effect of removing nozzle signals that are harmful to measurement will be greater, but if it is made too narrow, if the frequency of the AC power source 5 changes due to drift, etc., the frequency will be greatly reduced from the center passing frequency of this bandpass filter 8. The phase changes,
This is larger than the phase change caused by the change in the molten metal level as intended by the present invention, so in order to avoid this influence, the band width should be widened or the center frequency of this bandpass filter 8 should be slightly shifted from the frequency of the AC power supply 5. It is a good idea to keep it.

尚、本実施例の場合は溶鋼を対象としたが、必ずしも溶
鋼に限られることなく、ほかの液体状の金属、あるいは
例えば食塩水の如き電流を流し得る液体であれば本発明
を実施することができる。
Although the present embodiment deals with molten steel, the present invention is not limited to molten steel, and the present invention can be implemented with other liquid metals or liquids that can conduct electric current, such as saline solution. I can do it.

また1本実施例の場合、溶鋼の外側の素材は鋼板であっ
たがこれに限られること無く、その他の素材、例えば耐
火煉瓦のごとき物でも良い。
Further, in the case of this embodiment, the material on the outside of the molten steel is a steel plate, but the material is not limited to this, and other materials such as refractory bricks may be used.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の方法によれば、溶融金属中に
センサーを入れろ方式では無いので、高温溶融金属によ
るセンサーの消耗が無く、よって保守を不要とし高信頼
度で半永久的な使用を可能とする。
As described above, according to the method of the present invention, since the sensor is not inserted into the molten metal, the sensor is not worn out by high-temperature molten metal, so maintenance is unnecessary and highly reliable semi-permanent use is possible. shall be.

また磁気式であるため、煙、粉塵、蒸気等が存在してい
ても、あるいは高温による空気の揺らぎがあってもその
影響を全く受けない。
Furthermore, because it is magnetic, it is completely unaffected by the presence of smoke, dust, steam, etc., or by fluctuations in the air due to high temperatures.

また更に、本発明の方法は溶融金属そのものの中で発生
する渦電流の大小による受信コイルのインピーダンス変
化を位相変化として測定する方法であるから、例えば前
述の特開昭48−93539号、あるいはサーモンカッ
プル方式如き、測定対象の間に熱時定数を持つ物体を介
する間接的な測定法ではないため、検出時間遅れが無く
、よって応答性が非常に良い。
Furthermore, since the method of the present invention is a method of measuring the impedance change of the receiving coil due to the magnitude of eddy current generated in the molten metal itself as a phase change, for example, Since this is not an indirect measurement method that involves an object with a thermal time constant between the measurement targets, such as the couple method, there is no detection time delay, and the response is therefore very good.

加えて5位相のズレを測定する方式であるため。In addition, this method measures five phase shifts.

電源電圧値が変動してもその影響を受ける事なく高精度
に測定し得る特徴を持つ。
It has the feature of being able to measure with high precision even if the power supply voltage value fluctuates without being affected by it.

加えて、放射線等の有害な物を用いる物では無いため、
安全状の問題も皆無である。
In addition, since it does not use harmful substances such as radiation,
There are no safety issues at all.

と云った数々の特長を有する。It has many features such as.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法による実施例の構成を示すブロ
ック図である。 第2図は、本発明の実施例による、受信コイルの誘起電
圧対溶鋼レベルの特性を測定した結果を示すグラフであ
る。 l:溶鋼 4:送信コイル 6:空気中 8:バンドパスフィルター 9=位相差検出器 2.3:モールド 5:交流電源 7:受信コイル 声1図
FIG. 1 is a block diagram showing the configuration of an embodiment according to the method of the present invention. FIG. 2 is a graph showing the results of measuring the characteristics of the induced voltage of the receiving coil versus the molten steel level according to the embodiment of the present invention. l: Molten steel 4: Transmitting coil 6: In air 8: Band pass filter 9 = Phase difference detector 2.3: Mold 5: AC power supply 7: Receiving coil voice 1 figure

Claims (1)

【特許請求の範囲】[Claims] 溶融金属が在中する容器等の外側を、左右もしくは前後
から挟むように送信コイル及び受信コイルを対向させて
配置し、該送信コイルに交番電圧を印加し、これによっ
て生じる交番磁束を前記溶融金属および容器中を透過せ
しめ、該透過磁束によって受信コイルに誘過される交流
信号の位相と前記交番電圧との位相の差を観測すること
を特徴とする溶融金属レベル検出方法。
A transmitting coil and a receiving coil are placed facing each other so as to sandwich the outside of a container or the like in which molten metal is contained from the left and right or front and back, and an alternating voltage is applied to the transmitting coil, and the alternating magnetic flux generated by this is applied to the molten metal. and a method for detecting a level of molten metal, which comprises transmitting the magnetic flux through a container and observing the phase difference between the phase of an alternating current signal induced in a receiving coil by the transmitted magnetic flux and the alternating voltage.
JP1260690A 1989-09-19 1989-10-05 Detection of level of molten metal Pending JPH03122526A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1260690A JPH03122526A (en) 1989-10-05 1989-10-05 Detection of level of molten metal
DE69025445T DE69025445T2 (en) 1989-09-19 1990-09-10 Method and device for determining a melt level
EP90309880A EP0419104B1 (en) 1989-09-19 1990-09-10 Method and apparatus for detecting level of molten metal
ES90309880T ES2083434T3 (en) 1989-09-19 1990-09-10 METHOD AND APPARATUS TO DETECT THE LEVEL OF CAST METAL.
CA002025187A CA2025187C (en) 1989-09-19 1990-09-12 Method of and apparatus for detecting level of molten metal
AU62429/90A AU618686B2 (en) 1989-09-19 1990-09-12 Method of and apparatus for detecting level of molten metal
US07/584,114 US5103893A (en) 1989-09-19 1990-09-18 Method and apparatus for detecting level of molten metal
KR1019900014769A KR930007115B1 (en) 1989-09-19 1990-09-18 Method and apparatus for detecting level of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260690A JPH03122526A (en) 1989-10-05 1989-10-05 Detection of level of molten metal

Publications (1)

Publication Number Publication Date
JPH03122526A true JPH03122526A (en) 1991-05-24

Family

ID=17351423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260690A Pending JPH03122526A (en) 1989-09-19 1989-10-05 Detection of level of molten metal

Country Status (1)

Country Link
JP (1) JPH03122526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010063081A (en) * 1999-12-21 2001-07-09 이구택 A method for measuring molten metal level and probe therefor
US6337566B1 (en) 1997-12-08 2002-01-08 Nippon Steel Corporation Continuous casting apparatus using a molten metal level gauge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129342A (en) * 1974-09-06 1976-03-12 Nippon Steel Corp KINZOKUBANNOYOSETSUBUKENSHUTSUSOCHI
JPS52116290A (en) * 1976-03-02 1977-09-29 Nippon Steel Corp Quantitative determination method of magnetite and metal iron in granu lar or powdery non-metallic substances
JPS58165052A (en) * 1982-01-25 1983-09-30 アメリカ合衆国 Nondestructive testing method
JPS59170706A (en) * 1983-03-17 1984-09-27 Toshiba Corp Method for measuring thickness of clad layer of neutron absorbing rod of zircaloy clad hafnium
JPS60127060A (en) * 1983-12-12 1985-07-06 Nippon Kokan Kk <Nkk> Measuring device for level of molten metal surface
JPS6124682B2 (en) * 1982-06-07 1986-06-12 Takashi Mori
JPS6418087A (en) * 1987-07-14 1989-01-20 Toshiba Corp Electromagnetic induction detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129342A (en) * 1974-09-06 1976-03-12 Nippon Steel Corp KINZOKUBANNOYOSETSUBUKENSHUTSUSOCHI
JPS52116290A (en) * 1976-03-02 1977-09-29 Nippon Steel Corp Quantitative determination method of magnetite and metal iron in granu lar or powdery non-metallic substances
JPS58165052A (en) * 1982-01-25 1983-09-30 アメリカ合衆国 Nondestructive testing method
JPS6124682B2 (en) * 1982-06-07 1986-06-12 Takashi Mori
JPS59170706A (en) * 1983-03-17 1984-09-27 Toshiba Corp Method for measuring thickness of clad layer of neutron absorbing rod of zircaloy clad hafnium
JPS60127060A (en) * 1983-12-12 1985-07-06 Nippon Kokan Kk <Nkk> Measuring device for level of molten metal surface
JPS6418087A (en) * 1987-07-14 1989-01-20 Toshiba Corp Electromagnetic induction detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337566B1 (en) 1997-12-08 2002-01-08 Nippon Steel Corporation Continuous casting apparatus using a molten metal level gauge
KR20010063081A (en) * 1999-12-21 2001-07-09 이구택 A method for measuring molten metal level and probe therefor

Similar Documents

Publication Publication Date Title
CA2025187C (en) Method of and apparatus for detecting level of molten metal
RU2289791C2 (en) Device for measuring level of conducting material
JPS6037254A (en) Control of liquid level of molten metal bath
JPH03122526A (en) Detection of level of molten metal
JPH03138536A (en) Method for detecting top surface position of molten metal
JPH03105219A (en) Detection of level of molten metal
JP3138953B2 (en) Slag thickness measuring device
US4522247A (en) Infrared imaging for electromagnetic casting
JPH04238661A (en) Detection of molten metal level
JPH04187355A (en) Mold level controller
CN2335132Y (en) Electromagnetic type liquid metal level measuring controller
JPS5983004A (en) Method for measuring thickness of wall of refractories for fused metal container
JPH08211083A (en) Method and device for measuring flow velocity
JPS6388465A (en) Device for measuring flow velocity of liquid metal circulating in pipe at low speed
JPS5844191B2 (en) Method for detecting molten metal level in container
JP2003315037A (en) Noncontact range finder in high soot and dust environment
CN203657884U (en) Electro-magnetic induction fusion magnesium liquidometer
JP5637366B2 (en) An apparatus for detecting the melting state of radioactive waste during melting processing
US3096550A (en) Process for casting ingots in a mold containing slag
Higson et al. Electromagnetic visualisation of steel flow in continuous casting nozzles
JPH08211084A (en) Flow velocity measuring device
US4433420A (en) Method and apparatus for determining the level of slag containing iron or iron compounds in a glass melting furnace
JPS61124882A (en) Method and apparatus for measuring level of molten metal in mold
JPS6383625A (en) Method for measuring temperature of high temperature object
JPH11188470A (en) Molten metal surface level measuring method in continuous casting and molten metal surface leveler