JPH03120323A - Manufacture of lowly mercurated zinc alloy grain for alkaline battery - Google Patents
Manufacture of lowly mercurated zinc alloy grain for alkaline batteryInfo
- Publication number
- JPH03120323A JPH03120323A JP1257262A JP25726289A JPH03120323A JP H03120323 A JPH03120323 A JP H03120323A JP 1257262 A JP1257262 A JP 1257262A JP 25726289 A JP25726289 A JP 25726289A JP H03120323 A JPH03120323 A JP H03120323A
- Authority
- JP
- Japan
- Prior art keywords
- zinc alloy
- alloy grains
- weight
- mercurated
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001297 Zn alloy Inorganic materials 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 16
- 239000000956 alloy Substances 0.000 claims abstract description 16
- 238000003756 stirring Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 26
- 229910052725 zinc Inorganic materials 0.000 claims description 17
- 239000011701 zinc Substances 0.000 claims description 17
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000005984 hydrogenation reaction Methods 0.000 claims 1
- 229910052753 mercury Inorganic materials 0.000 abstract description 21
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract description 19
- 238000005260 corrosion Methods 0.000 abstract description 14
- 230000007797 corrosion Effects 0.000 abstract description 13
- 238000009689 gas atomisation Methods 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 4
- 238000007599 discharging Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000008014 freezing Effects 0.000 description 23
- 238000007710 freezing Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000007580 dry-mixing Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 229910052745 lead Inorganic materials 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は新規な氷化亜鉛合金粒の製造方法に関し、特に
は耐食性のよいGa −In −Pb −Ml−亜鉛系
のアルカリ電池電極用氷化亜鉛合金粒の製造方法に関す
る。Detailed Description of the Invention [Industrial Application Field] The present invention relates to a novel method for producing icified zinc alloy grains, and in particular to Ga-In-Pb-Ml-zinc-based ice for alkaline battery electrodes with good corrosion resistance. The present invention relates to a method for producing zinc oxide alloy grains.
亜鉛は、価格が低度であること、電気化学的に卑な金属
であること、供給が安定していること、及び加工性に冨
んでいることから、これまで電池の負極物質として広(
使用されている。このようなアルカリ電池の負極に使用
する亜鉛としては、電池使用時及び電池貯蔵時に、電解
液による腐食やそれに伴って発生する水素ガスによって
、電池容器が変形したり、電池容器から液漏れを生じた
りすることのないものが必要とされているが、亜鉛のみ
では、前記の腐食による水素ガスの発生を実用的に支障
のない程度にまで抑制することは困難で、さらに水素過
電圧を高め、腐食を抑制するために、亜鉛を6〜10重
量%の水銀により汞化することが行われていた。その後
、水銀による環境汚染が問題となり、公害防止上の配慮
から、亜鉛を無汞化状態で使用するべ(水銀の代替用元
素が検討され、Ga、 In、 PbまたさらにM等を
含む亜鉛合金が提案され、あるいは実用されてきている
が、これまでのところでは、前記のように主として水素
ガス発生に関連する耐食性と、表面の活性度に関連する
放電電池性能という両面からの問題が解消されず、所期
の電池性能を保持させるため、ある程度の氷化処理を必
要とする状況にあり、また、このような氷化方法として
は、ガス噴霧して得た亜鉛合金粒をアルカリ水溶液中で
撹拌しながら滴下水銀と接触反応させる従来からの湿式
氷化方法が用いられている。Zinc has been widely used as an anode material for batteries due to its low price, electrochemically base metal, stable supply, and ease of processing.
It is used. Zinc used in the negative electrode of such alkaline batteries has the potential to cause deformation of the battery container or leakage from the battery container due to corrosion caused by the electrolyte and the resulting hydrogen gas during battery use and storage. However, with zinc alone, it is difficult to suppress the generation of hydrogen gas due to corrosion to a level that does not cause any practical problems, and it also increases the hydrogen overvoltage, causing corrosion. In order to suppress this, it has been practiced to make zinc into a starch with 6 to 10% by weight of mercury. After that, environmental pollution caused by mercury became a problem, and from the viewpoint of pollution prevention, it was necessary to use zinc in a non-oxidized state (substitute elements for mercury were studied, and zinc alloys containing Ga, In, Pb, and even M, etc. have been proposed or put into practice, but so far the problems of both corrosion resistance, which is mainly related to hydrogen gas generation, and discharge battery performance, which is related to surface activity, have not been resolved. First, in order to maintain the desired battery performance, some degree of freezing treatment is required, and this freezing method involves placing zinc alloy particles obtained by gas spraying in an alkaline aqueous solution. A conventional wet freezing method is used, which involves contact reaction with dripping mercury while stirring.
しかしながら、この湿式氷化方法におけるアルカリ水溶
液による亜鉛合金粒の活性化処理、即ち亜鉛合金粒の表
面の酸化物を除去して水銀との反応性をよくするために
行われるアルカリ洗浄攪拌は、粒子の水銀との接触反応
操作をも兼ねることもあって、比較的長持間行われるの
で、どうしても粒子洗浄が過剰になるという問題があっ
た。つまり、各粒子の表面がアルカリ水溶液によって過
剰に浸食され、アルミニウムのような有効添加元素が溶
出するほか、粒子表面の結晶粒界が深く浸食されて表面
の凹凸が著しくなって表面積が増大するので、結果的に
は、これまでのアルカリ電池電極用亜鉛合金粒では、H
g O,5重量%程度以上の氷化濃度にしないと、必要
とする耐食性と放電電池性能を安定的に維持できないと
いう問題があった。However, in this wet freezing method, the activation treatment of the zinc alloy particles with an aqueous alkaline solution, that is, the alkaline washing and stirring performed to remove oxides on the surface of the zinc alloy particles and improve the reactivity with mercury, Since this process also serves as a contact reaction operation with mercury and is carried out for a relatively long period of time, there is a problem in that the particle cleaning becomes excessive. In other words, the surface of each particle is excessively eroded by the alkaline aqueous solution, and effective additive elements such as aluminum are eluted, and the grain boundaries on the particle surface are deeply eroded, making the surface uneven and increasing the surface area. As a result, conventional zinc alloy particles for alkaline battery electrodes have
There is a problem in that unless the freezing concentration is about 5% by weight or higher, the required corrosion resistance and discharge battery performance cannot be stably maintained.
以上の状況に鑑み、本発明は、環境汚染問題に対処する
べく、更に低濃度(0,15重撥%以下)の水銀量でも
って必要とする耐食性と放電電池性能を安定的に維持で
きるアルカリ電池電極用氷化亜鉛合金粒の製造方法の開
発を目的とするものである。In view of the above circumstances, in order to deal with the problem of environmental pollution, the present invention has developed an alkali which can stably maintain the required corrosion resistance and discharge battery performance with a lower concentration of mercury (0.15% or less). The purpose of this study is to develop a method for producing frozen zinc alloy particles for battery electrodes.
前記の目的を達成するため、本発明は、亜鉛合金溶湯を
ガス噴霧して得た無汞化状態の亜鉛合金粒と、該亜鉛合
金粒の一部をさらに湿式氷化して得たHg18〜22重
量%の高濃度氷化亜鉛合金粒とを、密閉容器内で乾式混
合攪拌して全体を)Igo、 15〜0.06重量%の
均一なる汞化濃度及び均一な合金組成とすることを特徴
とするアルカリ電池用低木化亜鉛合金粒の製造方法を、
また詩には、前記の亜鉛合金溶湯として、Ni、 Cr
、 Mo、 Sn及びSbがそれぞれ1重量ppm以下
で、且つFeが10重lppm以下であって、亜鉛純度
が99.995重量%以上の高純度亜鉛に、Gaを0.
001〜0.02重量%、Inを0.001〜0.05
重量%、Pbを 0.01〜0.1重量%、そしてMを
0.01〜0.06重量%含有させたものを用いるアル
カリ電池用低木化亜鉛合金粒の製造方法を提案するもの
である。In order to achieve the above-mentioned object, the present invention provides zinc alloy grains in an aqueous state obtained by gas spraying a molten zinc alloy, and Hg18-22 obtained by further wet freezing a part of the zinc alloy grains. % by weight of high-concentration frozen zinc alloy grains are dry mixed and stirred in a closed container to obtain a uniform ice-forming concentration of 15 to 0.06 weight % and a uniform alloy composition. A method for producing bushy zinc alloy particles for alkaline batteries,
The poem also mentions Ni, Cr as the molten zinc alloy mentioned above.
, Mo, Sn, and Sb are each 1 ppm by weight or less, Fe is 10 ppm by weight or less, and the zinc purity is 99.995% by weight or more.
001-0.02% by weight, In 0.001-0.05%
The present invention proposes a method for producing shrubby zinc alloy grains for alkaline batteries using particles containing 0.01 to 0.1% by weight of Pb and 0.01 to 0.06% by weight of M. .
亜鉛合金溶湯をガス噴霧して得た無汞化状態の亜鉛合金
粒と該亜鉛合金粒の一部をさらに従来の湿式氷化方法に
よって氷化して得た高濃度氷化亜鉛合金粒とを、乾式混
合攪拌すると、混合亜鉛合金粒−硅接触摩擦し、高濃度
氷化亜鉛合金粒における内部亜鉛合金との親和力の弱い
表面水銀は、無汞化亜鉛合金粒の表面に移り拡散氷化す
るので、混合攪拌を続けることによって水銀及びその他
の合金組成に関して均一な氷化亜鉛合金粒が得られる。Zinc alloy grains in an aqueous state obtained by gas spraying molten zinc alloy metal and highly concentrated frozen zinc alloy grains obtained by further freezing a part of the zinc alloy grains by a conventional wet freezing method, When dry mixing and agitating, the mixed zinc alloy particles contact friction with the silicon, and the surface mercury in the highly concentrated frozen zinc alloy particles, which has a weak affinity with the internal zinc alloy, moves to the surface of the non-iceated zinc alloy particles and diffuses into ice. By continuing to mix and stir, frozen zinc alloy grains with uniform mercury and other alloy compositions can be obtained.
混合亜鉛合金粒の殆どを表面が粗面化していない無汞化
亜鉛合金粒とし、少量を高濃度氷化亜鉛合金粒とすれば
、無汞化亜鉛合金粒の表面氷化に必要とする水銀は少量
で済み、従来の湿式氷化亜鉛合金粒のみの場合と比べて
、著しく少ない量の水銀で同等の耐食性及び放電電池性
能を有する低汞化亜鉛合金粒を得ることができる。If most of the mixed zinc alloy grains are non-grained zinc alloy grains whose surface is not roughened, and a small amount is high-concentration ice-forming zinc alloy grains, then the mercury required for surface freezing of the grain-free zinc alloy grains can be reduced. Only a small amount of mercury is required, and it is possible to obtain low-corrosion zinc alloy grains having the same corrosion resistance and discharge battery performance with a significantly smaller amount of mercury than in the case of only conventional wet-gelling zinc alloy grains.
本発明で使用する高濃度氷化亜鉛合金粒の氷化濃度は、
製品氷化亜鉛合金粒の氷化濃度を低減させ、無汞化亜鉛
合金粒との均−氷化性を高めるためには、できるだけ高
い方が望ましいが、湿式氷化法における高濃度氷化合金
の製造は困難となるので、Hg18〜22重量%を適当
とする。The freezing concentration of the high concentration freezing zinc alloy grains used in the present invention is:
In order to reduce the freezing concentration of the product frozen zinc alloy grains and improve the uniformity of freezing with the non-glazed zinc alloy grains, it is desirable that the concentration be as high as possible, but high concentration freezing alloy particles in the wet freezing method Since it is difficult to manufacture Hg, 18 to 22% by weight of Hg is appropriate.
亜鉛合金粒の混合攪拌は密閉容器内で、空気の出入を断
って行うことにより、摩擦熱によって促進される無汞化
亜鉛合金粒子表面の酸化亜鉛の生成は僅かで、汞化反応
が妨げられることがない。By mixing and stirring the zinc alloy particles in a closed container with no air allowed to enter or exit, the formation of zinc oxide on the surface of the non-corrosive zinc alloy particles, which is promoted by frictional heat, is minimal, and the hydrocarbon reaction is hindered. Never.
また、特に素材亜鉛合金として、前記の不純物の含有を
厳しく抑制したGa−In Pb Aft−亜鉛系
の亜鉛合金を用いることにより、0.5重蓋%程度以下
の低木化濃度においても、ばらつきの少ない耐食性と放
電電池性能をもつ所要の低木化亜鉛合金粒を安定的に生
産できる。In addition, by using a Ga-InPbAft-zinc-based zinc alloy that strictly suppresses the content of the impurities mentioned above as the raw material zinc alloy, variations can be reduced even at a shrub concentration of about 0.5% or less. It is possible to stably produce the required bushy zinc alloy grains with low corrosion resistance and discharge battery performance.
添加物のInとPbは、GaとMの共存のもとに亜鉛の
耐食性を向上させ、水素ガスの発生量を低減させる主要
な元素であって、Inは0.001重量%未満またPb
は0.01重量%未満ではその効果が小さく、Inは0
.05重量%を越え、またPbは0.1重蓋%を越えて
含有してもその効果は上昇せず不経済となる。The additives In and Pb are the main elements that improve the corrosion resistance of zinc and reduce the amount of hydrogen gas generated under the coexistence of Ga and M. In is less than 0.001% by weight, and Pb
The effect is small when In is less than 0.01% by weight, and In is 0.
.. Even if Pb is contained in excess of 0.05% by weight, and Pb is contained in excess of 0.1% by weight, the effect will not increase and it will be uneconomical.
さらに、添加元素のGaとMは、InとPbとの共存の
もとに耐食性を高め、放電電池性能の低下を抑制するの
に有用な元素で、Gaは0.001重量%未満またMは
0.01重量%未満ではその作用は顕著ではなく、そし
てGaは0.02重量%を越えまた超は0.06重蓋%
を越えて含有してもその効果は上昇せず、不経済である
。Furthermore, the additive elements Ga and M are elements that are useful for increasing corrosion resistance and suppressing deterioration of discharge battery performance in the coexistence of In and Pb. Its effect is not significant when it is less than 0.01% by weight, and when it is more than 0.02% by weight or more than 0.06% by weight, the effect is not significant.
Even if the content exceeds 100%, the effect will not increase and it will be uneconomical.
亜鉛に含まれる不純物は、亜鉛の腐食を促進し、亜鉛の
純度が99.995%を下潮る時、特に不純物のNi、
Cr、 Mo、 Sn及びSbがそれぞれI重ftp
pmを超える時、あるいはFeがIO重ff1ppn+
を超える時は、水素ガス発生量は、影響が無視できない
程に、増加し、またばらつきの原因にもなる。Impurities contained in zinc accelerate the corrosion of zinc, and when the purity of zinc drops below 99.995%, impurities such as Ni,
Cr, Mo, Sn and Sb are each I heavy ftp
pm or when Fe is IO heavyff1ppn+
When the amount exceeds 1, the amount of hydrogen gas generated increases to such an extent that the influence cannot be ignored, and also becomes a cause of variation.
(実施例〕
以下、実施例及び比較例によって、本発明を具体的に説
明する。(Examples) Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.
災崖伝
亜鉛純度99.995重蓋%以上で、NL Cr、 M
o、 Sn及びSbの含有量がそれぞれ1重fppm以
下で、Feが10重量%以下の高純度亜鉛を用い、合金
成分としてGa、 In、 Pb及びMを添加して熔融
した3種類の亜鉛合金溶湯から、それぞれガス噴霧法で
粒度4B〜150メツシユの亜鉛合金粒を製造した。ま
た、これらの亜鉛合金粒の1部を従来の湿式未化方法に
より10重量%の水酸化カリウム(KO)I )水溶液
中で撹拌し、亜鉛合金粒の表面を活性化させると共に、
水銀を滴下混合させてそれぞれHg18〜22重量%の
高濃度氷化亜鉛合金粒を製造した。この得られた高濃度
氷化亜鉛合金粒と前記無汞化亜鉛合金粒とをそれぞれ1
対132〜400の重量比で乾式混合し、密閉容器内に
おいて1時間攪拌し、Hg0.15〜0,05重量%の
低木化亜鉛合金粒を得た。これらの低木化亜鉛合金粒を
負極活物質としてLR6形のアルカリマンガン乾電池を
つくり、これらのアルカリマンガン乾電池について、放
電負荷2Ω、20°Cの強放電条件で、1時間放電させ
、さらに60°Cで10日間保存した後の電池内の水素
ガス発生量を測定すると共に、前記の強放電条件により
、終止電圧0.9■までの放電持続時間を測定した。Zinc purity 99.995% or higher, NL Cr, M
Three types of zinc alloys were melted using high-purity zinc containing 1 fppm or less of Sn and Sb, and 10% by weight or less of Fe, with the addition of Ga, In, Pb, and M as alloy components. Zinc alloy particles having a particle size of 4B to 150 mesh were produced from the molten metal by a gas atomization method. In addition, a part of these zinc alloy particles was stirred in a 10% by weight potassium hydroxide (KO)I) aqueous solution by a conventional wet unconsolidation method to activate the surface of the zinc alloy particles, and
Mercury was mixed dropwise to produce high-concentration frozen zinc alloy grains each containing 18 to 22% by weight of Hg. The obtained high-concentration frozen zinc alloy grains and the above-mentioned non-gelatinized zinc alloy grains were each
The mixture was dry mixed at a weight ratio of 132 to 400, and stirred for 1 hour in a closed container to obtain bushy zinc alloy grains containing 0.15 to 0.05% by weight of Hg. LR6 type alkaline manganese dry batteries were made using these bushy zinc alloy grains as the negative electrode active material, and these alkaline manganese dry batteries were discharged for 1 hour under a discharge load of 2Ω and strong discharge conditions of 20°C, and then heated to 60°C. The amount of hydrogen gas generated within the battery after storage for 10 days was measured, and the discharge duration until the final voltage of 0.9 .mu. was measured under the above-mentioned strong discharge conditions.
結果を第1表に試料1〜5として、製造した低木化亜鉛
合金粒の合金成分、汞化濃度及び酸化亜鉛(ZnO)重
量%と共に示した。The results are shown in Table 1 as Samples 1 to 5, together with the alloy components, oxidation concentrations, and zinc oxide (ZnO) weight % of the produced shrubby zinc alloy grains.
上較■土
前記実施例において、ガス噴霧法でつくった3種類の亜
鉛合金粒から試料を分取し、それぞれ100重蓋のKO
H水溶液中で撹拌しながら水銀を滴下反応させる従来の
湿式氷化法により、HgO,15重量%の低木化亜鉛合
金粒を製造した。この湿式氷化法による低木化亜鉛合金
粒のみを負極活物質として、前記実施例と同様に電池を
つくり、その水素ガス発生試験と、放電性能試験を行っ
た。In the above example, samples were taken from the three types of zinc alloy grains produced by the gas atomization method, and 100 layers of KO were added to each sample.
Shrunken zinc alloy grains containing 15% by weight of HgO were produced by a conventional wet freezing method in which mercury was reacted dropwise in an aqueous Hg solution with stirring. A battery was made in the same manner as in the above example using only the shrubby zinc alloy grains produced by this wet freezing method as the negative electrode active material, and a hydrogen gas generation test and a discharge performance test were conducted on the battery.
結果を、使用低汞化亜鉛合金の合金成分等と共に試料6
〜8として、第1表に併記した。The results are shown for sample 6 along with the alloy components of the low-fragility zinc alloy used.
-8 are also listed in Table 1.
1較、、[LL
前記実施例において、ガス噴霧法でつくった亜鉛合金粒
のうちの1種類から試料を分取し、前記比較例1と同じ
湿式氷化法により、Hg 1.5重量%の氷化亜鉛合金
粒を製造した。この氷化亜鉛合金粒のみを負極活物質と
して用いて、前記実施例の場合と同様に電池をつくり、
その水素ガス発生試験と放電性能試験を行った。Comparison 1, [LL In the above example, a sample was taken from one type of zinc alloy grains made by the gas atomization method, and by the same wet freezing method as in Comparative Example 1, Hg was 1.5% by weight. glazed zinc alloy grains were produced. Using only these frozen zinc alloy particles as a negative electrode active material, a battery was made in the same manner as in the example above,
A hydrogen gas generation test and a discharge performance test were conducted.
結果を、使用汞化亜鉛合金粒の合金成分等と共に、試料
9として、第1表に併記した。The results are also listed in Table 1 as Sample 9, along with the alloy components of the zinc chloride alloy particles used.
第
1
表
以上の結果に示されたように、本発明の製造方法による
Hg0.15〜0.06重世%の氷化亜鉛合金粒は、湿
式氷化法の場合にみられるような有効添加元素であるM
の溶出もなく、氷化を妨げるZnOの増加も少ない。ま
た、これを負極活物質として用いて組み立てたLR6形
アルカリ電池を20°Cでの放電負荷2Ωの強放電条件
で1時間放電させた後、60゛Cで10日間保存した場
合の、電池1個当りの水素ガス発生量は、現在市販され
ているHg 1.5重量%の氷化亜鉛合金粒を用いた電
池の場合と同等であり、また、前記の強放電条件下で行
った終止電圧0.9■までの放電持続時間についても同
等である。As shown in the results in Table 1 and above, the glazed zinc alloy grains containing 0.15 to 0.06 weight percent Hg produced by the production method of the present invention have an effective additive content as seen in the wet icing method. M which is an element
There is no elution of ZnO, and there is little increase in ZnO that prevents freezing. In addition, when an LR6 type alkaline battery assembled using this as a negative electrode active material was discharged for 1 hour under strong discharge conditions with a discharge load of 2Ω at 20°C, battery 1 was stored at 60°C for 10 days. The amount of hydrogen gas generated per unit is the same as that of the currently commercially available battery using 1.5% by weight Hg frozen zinc alloy particles, and the final voltage measured under the strong discharge conditions described above is The same holds true for the discharge duration up to 0.9■.
本発明で製造し、且つ使用するGa −In −Pb
−A11=亜鉛系の亜鉛合金粒は、湿式氷化法のみを施
して使用した場合でも、Hg 1.0重量%以下の氷化
濃度で、現在市販されているHg 1.5重量%の氷化
亜鉛合金粒と同等の性能を示すものであり、本発明の乾
式混合氷化法と併用すれば、その有効合金元素の溶出も
、表面粗化の恐れもないので、さらに大幅に水銀量を低
減でき、環境lη染の低減化に一層の貢献が可能となる
。Ga-In-Pb produced and used in the present invention
-A11=Zinc-based zinc alloy grains have a freezing concentration of less than 1.0% by weight of Hg even when used only by the wet freezing method, and currently commercially available ice of 1.5% by weight of Hg It shows the same performance as zinc chloride alloy particles, and when used in combination with the dry mixing icing method of the present invention, there is no possibility of elution of the effective alloying elements or surface roughening, so the amount of mercury can be reduced even further. This makes it possible to further contribute to reducing environmental pollution.
この高濃度氷化亜鉛合金粒は、湿式氷化法で製造するけ
れども、乾式混合時の配合量は僅少量で済み、主体とな
る低木化亜鉛合金粒の製造は工程の簡単な乾式混合氷化
法で行われるものであるから、製造工程が簡略化でき、
その管理が容易になると共に、生産コストの抑制が可能
となる。These high-concentration frozen zinc alloy grains are produced by the wet freezing method, but only a small amount is required during dry mixing, and the main shrub zinc alloy grains are manufactured using a simple dry mixing freezing process. The manufacturing process can be simplified because it is carried out according to the method.
It becomes easier to manage it, and it is also possible to suppress production costs.
以上の説明から明らかなように、本発明の乾式混合氷化
法においては、有効合金成分の溶出も、合金粒表面の溶
出粗化もないので、本発明の製造法によって製造される
低木化亜鉛合金粒は、)Igo、15〜0.06重量%
という低木化濃度で、従来の11g1.5重量%氷化亜
鉛合金粒に匹敵し得る程に、効果的に電池内での水素ガ
ス発生を抑制でき、また良好な放電電池性能も維持でき
る。従って、環境汚染の一層の低減化が可能となる。加
えて、製造工程が簡略化され、生産コストの抑制が可能
になる。As is clear from the above explanation, in the dry mixing icing method of the present invention, there is no elution of effective alloy components and no elution and roughening of the surface of alloy grains. The alloy grains are:) Igo, 15-0.06% by weight
At such a shrub concentration, hydrogen gas generation within the battery can be effectively suppressed to the extent that it is comparable to the conventional 11 g 1.5 weight % frozen zinc alloy particles, and good discharge battery performance can also be maintained. Therefore, it is possible to further reduce environmental pollution. In addition, the manufacturing process is simplified and production costs can be reduced.
Claims (2)
鉛合金粒と、該亜鉛合金粒の一部をさらに湿式汞化して
得たHg18〜22重量%の高濃度汞化亜鉛合金粒とを
、密閉容器内で乾式混合攪拌して全体をHg0.15〜
0.06重量%の均一なる汞化濃度及び均一なる合金組
成とすることを特徴とするアルカリ電池用低汞化亜鉛合
金粒の製造方法。(1) Zinc alloy grains in a non-grained state obtained by gas spraying molten zinc alloy, and a high-concentration zinc alloy containing 18 to 22% by weight of Hg obtained by further wet-graining a part of the zinc alloy grains. Dry mix and stir the grains in a closed container to give a total Hg of 0.15~
1. A method for producing low-fragility zinc alloy grains for alkaline batteries, characterized by having a uniform hydrogenation concentration of 0.06% by weight and a uniform alloy composition.
びSbがそれぞれ1重量ppm以下で、且つFeが10
重量ppm以下であって、亜鉛純度が99.995重量
%以上の高純度亜鉛に、Gaを0.001〜0.02重
量%、Inを0.001〜0.05重量%、Pbを0.
01〜0.1重量%、そしてAlを0.01〜0.06
重量%含有させたものであることを特徴とする請求項(
1)記載のアルカリ電池用低汞化亜鉛合金粒の製造方法
。(2) The zinc alloy molten metal contains Ni, Cr, Mo, Sn, and Sb each at 1 ppm by weight or less, and Fe at 10
High-purity zinc with a weight ppm or less and a zinc purity of 99.995% by weight or more is mixed with 0.001 to 0.02% by weight of Ga, 0.001 to 0.05% by weight of In, and 0.00% by weight of Pb.
01-0.1% by weight, and 0.01-0.06% Al
A claim characterized in that it contains % by weight (
1) The method for producing the low-fragility zinc alloy particles for alkaline batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1257262A JPH03120323A (en) | 1989-10-02 | 1989-10-02 | Manufacture of lowly mercurated zinc alloy grain for alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1257262A JPH03120323A (en) | 1989-10-02 | 1989-10-02 | Manufacture of lowly mercurated zinc alloy grain for alkaline battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03120323A true JPH03120323A (en) | 1991-05-22 |
Family
ID=17303943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1257262A Pending JPH03120323A (en) | 1989-10-02 | 1989-10-02 | Manufacture of lowly mercurated zinc alloy grain for alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03120323A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6456054B1 (en) | 1999-12-14 | 2002-09-24 | Kyocera Corporation | Throw-away tip with abrasion sensor |
US6471449B1 (en) | 1999-10-28 | 2002-10-29 | Kyocera Corporation | Throw-away tip with abrasion sensor |
US6526814B1 (en) | 1999-09-29 | 2003-03-04 | Kyocera Corporation | Holder for throw-away tip with sensor |
US6556925B1 (en) | 1999-11-30 | 2003-04-29 | Kyocera Corporation | Signal processing system and signal processing method for cutting tool with abrasion sensor |
US6592303B2 (en) | 2000-08-30 | 2003-07-15 | Kyocera Corporation | Throw-away tip |
CN107774988A (en) * | 2017-10-20 | 2018-03-09 | 周琼 | A kind of high-performance novel mercury dispenser and preparation method thereof |
-
1989
- 1989-10-02 JP JP1257262A patent/JPH03120323A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6526814B1 (en) | 1999-09-29 | 2003-03-04 | Kyocera Corporation | Holder for throw-away tip with sensor |
US6471449B1 (en) | 1999-10-28 | 2002-10-29 | Kyocera Corporation | Throw-away tip with abrasion sensor |
US6556925B1 (en) | 1999-11-30 | 2003-04-29 | Kyocera Corporation | Signal processing system and signal processing method for cutting tool with abrasion sensor |
DE10047218B4 (en) * | 1999-11-30 | 2009-12-10 | Kyocera Corp. | Signal processing system and signal processing method for a cutting tool with an abrasion sensor |
US6456054B1 (en) | 1999-12-14 | 2002-09-24 | Kyocera Corporation | Throw-away tip with abrasion sensor |
US6592303B2 (en) | 2000-08-30 | 2003-07-15 | Kyocera Corporation | Throw-away tip |
CN107774988A (en) * | 2017-10-20 | 2018-03-09 | 周琼 | A kind of high-performance novel mercury dispenser and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0172255B1 (en) | Zinc alkaline battery | |
JPH0684521A (en) | Alkaline battery | |
JP3215448B2 (en) | Zinc alkaline battery | |
JPH03120323A (en) | Manufacture of lowly mercurated zinc alloy grain for alkaline battery | |
JP3215446B2 (en) | Zinc alkaline battery | |
JP3215447B2 (en) | Zinc alkaline battery | |
JPH031784B2 (en) | ||
JPH0222984B2 (en) | ||
JPS61253339A (en) | Zinc alloy for battery electrode | |
JPS6164076A (en) | Electrochemical battery | |
JPH1040926A (en) | Electrolyte, negative electrode material and zinc alloy powder for alkaline manganese battery | |
JPS6164074A (en) | Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture | |
JPH03280356A (en) | Manufacture of gel state negative electrode for alkaline dry cell | |
JPS60243969A (en) | Manufacture of anode active material for battery | |
JPH0361342A (en) | Zinc alloy for alkaline battery electrode | |
JP3434961B2 (en) | Zinc alloy powder for alkaline battery and method for producing the same | |
JPH05151958A (en) | Manufacture of gel-form negative electrode for alkaline dry cell | |
JPH0620687A (en) | Alkaline battery | |
JPS6177265A (en) | Zinc alkaline battery | |
JPS60163367A (en) | Zinc alkaline battery | |
JPH05101824A (en) | Zinc-based alloy powder for alkaline battery and manufacture of the same | |
JPH06325754A (en) | Manufacture of negative electrode for button-shaped alkaline cell and button-shaped alkaline cell | |
JPH04366548A (en) | Alkaline battery | |
JPS63190104A (en) | Production of amalgamated zinc alloy powder for alkali storage battery | |
JPS63247301A (en) | Production of amalgamated zinc alloy powder |