JPH03128192A - Soldering method - Google Patents
Soldering methodInfo
- Publication number
- JPH03128192A JPH03128192A JP26497789A JP26497789A JPH03128192A JP H03128192 A JPH03128192 A JP H03128192A JP 26497789 A JP26497789 A JP 26497789A JP 26497789 A JP26497789 A JP 26497789A JP H03128192 A JPH03128192 A JP H03128192A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- soldering
- secondary phase
- solder material
- solid solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005476 soldering Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 19
- 239000000463 material Substances 0.000 claims abstract description 63
- 239000000654 additive Substances 0.000 claims abstract description 19
- 230000000996 additive effect Effects 0.000 claims abstract description 19
- 230000008018 melting Effects 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 17
- 229910052718 tin Inorganic materials 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 11
- 239000000956 alloy Substances 0.000 claims abstract description 11
- 238000005266 casting Methods 0.000 claims abstract description 10
- 229910052709 silver Inorganic materials 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052745 lead Inorganic materials 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 4
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 4
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 229910052738 indium Inorganic materials 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 3
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 3
- 229910052737 gold Inorganic materials 0.000 claims abstract description 3
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 3
- 229910000679 solder Inorganic materials 0.000 claims description 86
- 239000006104 solid solution Substances 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052714 tellurium Inorganic materials 0.000 abstract description 3
- 239000000155 melt Substances 0.000 abstract description 2
- 229910052716 thallium Inorganic materials 0.000 abstract 1
- 229910000765 intermetallic Inorganic materials 0.000 description 25
- 230000000694 effects Effects 0.000 description 12
- 239000010949 copper Substances 0.000 description 11
- 239000013078 crystal Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910002056 binary alloy Inorganic materials 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910002710 Au-Pd Inorganic materials 0.000 description 1
- 229910015369 AuTe Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、はんだ付方法に関するものであり、さらに詳
しく述べるならば、自動車用の電装品のように絶えず振
動にさらされ、疲労が起こり易い環境で使用される部品
のはんだ付け、特に電子部品を印刷基板に接合する用途
に適したはんだ付部品およびはんだ付方法に関するもの
である。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a soldering method, and more specifically, it relates to a soldering method for soldering, and more specifically, for soldering, such as electrical components for automobiles, which are constantly exposed to vibration and easily fatigued. The present invention relates to soldering parts and a soldering method suitable for soldering parts used in the environment, particularly for joining electronic parts to printed circuit boards.
(従来の技術)
一般に、はんだ材は5n−Pb二元系を基本成分として
おり、またその性質を改善するため各種成分を添加する
ことが知られている。(Prior Art) Generally, solder materials have a 5n-Pb binary system as a basic component, and it is known that various components are added to improve the properties.
特公昭40−25885号公報は、はんだ用電気鏝先の
銅がはんだに溶は込んで、はんだが損耗することを防止
するために、はんだ材に銅、銀、ニッケル等を添加する
ことを開示する。その損耗防止作用は銀、ニッケルによ
り銅をはんだ中に微細均一に分布させることにあると説
明されている。Japanese Patent Publication No. 40-25885 discloses that copper, silver, nickel, etc. are added to the solder material in order to prevent the copper of the tip of an electric iron for soldering from melting into the solder and damaging the solder. do. It is explained that its anti-wear effect is due to fine and uniform distribution of copper in the solder using silver and nickel.
特公昭45−2093号公報は、アルミニウム合金との
ろう接部でのはんだの耐食性がAgまたはsbの添加に
より改善され、またはんだ材の流動性および作業性がC
dの添加により改善されることを開示する。Japanese Patent Publication No. 45-2093 discloses that the corrosion resistance of solder at the soldered joint with an aluminum alloy is improved by adding Ag or sb, and the fluidity and workability of the solder material are improved by C.
It is disclosed that this can be improved by adding d.
特に集積回路、印刷基板等に使用されるはんだ材の改良
を意図した従来技術には次のものがある。In particular, prior art techniques intended to improve solder materials used in integrated circuits, printed circuit boards, etc. include the following.
特公昭52−30377号公報は、ろう接される銅細線
がはんだにより溶解され、溶損し、あるいは強度低下を
きたすことを防止するために、CuとAgの同時添加を
開示する。Cuにより被ろう接材料がはんだにより食わ
れることを抑制し、一方Cu添加によりはんだの融点が
上昇して被ろう接材料が溶解され易くなることをAgの
もつ融点低下作用により防止するところにCuとAgの
同時添加の作用があると説明されている。Japanese Patent Publication No. 52-30377 discloses the simultaneous addition of Cu and Ag in order to prevent thin copper wires to be soldered from being melted by solder, being damaged by melting, or having a decrease in strength. Cu is used to suppress the solder from eating away the soldering material, while the melting point lowering effect of Ag prevents the melting point of the solder from increasing due to the addition of Cu, which makes the soldering material easier to melt. It is explained that there is an effect of simultaneous addition of and Ag.
特開昭56−144893号公報は、セラミックコンデ
ンサーの銀リード線の銀がはんだに拡散してコンデンサ
ーの特性を悪くしたりあるいは銀面を剥離させる欠点を
解消するとともに、高速はんだ付けを可能にすることを
目的とし、Sn−3Sn−3b−A系はんだ材を提案す
る。JP-A No. 56-144893 eliminates the drawback that silver in the silver lead wire of a ceramic capacitor diffuses into the solder and deteriorates the characteristics of the capacitor or peels off the silver surface, and also enables high-speed soldering. For this purpose, we propose a Sn-3Sn-3b-A solder material.
特開昭59−70490号公報は、半導体メモリにおけ
る部材接合に使用されているAuろう材に匹敵する特性
を有する安価なろう材としてSb1〜15%−Sn (
In)1〜65%−pb系およびSb−Ag−5n (
In)−Pb系成分を提案する。JP-A-59-70490 discloses Sb1 to 15%-Sn (
In) 1-65%-pb system and Sb-Ag-5n (
In)-Pb based components are proposed.
特開昭63−313689号公報はPb62〜72%、
5n28〜38%を基本組成とし、これにCub、05
%〜1.0%、SbO,05〜1.0%、 In0.
05〜1. 0%、 Cd0. 05〜1.0%、Fe
d、05%〜1.0%の1種以上を添加し、リード端子
間のブリッジを防止することを特徴とするはんだ合金組
成を提案する。JP-A-63-313689 discloses Pb62-72%,
The basic composition is 5n28-38%, and this includes Cub, 05
%~1.0%, SbO, 05~1.0%, In0.
05-1. 0%, Cd0. 05-1.0%, Fe
We propose a solder alloy composition characterized by adding one or more types of d.05% to 1.0% to prevent bridging between lead terminals.
(発明が解決しようとする課題)
集積回路、印刷基板に搭載された電子部品のはんだ付け
に使用されるはんだ材の特性に関して、近年、リード線
を基板のランド部に接合した印刷基板のはんだ内部にク
ラックが発生して通電不良による動作ミスを起こす問題
が注目されている。この原因は、使用温度の周期的変化
により基板および実装部品に応力が発生し、それを接合
部材であるはんだが受は持つことになるため、はんだは
常に応力がかかった状態に置かれ、長期間の使用におい
ては疲労破壊に至るものと推察される。さらに、通電に
よるはんだ何部の温度上昇、電子部品の発熱などの熱影
響、さらには印刷基板が振動されることなどによる機械
的影響も長期間の使用中は疲労破壊を加速する原因であ
ると考えられる。基本的組成からなる5n−Pb二元系
はんだ材は上述のような長期間熱的および機械的応力に
さらされる環境に使用すると、耐疲労性の点で問題があ
ることが明らかになった。ところが、従来、Pb−3n
系二元系合金にCuやNiを添加すると耐疲労性が向上
すると言われているもののはんだがさらされる環境にお
いて耐疲労性を改良する観点からなされた研究は見られ
ない。(Problem to be Solved by the Invention) Regarding the characteristics of solder materials used for soldering integrated circuits and electronic components mounted on printed circuit boards, in recent years, it has been found that A problem that is attracting attention is that cracks occur in the battery, causing malfunctions due to poor electrical conduction. The reason for this is that stress is generated in the board and mounted components due to periodic changes in the operating temperature, and the solder joint, which is the joining material, carries this stress, so the solder is always under stress, and the solder remains under stress for a long time. It is presumed that fatigue failure will occur after long periods of use. Furthermore, thermal effects such as the rise in temperature of some parts of the solder due to energization, heat generation of electronic components, and even mechanical effects such as vibration of the printed circuit board are believed to accelerate fatigue failure during long-term use. Conceivable. It has become clear that the 5n-Pb binary solder material having the basic composition has a problem in terms of fatigue resistance when used in an environment exposed to long-term thermal and mechanical stress as described above. However, conventionally, Pb-3n
Although it is said that fatigue resistance is improved by adding Cu or Ni to binary alloys, no research has been conducted from the perspective of improving fatigue resistance in an environment where solder is exposed.
(課題を解決するための手段)
本発明者等は、はんだ材の耐疲労性改善の方法を鋭意研
究した結果、Inとsbなどの同時添加(さらにAgの
添加)によりはんだ付直後ではこれらの添加元素を固溶
させ、はんだ何部品の長期間使用状態でこれらの元素を
析出させることが有効であることを見出して、平成1年
9月14日に特許出願した(平成1年特許願第2388
37号)。しかしながら、元素によってははんだ付直後
の状態で固溶させることが困難な元素もあり、これらの
元素を含有するはんだについて耐疲労性を向上させる手
段を見出す必要が生じた。(Means for Solving the Problems) As a result of intensive research into methods for improving the fatigue resistance of solder materials, the inventors of the present invention have found that by simultaneously adding In and sb (further adding Ag), these materials can be improved immediately after soldering. We discovered that it is effective to dissolve additive elements in solid solution and precipitate these elements during long-term use of solder parts, and filed a patent application on September 14, 1999 (Patent Application No. 1999). 2388
No. 37). However, some elements are difficult to form into a solid solution immediately after soldering, and it has become necessary to find a means to improve the fatigue resistance of solders containing these elements.
本発明はかかる背景から成されたものであって、 下記第1〜第3工程; pbとSnを主成分とし、Ag、Au。The present invention was made against this background, and The following first to third steps; The main components are pb and Sn, and Ag and Au.
As、Bi、Cu、Ni、In、Ca、Mg。As, Bi, Cu, Ni, In, Ca, Mg.
Te、Ti、Zn、Sr、Be、Sb、Bi。Te, Ti, Zn, Sr, Be, Sb, Bi.
Pd、Te、Tβの1種以上の添加元素を、はんだ付状
態にて二次相が生成される量以上、但し30%以下含有
する合金を鋳造し、(イ)前記添加元素により鋳造後生
酸されている二次相を分断し、(ロ)前記添加元素によ
り鋳造後生酸されている二次相を、素材加工途中で、固
溶させる熱処理を行い、あるいは(ハ)過飽和に固溶さ
れている前記添加元素の固溶状態を実質的に保つ、条件
(イ)、(ロ)(ハ)のいずれかの条件を満足するよう
に、前記鋳造合金をはんだ付に適した形態のはんだ素材
にする素材加工を行う第1工程、前記はんだ素材を被接
合部に配置するする第2工程、
前記被接合部に配置されたはんだ素材を溶融し、第1工
程において(イ)の条件でで素材加工を行うとき“は、
二次相を固溶させないように、(ロ)または(ハ)の条
件で素材加工を行う場合は、前記添加元素の二次相を形
成させるように冷却を行う第3工程、
を含んでなることを特徴とするはんだ付方法である。An alloy containing one or more additive elements of Pd, Te, and Tβ in an amount greater than or equal to the amount at which a secondary phase is generated in the soldering state, but less than 30%, is cast, and (a) the additive element produces a raw acid after casting. (b) Heat treatment is performed to dissolve the secondary phase, which has been acidified by the above-mentioned additive elements after casting, into a solid solution during material processing, or (c) the secondary phase is dissolved into a supersaturated solid solution. The cast alloy is made into a solder material in a form suitable for soldering so as to satisfy any one of conditions (a), (b), and (c), which substantially maintains the solid solution state of the additive elements. a first step of processing the material to be bonded; a second step of placing the solder material on the part to be joined; melting the solder material placed in the part to be joined; When processing,
When processing the material under the conditions (b) or (c) so as not to form a solid solution of the secondary phase, the third step includes cooling so as to form a secondary phase of the additive element. This is a soldering method characterized by the following.
(実施例) 以下、本発明の構成を詳しく説明する。(Example) Hereinafter, the configuration of the present invention will be explained in detail.
本発明で使用されるはんだは通常のはんだのようにpb
とSnを主成分とするものである。特に、Pb10〜9
5%未満、Sn残部(ただし、0%を含まない)組成範
囲においては5n−Pb二元系の共晶組成から著しく離
れず、比較的低温でのはんだ付が可能となる。The solder used in the present invention is PB like normal solder.
The main components are Sn and Sn. In particular, Pb10-9
In the composition range of less than 5% Sn and the remaining Sn (however, not 0%), the composition does not deviate significantly from the eutectic composition of the 5n-Pb binary system, making it possible to solder at a relatively low temperature.
本発明において使用される添加元素である、A g +
A u + A s + B l l Cu * N
i + I n +Ca、Mg、Te、Ti、Zn
、Sr、Be。A g + which is an additive element used in the present invention
A u + A s + B l l Cu * N
i + I n +Ca, Mg, Te, Ti, Zn
, Sr., Be.
Sb、Bi、Pd、Te、TJ2の1種以上は、はんだ
付状態にて金属間化合物または元素単体の二次相させる
。これらの添加元素ははんだ付状態で下記のような金属
間化合物の晶出物を作りやすい。One or more of Sb, Bi, Pd, Te, and TJ2 forms a secondary phase of an intermetallic compound or a single element in a soldered state. These additive elements tend to form crystallized intermetallic compounds such as those described below in the soldered state.
(1)Ag: CaAg、 MgxAg、 Agt
Te、 SrAg、 TiAg(2)Au: Au
Alt、 AuPbx、 AuSn、 AuTe
*、 AuZn。(1) Ag: CaAg, MgxAg, Agt
Te, SrAg, TiAg(2)Au: Au
Alt, AuPbx, AuSn, AuTe
*, AuZn.
eAu
(3)As: InAs、 5nAs(4)Cu:
CuxSb、 Cu5Sn。eAu (3) As: InAs, 5nAs (4) Cu:
CuxSb, Cu5Sn.
(5)In: InNi、 InTe、 InC
u(6)Pb: PbPd、 PbTe、 PbT
1(7)Sn: 5nTe、 5nTi、 AgS
nはんだ付状態で晶出するこれらの金属間化合物は一般
に切欠となって疲労による亀裂を発生させる起点になり
やすい、そこで、本発明ではこれらの晶出物をできるだ
け微細にすることにより切欠効果を少なくするものであ
る。すなわち、これらの晶出物は低融点合金であるPb
−3nマトリツクス中に晶出する高融点の金属間化合物
または単体特有の多様な形態、すなわち、糸状、片状ま
たはV字、コの字状のエツジをもった形状(これらの形
状を本発明では針状と称する)を呈し、この針状形状は
微細化によっても変化せず、晶出物は分断されるだけで
あるので、晶出物による切欠は存在するが、はんだ合金
は一般に伸びが大きく(約50%)、伸びが大きい材料
は一般に小さい切欠に不敏感であるから、寸法が小さい
切欠は害が少なくなると本発明者等は考えた。さらに、
微細な二次相を均一に分散させれば、結晶粒の粗大化か
らクラック発生に至る一連のプロセスの進行を妨げるこ
とができると考えた。このためには、二次相は、100
μm平方に10個以上、好ましくは50個以上、より好
ましくは300個以上存在することが望ましい。(5) In: InNi, InTe, InC
u(6)Pb: PbPd, PbTe, PbT
1(7)Sn: 5nTe, 5nTi, AgS
n These intermetallic compounds that crystallize in the soldered state generally become notches and tend to become starting points for cracks caused by fatigue. Therefore, in the present invention, the notch effect is suppressed by making these crystallized substances as fine as possible. It is intended to reduce In other words, these crystallized substances are Pb, which is a low melting point alloy.
- Various forms peculiar to high melting point intermetallic compounds or simple substances crystallized in the 3n matrix, i.e., thread-like, flake-like, or shapes with V-shaped or U-shaped edges (these shapes are not used in the present invention). This needle-like shape does not change even with miniaturization, and the crystallized substances are only divided, so although notches due to the crystallized substances exist, solder alloys generally have a large elongation. (approximately 50%), the inventors believed that notches of small size would be less harmful because materials with high elongation are generally less sensitive to small notches. moreover,
The idea was that by uniformly dispersing fine secondary phases, it would be possible to prevent the progression of a series of processes from crystal grain coarsening to crack generation. For this, the secondary phase is 100
It is desirable that there be 10 or more, preferably 50 or more, more preferably 300 or more in a μm square.
上記した二次相の効果を得るためには添加元素は、固溶
限以上に存在していることが必要である。その量は、s
bなどは8%以上、N1などは3%以上である。一方、
添加元素の量(2種以上添加の場合は合計量)が30%
を超えると、はんだの基本的性能である、低融点、はん
だ付性等が劣化するので好ましくはない。In order to obtain the effect of the secondary phase described above, it is necessary that the additive element be present in an amount greater than the solid solubility limit. The amount is s
b etc. are 8% or more, and N1 etc. are 3% or more. on the other hand,
The amount of added elements (total amount if two or more types are added) is 30%
Exceeding this is not preferable because the basic properties of the solder, such as low melting point and solderability, deteriorate.
本発明の第1工程では上記した組成の合金を例えば、イ
ンゴット、地金、板等の任意の形態に鋳造する。以下、
この鋳造を板として行う例につき説明する。板の厚みは
、工業上鋳造が可能であれば特に制限されない、鋳造板
内には金属間化合物や元素単体が、通常のはんだ接合部
で晶出するよりも粗大に晶出している。この鋳造板を4
〜6highなとの薄板製造に適する圧延機により圧延
し、必要により中間焼鈍を行い、粗大な金属間化合物を
切欠不敏感性と均一分散効果があられれるまで、分断し
つつ、好ましくは10〜100μmの厚みの箔状はんだ
素材に圧延する。ここで、箔の厚みが10μmより薄い
と、後で行うはんだ付の作業が困難になり、一方100
μmより厚いと、金属間化合物等の晶出物の分断が不十
分である。また、本発明においては、近年、超急冷材料
を得るために使用されているロール急冷法(回転してい
る冷却ロールに溶湯を噴射する方法)により、板を得る
ことができる。この場合、はんだ素材に必要な厚さが得
られかつ同時に添加元素のほとんどは過飽和に固溶され
、一部は切欠不敏感性を有する超微細な二次相になる。In the first step of the present invention, an alloy having the above-mentioned composition is cast into an arbitrary form such as an ingot, a base metal, or a plate. below,
An example in which this casting is performed as a plate will be explained. The thickness of the plate is not particularly limited as long as industrial casting is possible. Intermetallic compounds and elemental elements are crystallized in the cast plate more coarsely than in normal solder joints. This cast plate is 4
Rolling is carried out using a rolling mill suitable for producing thin sheets of ~6 high, and if necessary, intermediate annealing is performed to break up coarse intermetallic compounds until notch insensitivity and uniform dispersion effect are obtained, preferably 10 to 100 μm. The solder material is rolled into a foil-like solder material with a thickness of . Here, if the thickness of the foil is thinner than 10 μm, the soldering work to be performed later will be difficult;
When it is thicker than μm, crystallized substances such as intermetallic compounds are insufficiently separated. Further, in the present invention, the plate can be obtained by a roll quenching method (a method of injecting molten metal onto a rotating cooling roll), which has been used in recent years to obtain ultra-quenched materials. In this case, the necessary thickness of the solder material can be obtained, and at the same time, most of the additive elements are dissolved in supersaturated solid solution, and a part becomes an ultrafine secondary phase having notch insensitivity.
必要により、ロール急冷された板を更に圧延する場合は
、圧延途中で固溶元素の析出が実質的に起こらないよう
に加熱あるいは大圧下圧延による発熱は避けなければな
らない。If necessary, when the roll-quenched plate is further rolled, heat generation due to heating or large reduction rolling must be avoided so that precipitation of solid solution elements does not substantially occur during rolling.
さらに、本発明においてインゴットなどを圧延した圧延
板が二次相を含む場合は、板に溶体化処理を施して、添
加元素を固溶させる方法を採用することができる。溶体
化処理の条件は、加熱温度が90〜150℃以上融点以
下、冷却条件は塩水、液体窒素に投入する等の超急冷冷
却速度のもの、処理時間は板の変形を避けるためにでき
るだけ短時間である。Further, in the present invention, when a rolled plate obtained by rolling an ingot or the like contains a secondary phase, a method may be adopted in which the plate is subjected to solution treatment to dissolve the additional elements in solid solution. The conditions for solution treatment are that the heating temperature is above 90-150℃ and below the melting point, the cooling conditions are an ultra-rapid cooling rate such as pouring into salt water or liquid nitrogen, and the treatment time is as short as possible to avoid deformation of the plate. It is.
はんだ素材を粉末として提供することもできる。この場
合は地金を溶解し、溶融合金をアトマイズ法により粉末
とする。粉末を得る最も一般的方法として、インゴット
を粉砕する方法があるが、この方法では、インゴット中
に金属間化合物が粗大な品出物として生成し、粉砕によ
ってもほとんど微細化せず、また粉末を溶体化処理する
ことは事実上不可能であるので、本発明においては、は
んだ素材としての粉末金属を得るために古くから使用さ
れているアトマイズ法を採用する。The solder material can also be provided as a powder. In this case, the base metal is melted and the molten alloy is made into powder by an atomization method. The most common method for obtaining powder is to grind an ingot, but with this method, intermetallic compounds are produced in the ingot as coarse particles, are hardly refined even by grinding, and the powder is Since solution treatment is virtually impossible, the present invention employs an atomization method that has been used for a long time to obtain powder metal as a solder material.
続いて、はんだ素材が板の場合は、必要により、箔を印
刷基板のはんだ何部と同じパターンに切り抜いて、接合
部に存在する隙間に挿入しやすい形状寸法にする。また
、はんだ素材が粉末の場合は、必要により、例えば12
重量%のロジン系フラックスと混合する。Next, if the solder material is a plate, if necessary, the foil is cut out in the same pattern as the solder parts of the printed circuit board, so that it has a shape and size that can be easily inserted into the gap existing at the joint part. In addition, if the solder material is a powder, for example, 12
% by weight of rosin-based flux.
本発明の第2工程においては、はんだ素材を被接合部に
配置する。具体的には、被接合面がはんだ素材で覆われ
るようにはんだを配置する0例えば、被接合部にはIC
チップ、個別電子部品などとプリント基板の導体回路と
の間の隙間が存在し、これがはんだ付接合場所になって
いるので、この隙間にはんだ素材を固体のままで挿入す
る。In the second step of the present invention, a solder material is placed on the parts to be joined. Specifically, the solder is placed so that the surface to be joined is covered with the solder material.For example, an IC is placed on the part to be joined.
There is a gap between the chip, individual electronic components, etc. and the conductor circuit of the printed circuit board, and this is the place for soldering, so the solder material is inserted in solid form into this gap.
この場合はんだ素材は予め、薄くかつ小さい寸法に加工
されており、隙間に入りやすくなっている。必要があれ
ば、はんだ素材の箔を切断して更に寸法を小さくすれば
よい、はんだ素材は隙間に緩く充填さ・れておればよく
、極めて密に充填するのは望ましいが、作業性が悪く、
その必要はない。また、隙間の周囲部にもはんだ素材を
配置しても、極端に多すぎることによりはんだの溶融効
率が低下しない程度であれば、差し支えない。In this case, the solder material is processed in advance to be thin and small, so that it can easily fit into the gap. If necessary, the solder material foil can be cut to make the dimensions even smaller. The solder material only needs to be loosely filled in the gap, and it is desirable to fill it very densely, but it is difficult to work with. ,
That is not needed. Further, even if solder material is placed around the gap, there is no problem as long as the melting efficiency of the solder does not decrease due to an extremely large amount of solder material.
第1図は、はんだ素材を挿入した実施例の説明図であり
、図中、1はチップ部品、2はAu−Pdめっき層、3
ははんだ素材、5はAltos基板、6.7はそれぞれ
5.1の上に焼付けられた導体パターン、8は隙間を示
す。はんだ素材3は箔を切ったものであり、チップ部品
1とAl2Og基板5の間に挟まれている。超音波振動
を外部からはんだ素材3に加える。FIG. 1 is an explanatory diagram of an embodiment in which solder material is inserted, and in the figure, 1 is a chip component, 2 is an Au-Pd plating layer, and 3
5 is a solder material, 5 is an Altos board, 6.7 is a conductor pattern baked on 5.1, and 8 is a gap. The solder material 3 is cut from foil and is sandwiched between the chip component 1 and the Al2Og substrate 5. Ultrasonic vibrations are applied to the solder material 3 from the outside.
さらに、L、T字状の面で二つの板状部品を接合する時
はかかる面に沿ってはんだ素材を、必要によりペースト
などを用いて、仮固定する。Furthermore, when joining two plate-shaped parts at an L- or T-shaped surface, solder material is temporarily fixed along the L- or T-shaped surface using a paste or the like if necessary.
第3工程において箔、粉末などを溶融する。In the third step, the foil, powder, etc. are melted.
ここで溶融のためには、はんだ素材を溶かすのに必要な
限度の熱量を投入すればよく、従来法のようにはんだ浴
の極く一部分を接合部に流し込む方法はとらないので、
溶融と冷却、凝固が極めて短時間で済む特徴がある。こ
のため、従来法と比較して晶出物などの粗大化は起こり
難い。一方、逆に冷却速度が極端に大であると、添加元
素が過飽和に固溶され、本発明が意図する分散効果が得
られないおそれがあるが、冷却速度を決定する要因であ
る■上記した熱量と、■接合部に存在して、はんだから
熱を奪う基板、電子部品などの熱伝導係数を比較検討す
ると、超急冷により添加元素が過飽和に固溶するおそれ
はない、第3工程で採用される溶融法は、超音波振動を
動をチタン酸バリウムの振動子チップなどを介して加え
るか、あるいはレーザービーム、電子ビームなどの高エ
ネルギービーム照射により、箔などを被接合部で急速加
熱し溶融する。溶融法としては、電子部品を誤動作させ
るおそれがない超音波法が好ましい、超音波振動は、周
波数が16kHzから1.6MHz。In order to melt the solder material, it is only necessary to input the maximum amount of heat required to melt the solder material, and unlike conventional methods, a small portion of the solder bath is not poured into the joint.
It has the characteristic that melting, cooling, and solidification can be done in an extremely short time. Therefore, coarsening of crystallized substances is less likely to occur compared to conventional methods. On the other hand, if the cooling rate is extremely high, there is a risk that the added element will become a supersaturated solid solution and the dispersion effect intended by the present invention may not be obtained. Comparing the amount of heat and ■The thermal conductivity coefficient of the board, electronic components, etc. that exist in the joint and take away heat from the solder, it is found that there is no risk of supersaturated solid solution of additive elements due to ultra-rapid cooling, which was adopted in the third process. The melting method used is to apply ultrasonic vibration through a barium titanate vibrator chip, or to rapidly heat the foil etc. at the part to be joined by irradiation with a high energy beam such as a laser beam or electron beam. melt. As the melting method, an ultrasonic method is preferable since there is no risk of malfunctioning the electronic components.The frequency of ultrasonic vibration is 16 kHz to 1.6 MHz.
特に18kHz前後が好ましい。また、加熱後急冷させ
るには、上記溶融温度でのエネルギー源をはんだ材に対
して瞬断させるようにすればよい、この手段により微細
な晶出物が保持されることになる。In particular, around 18 kHz is preferable. In addition, in order to rapidly cool the solder material after heating, it is sufficient to momentarily cut off the energy source at the above-mentioned melting temperature to the solder material.By this means, fine crystallized substances are retained.
(作用)
従来、金属間化合物ははんだの湯流れを悪化することが
知られており、このために、成分糸を工夫して金属間化
合物を晶出状態で微細化することが知られている(例え
ば、特公昭40−25885号)。しかしながら、上記
方法でははんだは溶融させられて、接合部に流し込まれ
るので、金属間化合物は通常の粗大な晶出状態となり、
湯流れ性が悪くなってしまい、あるいは粗大な晶出物に
より強度低下を招くなど、本発明が意図する微細かつ均
一な分散状態は得られない。したがって、金属間化合物
などを微細化するためには、はんだ素材を被接合部に必
要量だけ配置し、はんだを急速加熱し、短時間溶融状態
に保ち、かつ急速冷却する必要がある。これにより晶出
物は平均粒径を10μm以下にすることがすることがで
きる。晶出物の平均粒径は好ましくは5μm以下、さら
に好ましくは3μm以下である。(Function) Conventionally, it has been known that intermetallic compounds deteriorate the flow of solder, and for this reason, it is known that the component threads are devised to refine the intermetallic compounds in a crystallized state. (For example, Special Publication No. 40-25885). However, in the above method, the solder is melted and poured into the joint, so the intermetallic compound becomes the usual coarse crystallization state.
The fine and uniform dispersion state intended by the present invention cannot be obtained because the flowability of the melt deteriorates or the coarse crystallized substances cause a decrease in strength. Therefore, in order to miniaturize intermetallic compounds and the like, it is necessary to place a required amount of solder material on the parts to be joined, rapidly heat the solder, keep it in a molten state for a short time, and rapidly cool it. As a result, the average particle size of the crystallized product can be reduced to 10 μm or less. The average particle size of the crystallized product is preferably 5 μm or less, more preferably 3 μm or less.
さらにはんだ素材中に存在する金属間化合物などが、あ
るいははんだ付中に生成する金属間化合物などが、はん
だ付中に、未溶解状態になっても、粗大な晶出物として
接合部に残存しないような対策を講する必要がある。こ
の対策を、第2工程の条件: (イ)添加元素により鋳
造後生酸されている二次相を分断、(ロ)前記添加元素
により鋳造後生酸されている二次相を素材加工の途中で
固溶させる熱処理、あるいは(ハ)過飽和に固溶されて
いる添加元素の固溶状態を実質的に保つ、別に説明する
。Furthermore, even if intermetallic compounds existing in the solder material or generated during soldering become undissolved during soldering, they will not remain in the joint as coarse crystallized substances. It is necessary to take such measures. This countermeasure is taken under the conditions of the second step: (a) The secondary phase that is bioacidized after casting is separated by the additive element, (b) The secondary phase that is bioacidized after casting is separated by the additive element during material processing. The heat treatment to form a solid solution, or (c) substantially maintaining the solid solution state of the supersaturated added element dissolved in a solid solution will be explained separately.
条件(イ)の場合:本発明においてインゴットを通常の
鋳造条件で用意すると、金属間化合物などは極めて粗大
に成長するので、条件(イ〉によりこれを分断すること
により金属間化合物などをできるだけ微細にする。この
様にして得た素材。In the case of condition (a): In the present invention, if the ingot is prepared under normal casting conditions, intermetallic compounds will grow extremely coarsely, so by dividing it under condition (a), the intermetallic compounds will be made as fine as possible. The material obtained in this way.
を第3工程において短時間溶解することにより粗大化を
避ける。なお、第3工程において金属間化合物等の形状
は丸みを帯びた形状になる。Coarsening is avoided by dissolving for a short time in the third step. Note that in the third step, the shape of the intermetallic compound etc. becomes rounded.
条件(ロ)の場合:溶体化処理により、かなりの部分の
添加元素は固溶し、また残存する金属間化合物等も小さ
くなる。かかる組織を有するはんだ素材を第3工程で短
時間溶融処理すると、再び添加元素が晶出、析出する。In the case of condition (b): Due to the solution treatment, a considerable portion of the added elements become solid solution, and the remaining intermetallic compounds etc. are also reduced. When the solder material having such a structure is melted for a short time in the third step, the additive elements crystallize and precipitate again.
ここでは、結晶成長する時間が短時間であるために、粗
大化は避けられまた金属間化合物等の寸法は(イ)の場
合より小さくなり、また形状が丸みを帯びる傾向になる
。Here, since the time for crystal growth is short, coarsening is avoided, and the dimensions of the intermetallic compound etc. are smaller than in case (a), and the shape tends to be rounded.
条件(ハ)の場合二条件(ロ)の場合と同様であるが、
第2工程においてより徹底して溶体化処理が図られてい
るために、第3工程で生成する金属間化合物はごく短時
間の間に成長するものに限られ、その寸法は(ロ)より
さらに小さくなり、また形状はさらに丸みを帯びる。Condition (c) is the same as condition (b), but
Because the solution treatment is more thorough in the second step, the intermetallic compounds formed in the third step are limited to those that grow in a very short period of time, and their dimensions are even larger than (b). It becomes smaller and its shape becomes more rounded.
一般に、はんだは使用中に結晶粒の成長、合体などを招
く可能性がある温度上昇(約100℃まで)にさらされ
る、はんだ結晶粒が高温にさらされて、例えば3倍に成
長すると、これに伴って疲労強度も低下する。また、自
動車搭載の電子装置はマイナス数十℃からプラス約80
℃までの温度範囲で使用されるので、はんだや素子のリ
ード端子等の熱膨張と収縮による応力がはんだに加え。Generally, during use, solder is exposed to elevated temperatures (up to about 100°C) that can lead to grain growth, coalescence, etc. Along with this, fatigue strength also decreases. In addition, electronic devices installed in automobiles range from -10 degrees Celsius to about +80 degrees Celsius.
Since it is used in a temperature range of up to ℃, stress due to thermal expansion and contraction of the solder and element lead terminals is added to the solder.
られ、これが疲労破壊の大きな要因である。また、はん
だが絶えず高温にさらされていると、はんだは一定の応
力を受け、クリープによる破断を起こすこともあり、こ
れも疲労破壊の大きな要因である。はんだの使用中には
んだに熱や応力がかかると、主としてSn結晶粒が次第
に粗大し、また使用初期には微細に分散していた共晶p
b粗粒子連続するようになる。このような結晶粒の粗大
化に伴なってはんだの強度は低下し、またpbの連続し
た相にクラックが発生し易くなる。pb粗粒子連続化は
Sn粒子の結晶粒界の移動に伴って起こるので、Sn粒
子の粗大化を防止することは、強度低下とクラック発生
を同時に防止するうえで重要である。本発明で利用する
微細な金属間化合物などの二次相は、以下のような作用
を有し、上記したPb、Sn結晶粒の粗大化を防止する
うえで有効である。This is a major factor in fatigue failure. Furthermore, if the solder is constantly exposed to high temperatures, the solder will be subjected to a certain amount of stress and may break due to creep, which is also a major factor in fatigue failure. When heat and stress are applied to the solder during use, mainly the Sn crystal grains gradually become coarser, and the eutectic P particles, which were finely dispersed at the beginning of use, become coarser.
b Coarse particles become continuous. As the crystal grains become coarser, the strength of the solder decreases, and cracks are more likely to occur in the continuous PB phase. Since Pb coarse particle continuity occurs with the movement of the grain boundaries of Sn particles, it is important to prevent the Sn particles from becoming coarse in order to simultaneously prevent a decrease in strength and the occurrence of cracks. The secondary phase such as a fine intermetallic compound utilized in the present invention has the following effects and is effective in preventing the above-mentioned Pb and Sn crystal grains from becoming coarse.
(1)これらの金属間化合物などは高融点を有し、はん
だ何部品の使用温度において熱的に安定しており、微細
な形態を維持する。(1) These intermetallic compounds have high melting points, are thermally stable at the operating temperatures of solder parts, and maintain their fine morphology.
(2)これらの金属間化合物などは、はんだ付状態で品
出、析出しているので、はんだ付温度より温度が低く、
したがって、固溶限が大であるはんだ何部品使用温度に
おいて、Pb、Sn結晶中にほとんど全く再固溶しない
。したがって、Pb、Sn結晶の粒界移動が起こっても
、金属間化合物結晶粒がPb、Sn結晶粒に食われるこ
とはない。(2) These intermetallic compounds are produced and precipitated in the soldered state, so the temperature is lower than the soldering temperature.
Therefore, at the temperature at which solder parts are used, where the solid solubility limit is large, almost no solid solution occurs in the Pb and Sn crystals. Therefore, even if grain boundary movement of Pb and Sn crystals occurs, intermetallic compound crystal grains are not eaten by Pb and Sn crystal grains.
(3)これらの金属間化合物などの晶出位置は一様であ
って、Pb、Sn結晶粒界にも粒内にも晶出している。(3) The crystallization positions of these intermetallic compounds are uniform, and they are crystallized both at Pb and Sn crystal grain boundaries and within the grains.
Pb、Sn結晶粒が粒成長する時、その粒界に存在する
金属間化合物相は粒界移動を妨げる。この結果、Pb、
Snの平均結晶粒径は10LLm以下、好ましくは6μ
m以下にすることができる。When Pb and Sn crystal grains grow, the intermetallic compound phase present at the grain boundaries hinders grain boundary movement. As a result, Pb,
The average grain size of Sn is 10LLm or less, preferably 6μ
m or less.
(発明の効果)
疲労試験は、第2図に示すAlzOs基板5の一面に形
成されたAg−Pdめっき層4にチップ部品lをはんだ
付けした試験片を用いて行なう、この試験片では、はん
だは接合部の隙間以外にかなり存在している。(Effect of the invention) The fatigue test is conducted using a test piece in which a chip component l is soldered to an Ag-Pd plating layer 4 formed on one surface of an AlzOs substrate 5 shown in FIG. exists in areas other than the gaps between joints.
試験方法は、リード線に疲労試験機で、繰返周波数20
Hz (片振り)、温度(80℃、定)の条件でせん断
荷重をかけ、クラックが発生したときの繰返し数を疲労
寿命として求める方法で行なう、なお、クラックは第2
図に示すようにはんだ内に発生する。The test method was to use a fatigue testing machine on the lead wires at a repetition frequency of 20.
A shear load is applied under the conditions of Hz (one-sided swing) and temperature (80℃, constant), and the number of repetitions at which a crack occurs is determined as the fatigue life.
This occurs within the solder as shown in the figure.
この方法により、疲労によるクラックが発生するまでの
繰り返し回数を求めると、晶出部の微細化効果による疲
労寿命向上は、同一組成で晶出物を微細化しないはんだ
に比較して、数10%以上、多くは20−50%向上す
る。具体的には、上記試験条件で、2000時間の寿命
が400時間(20%)〜1000時間(50%)延長
される。Using this method to calculate the number of repetitions until cracks occur due to fatigue, the improvement in fatigue life due to the effect of making the crystallized parts finer is several tens of percent compared to solder with the same composition but without making the crystallized parts finer. In most cases, the improvement is 20-50%. Specifically, under the above test conditions, the life of 2000 hours is extended by 400 hours (20%) to 1000 hours (50%).
本発明によれば、はんだ材が例えば自動車に搭載される
印刷基板のようにマイナス数十℃からプラス百数十℃の
低温から高温までの過酷な条件で使用される場合におい
ても、従来のはんだ材のようにクラックが発生すること
なく、安定して使用可能であり、はんだろう接部の信頼
性が向上する。According to the present invention, even when the solder material is used under harsh conditions ranging from low temperatures of minus several tens of degrees Celsius to plus hundreds of degrees Celsius, such as on printed circuit boards mounted in automobiles, conventional solder It can be used stably without cracking unlike other materials, and the reliability of solder joints is improved.
第1図は本発明の第2工程の実施例説明図であり、
第2図は耐疲労性試験に供した試験片の図である。
1−チップ部品、2−Ag−Pdめつき層、3−はんだ
素材、5”−AI20s基板、6.7−それぞれ5.1
の上に焼付けられた導体パターン、8−隙間FIG. 1 is an explanatory diagram of an example of the second step of the present invention, and FIG. 2 is a diagram of a test piece subjected to a fatigue resistance test. 1-chip parts, 2-Ag-Pd plating layer, 3-solder material, 5"-AI20s board, 6.7-5.1 each
Conductor pattern baked on top, 8-gap
Claims (1)
i、Zn、Sr、Be、Sb、Bi、Pd、Te、Tl
の1種以上の添加元素を、はんだ付状態にて二次相が生
成される量以上、但し30%以下含有する合金を鋳造し
、(イ)前記添加元素により鋳造後生成されている二次
相を分断し、(ロ)前記添加元素により鋳造後生成され
ている二次相を、素材加工の途中で、固溶させる熱処理
を行い、あるいは(ハ)過飽和に固溶されている前記添
加元素の固溶状態を実質的に保つ、条件(イ)、(ロ)
(ハ)のいずれかを満足するように、前記鋳造合金をは
んだ付に適した形態のはんだ素材にする素材加工を行う
第1工程、前記はんだ素材を被接合部に配置する第2工
程、 前記被接合部に配置されたはんだ素材を溶融し、第1工
程において(イ)の条件でで素材加工を行うときは、二
次相を固溶させないように、(ロ)または(ハ)の条件
で素材加工を行う場合は、前記添加元素の二次相を形成
させるように冷却を行う第3工程、 を含んでなることを特徴とするはんだ付方 法。[Claims] 1. The following first to third steps; Pb and Sn are the main components, Ag, Au, As, Bi, Cu, Ni, In, Ca, Mg, Te, T
i, Zn, Sr, Be, Sb, Bi, Pd, Te, Tl
Casting an alloy containing one or more of the following additive elements in an amount greater than or equal to the amount at which a secondary phase is generated in the soldering state, but not more than 30%, The phase is divided, and (b) the secondary phase generated by the additive element after casting is subjected to a heat treatment during material processing, or (c) the additive element is supersaturated as a solid solution. Conditions (a) and (b) to substantially maintain the solid solution state of
A first step of processing the cast alloy into a solder material in a form suitable for soldering so as to satisfy any one of (c); a second step of placing the solder material on the part to be joined; When melting the solder material placed on the part to be joined and processing the material under the conditions of (a) in the first step, apply the conditions of (b) or (c) to prevent the secondary phase from becoming a solid solution. A soldering method comprising: a third step of cooling to form a secondary phase of the additive element when processing the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26497789A JP3183878B2 (en) | 1989-10-13 | 1989-10-13 | Soldering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26497789A JP3183878B2 (en) | 1989-10-13 | 1989-10-13 | Soldering method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03128192A true JPH03128192A (en) | 1991-05-31 |
JP3183878B2 JP3183878B2 (en) | 2001-07-09 |
Family
ID=17410844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26497789A Expired - Lifetime JP3183878B2 (en) | 1989-10-13 | 1989-10-13 | Soldering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3183878B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5690890A (en) * | 1993-11-09 | 1997-11-25 | Matsushita Electric Industrial Co., Ltd. | Solder |
US5833921A (en) * | 1997-09-26 | 1998-11-10 | Ford Motor Company | Lead-free, low-temperature solder compositions |
US5871690A (en) * | 1997-09-29 | 1999-02-16 | Ford Motor Company | Low-temperature solder compositions |
US5942185A (en) * | 1994-10-11 | 1999-08-24 | Hitachi, Ltd. | Lead-free solder used for connecting electronic parts on organic substrate and electronic products made using same |
US6231693B1 (en) * | 1995-07-15 | 2001-05-15 | Materials Resources International | Alloy, in particular a solder alloy, for joining workpieces |
JP2007144470A (en) * | 2005-11-29 | 2007-06-14 | Showa Denko Kk | Manufacturing method for heat exchanger |
WO2009072221A1 (en) * | 2007-12-07 | 2009-06-11 | Sanyo Special Steel Co., Ltd. | Electronic equipment obtained by soldering with lead-free jointing material |
US7806994B2 (en) | 2004-05-04 | 2010-10-05 | S-Bond Technologies, Llc | Electronic package formed using low-temperature active solder including indium, bismuth, and/or cadmium |
CN102476250A (en) * | 2010-11-25 | 2012-05-30 | 中国科学院金属研究所 | Sn-Pb solder resisting atmospheric corrosion |
CN109234566A (en) * | 2018-11-07 | 2019-01-18 | 广州宇智科技有限公司 | A kind of high heat storage density tin alloy and its technique of the operating temperature less than 100 degree |
CN109252068A (en) * | 2018-11-07 | 2019-01-22 | 广州宇智科技有限公司 | Heat accumulation resistance to oxidation kamash alloy and technique between a kind of 100-150 degree |
CN109590633A (en) * | 2019-01-01 | 2019-04-09 | 王伟 | Lead welding filler metal and its preparation method and application for integrated antenna package |
CN111020443A (en) * | 2019-12-26 | 2020-04-17 | 无锡市斯威克科技有限公司 | Low-melting-point photovoltaic welding strip special for welding ultrathin photovoltaic cell piece and preparation method and application thereof |
-
1989
- 1989-10-13 JP JP26497789A patent/JP3183878B2/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5690890A (en) * | 1993-11-09 | 1997-11-25 | Matsushita Electric Industrial Co., Ltd. | Solder |
US5942185A (en) * | 1994-10-11 | 1999-08-24 | Hitachi, Ltd. | Lead-free solder used for connecting electronic parts on organic substrate and electronic products made using same |
US6231693B1 (en) * | 1995-07-15 | 2001-05-15 | Materials Resources International | Alloy, in particular a solder alloy, for joining workpieces |
US7041180B2 (en) | 1995-07-15 | 2006-05-09 | Materials Resources International | Method for joining workpieces using soldering alloy |
US5833921A (en) * | 1997-09-26 | 1998-11-10 | Ford Motor Company | Lead-free, low-temperature solder compositions |
US5871690A (en) * | 1997-09-29 | 1999-02-16 | Ford Motor Company | Low-temperature solder compositions |
US7806994B2 (en) | 2004-05-04 | 2010-10-05 | S-Bond Technologies, Llc | Electronic package formed using low-temperature active solder including indium, bismuth, and/or cadmium |
JP2007144470A (en) * | 2005-11-29 | 2007-06-14 | Showa Denko Kk | Manufacturing method for heat exchanger |
JP2009141197A (en) * | 2007-12-07 | 2009-06-25 | Sanyo Special Steel Co Ltd | Electronic apparatus soldered using lead-free bonding material |
WO2009072221A1 (en) * | 2007-12-07 | 2009-06-11 | Sanyo Special Steel Co., Ltd. | Electronic equipment obtained by soldering with lead-free jointing material |
US8281978B2 (en) | 2007-12-07 | 2012-10-09 | Sanyo Special Steel Co., Ltd. | Electronic apparatus produced using lead-free bonding material for soldering |
KR101362807B1 (en) * | 2007-12-07 | 2014-02-13 | 산요오도꾸슈세이꼬 가부시키가이샤 | Electronic equipment obtained by soldering with lead-free jointing material |
CN102476250A (en) * | 2010-11-25 | 2012-05-30 | 中国科学院金属研究所 | Sn-Pb solder resisting atmospheric corrosion |
CN109234566A (en) * | 2018-11-07 | 2019-01-18 | 广州宇智科技有限公司 | A kind of high heat storage density tin alloy and its technique of the operating temperature less than 100 degree |
CN109252068A (en) * | 2018-11-07 | 2019-01-22 | 广州宇智科技有限公司 | Heat accumulation resistance to oxidation kamash alloy and technique between a kind of 100-150 degree |
CN109590633A (en) * | 2019-01-01 | 2019-04-09 | 王伟 | Lead welding filler metal and its preparation method and application for integrated antenna package |
CN111020443A (en) * | 2019-12-26 | 2020-04-17 | 无锡市斯威克科技有限公司 | Low-melting-point photovoltaic welding strip special for welding ultrathin photovoltaic cell piece and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3183878B2 (en) | 2001-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11123824B2 (en) | Solder alloy | |
JPH03128192A (en) | Soldering method | |
JP2005517535A (en) | Lead-free tin-silver-copper alloy solder composition | |
JP2005517535A5 (en) | ||
CN105103279B (en) | The manufacture method of semiconductor device and semiconductor device | |
TWI725664B (en) | Solder alloys, solder pastes, solder preforms and solder joints | |
JP4770733B2 (en) | Solder and mounted products using it | |
WO2024177065A1 (en) | Solder alloy, solder ball, solder paste, and soldered joint | |
KR102672970B1 (en) | Solder alloy, solder ball, solder paste and solder joint | |
JP7323853B1 (en) | Solder alloys, solder pastes, solder balls, solder preforms, solder joints, automotive electronic circuits, ECU electronic circuits, automotive electronic circuit devices, and ECU electronic circuit devices | |
KR101983510B1 (en) | Core material and solder joint and bump electrode forming method | |
JP2005046882A (en) | Solder alloy, solder ball, and solder joined body | |
JP3296709B2 (en) | Thin copper alloy for electronic equipment and method for producing the same | |
JP2000061585A (en) | Casting method of solder material | |
JP4432041B2 (en) | Solder alloys and solder balls | |
KR100399338B1 (en) | Compositions and Preparation Methods of Solder Alloys for Surface Mount Technology Applications | |
US20040096688A1 (en) | Lead-free joining material and joining method using the same | |
JP7381980B1 (en) | Solder alloys, solder balls, solder preforms, solder joints, and circuits | |
JP2017094376A (en) | Pb-FREE Sn BASED SOLDER ALLOY | |
JP2004022608A (en) | Solder junction structure | |
JP7291320B2 (en) | Method for manufacturing solder joints | |
JP2005296983A (en) | Solder alloy and solder ball | |
JP2017094377A (en) | Pb-FREE Sn BASED SOLDER ALLOY | |
JP6136807B2 (en) | Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board | |
JP2000102894A (en) | Solder ball and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 9 |