[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03119063A - Viscoelastic resin composition for vibration damper - Google Patents

Viscoelastic resin composition for vibration damper

Info

Publication number
JPH03119063A
JPH03119063A JP25701289A JP25701289A JPH03119063A JP H03119063 A JPH03119063 A JP H03119063A JP 25701289 A JP25701289 A JP 25701289A JP 25701289 A JP25701289 A JP 25701289A JP H03119063 A JPH03119063 A JP H03119063A
Authority
JP
Japan
Prior art keywords
viscoelastic
resin
vibration damping
inorganic powder
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25701289A
Other languages
Japanese (ja)
Inventor
Nobuo Kadowaki
伸生 門脇
Hiroshi Endo
遠藤 紘
Shinichi Nakahou
長洞 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25701289A priority Critical patent/JPH03119063A/en
Publication of JPH03119063A publication Critical patent/JPH03119063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title composition excellent in bond strength and vibration damping performance, good in electrical resistance weldability by incorporating a viscoelastic vibration damping resin with electrically conductive granules and inorganic powder of specific mean granular size. CONSTITUTION:The objective composition suitable for making up a viscoelastic interlayer for composite vibration dampers can be obtained by incorporating (A) 100 pts.wt. of a viscoelastic vibration damping resin (e.g. epoxy-crosslinked polyester resin) with (B) electrically conductive granules (e.g. nickel powder, nickel-plated glass granules, carbon black) and (C) inorganic powder with its mean granular size being <=1/3 of the thickness of the intermediate resin layer of the above mentioned vibration damper [pref. 1-250 (esp. 1-150) pts.wt. of calcium carbonate, or 1-50 (esp. 1-25) pts.wt. of silica, or 1-50 (esp. 1-25) pts.wt. of kaolin].

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は制振材料用粘弾性樹脂組成物に関し、更に詳し
くは機械、建築物、乗物等の各種構造物の構造部材また
はその一部として使用される複層構造の制振材料にその
中間層として用いられる制振材料用粘弾性樹脂組成物に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a viscoelastic resin composition for vibration damping materials, and more specifically for use as structural members or parts of various structures such as machines, buildings, and vehicles. The present invention relates to a viscoelastic resin composition for a vibration damping material used as an intermediate layer in a multi-layered vibration damping material.

〔従来の技術〕[Conventional technology]

近年、交通機関の発達や住居の工場等への接近に伴って
騒音や振動の問題が公害として社会問題化するようにな
ってきた。また、職場においても作業環境の改善を目的
として騒音や振動を規制する傾向にある。このような傾
向に対応して、騒音源や振動源である金属材料に対して
制振性能、即ち騒音を発生する部材自体の振動エネルギ
ーを熱エネルギーに変換して振動速度あるいは振動振幅
を減衰させ、音響放射を少なくする機能を付与し、更に
その機能の向上を図ることが要請されている。
In recent years, with the development of transportation systems and the proximity of residences to factories, noise and vibration problems have become a social problem as pollution. There is also a trend in workplaces to regulate noise and vibration in order to improve the working environment. In response to this trend, we are developing vibration damping performance for metal materials that are noise sources and vibration sources, that is, converting the vibration energy of the noise-generating member itself into thermal energy to attenuate the vibration speed or vibration amplitude. , there is a need to add a function to reduce acoustic radiation and to further improve this function.

このような要請に基づいて、かかる性能を発揮する制振
材料の一つとして、金属層間に粘弾性を有する中間層を
挟み込んだ複層構造の複合型制振材料が従来から考案さ
れている。このような複合型制振材料は、自動車のオイ
ルパン、エンジンカバー、ダッシュパネル、ホッパーの
シュート部、搬送設備のストッパー、家電機器、その他
金属加工機械の振動低減部材や振動防止が望まれる精密
機械の構造部材等において検討され、採用されている。
Based on such demands, as one type of damping material that exhibits such performance, a composite damping material having a multilayer structure in which a viscoelastic intermediate layer is sandwiched between metal layers has been devised. These composite vibration damping materials are used in automobile oil pans, engine covers, dash panels, hopper chutes, stoppers for conveyor equipment, home appliances, vibration reduction members for other metal processing machines, and precision machinery where vibration prevention is desired. It has been studied and adopted for structural members, etc.

一般に、このような複合型制振材料の制振性能は、その
中間層を構成する粘弾性中間層の性能に依存している。
Generally, the damping performance of such a composite vibration damping material depends on the performance of the viscoelastic intermediate layer that constitutes the intermediate layer.

この制振性能を損失係数で表すと、この制振性能はある
一定温度でピーク特性を示し、このピーク特性温度の近
傍で使用するのが最も効果的であることが知られている
When this damping performance is expressed by a loss coefficient, it is known that this damping performance shows a peak characteristic at a certain constant temperature, and is most effective when used near this peak characteristic temperature.

従来、このような複合型制振材料の粘弾性中間層を構成
する粘弾性組成物としては、例えばポリエステル単体(
特開昭50−143880号公報参照)又はポリエステ
ルに可塑剤を添加したもの(特開昭51−93770号
公報参照)、ポリウレタンフォーム単体(特開昭51−
91981号公報参照)、ポリアミド単体(特開昭56
−159160号公報参照)、エチレン−酢酸ビニル共
重合体単体(特開昭57−34949号公報参照)、ポ
リビニルブチラール又はポリビニルブチラールとポリ酢
酸ビニルとの組成物に可塑剤、粘着付与物質を配合した
もの(特公昭55−27975号公報参照)、イソシネ
アートプレポリマーとビニルモノマーの共重合体(特公
昭52−26554号公報参照)、更には特公昭39−
12451号公報、特公昭45−34703号公報、特
開昭62−74645号公報に開示されている共重合体
等が知られている。
Conventionally, as a viscoelastic composition constituting the viscoelastic intermediate layer of such a composite damping material, for example, polyester alone (
JP-A-50-143880), polyester with a plasticizer added (see JP-A-51-93770), polyurethane foam alone (JP-A-51-93770),
91981), polyamide alone (Japanese Patent Application Laid-open No. 1983)
-159160), ethylene-vinyl acetate copolymer alone (see JP-A-57-34949), polyvinyl butyral, or a composition of polyvinyl butyral and polyvinyl acetate mixed with a plasticizer and a tackifier. (see Japanese Patent Publication No. 55-27975), copolymers of isocyanate prepolymer and vinyl monomer (see Japanese Patent Publication No. 52-26554), and furthermore
Copolymers disclosed in Japanese Patent Publication No. 12451, Japanese Patent Publication No. 45-34703, and Japanese Patent Application Laid-Open No. 62-74645 are known.

また、複合型制振材料の表皮が鋼板である制振鋼板では
電気抵抗溶接性を確保する目的で中間樹脂層中に導電性
金属粉を添加したもの(特開昭50−79920号公報
、特開昭53−128687号公報、特開昭57−51
453号公報、特開昭61−290044号公報、特開
昭62−87341号公報、特開昭62−90236号
公報、特開昭62−151332号公報、特開昭63−
67142号公報、特開昭63−74634号公報、特
開昭63−158243号公報、特開昭63−1700
31号公報、特開昭63−188040号公報など参照
)、又は中間樹脂層中に導電性物質として黒鉛及び/又
は炭素系粒子を用いたもの(特開昭62−154405
号公報、特開昭63−158242号公報など参照)等
が知られている。
In addition, in vibration damping steel plates whose skins are steel plates, conductive metal powder is added to the intermediate resin layer for the purpose of ensuring electrical resistance weldability (Japanese Unexamined Patent Application Publication No. 79920/1983). Publication No. 53-128687, Japanese Patent Publication No. 57-51
453, JP 61-290044, JP 62-87341, JP 62-90236, JP 62-151332, JP 63-
67142, JP 63-74634, JP 63-158243, JP 63-1700
No. 31, JP-A-63-188040, etc.), or those using graphite and/or carbon-based particles as conductive substances in the intermediate resin layer (JP-A-62-154405).
JP-A No. 63-158242, etc.) are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、複合型制振材料には、先ず第一に損失係数の
値が高いこと、粘弾性組成物で構成される粘弾性中間層
と金属層との間の接着強度が高いことが要求されるが、
上記した従来の粘弾性組成物で製造される複合型制振材
料においては、そのいずれの性能についても問題があり
充分満足し得るものではなかった。特に、常温付近で高
い制振性能を発揮させるために、ガラス転移温度を室温
以下に設定する必要があり、従来の公知の樹脂ではガラ
ス転移温度を下げると接着強度が大幅に低下するため、
高い接着性が要求される用途では使用できないでいた。
By the way, first of all, composite damping materials are required to have a high value of loss coefficient and high adhesive strength between the viscoelastic intermediate layer made of a viscoelastic composition and the metal layer. but,
Composite vibration damping materials manufactured using the above-mentioned conventional viscoelastic compositions have problems in all of their performances and are not fully satisfactory. In particular, in order to exhibit high vibration damping performance near room temperature, it is necessary to set the glass transition temperature below room temperature, and with conventional known resins, lowering the glass transition temperature significantly reduces the adhesive strength.
It could not be used in applications requiring high adhesiveness.

また、表皮材に鋼板を用いた制振鋼板の場合、上記特性
の他にさらに電気抵抗溶接性を持たせる必要があるが、
従来の粘弾性樹脂では電気抵抗溶接性を付与する為に導
電性を有する粒子を添加すると接着強度が樹脂のみの場
合に比べ大幅に低下する傾向があった。
In addition, in the case of vibration-damping steel plates that use steel plates as the skin material, it is necessary to have electric resistance weldability in addition to the above characteristics.
In conventional viscoelastic resins, when conductive particles are added to impart electrical resistance weldability, the adhesive strength tends to be significantly lower than when the resin is used alone.

従って、前記した従来技術の状況に鑑み、本発明制振鋼
板用粘弾性樹脂組成物として常温における接着強度が高
く、かつ、常温付近での制振性能を高度に保ちながら、
良好な電気抵抗溶接性を付与し得る制振材料用粘弾性樹
脂組成物を開発することが本発明の目的である。
Therefore, in view of the above-mentioned state of the prior art, the viscoelastic resin composition for damping steel plates of the present invention has high adhesive strength at room temperature and maintains high vibration damping performance near room temperature.
It is an object of the present invention to develop a viscoelastic resin composition for damping materials that can provide good electrical resistance weldability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、粘弾性制振樹脂に、導電性を有する粒子と平
均粒径が樹脂層厚の1/3以下である無機粉末成分とを
配合して成る制振材料用粘弾性樹脂組成物であり、特に
無機粉末成分として、樹脂固形分100重量部に対し、
炭酸カルシウム1〜250重量部、より好ましくは1〜
150重量部配合置部もの、或いは無機粉末成分として
、樹脂固形分100重量部に対し、シリカ1〜50重量
部、より好ましくは1〜25重量部配合したもの、或い
は無機粉末成分として、樹脂固形分100重量部に対し
、カオリン1〜50重量部、より好ましくは1〜25重
量部配置部たものであることが望ましい。
The present invention is a viscoelastic resin composition for a vibration damping material, which is made by blending conductive particles and an inorganic powder component with an average particle size of 1/3 or less of the resin layer thickness into a viscoelastic vibration damping resin. In particular, as an inorganic powder component, per 100 parts by weight of resin solid content,
1 to 250 parts by weight of calcium carbonate, more preferably 1 to 250 parts by weight
150 parts by weight of silica, or as an inorganic powder component, 1 to 50 parts by weight, more preferably 1 to 25 parts by weight of silica, per 100 parts by weight of resin solids, or as an inorganic powder component, resin solids It is desirable that the amount of kaolin be 1 to 50 parts by weight, more preferably 1 to 25 parts by weight, per 100 parts by weight.

〔作用〕[Effect]

本発明の制振材料用粘弾性樹脂組成物に使用される粘弾
性制振樹脂は制振性能向上の点から非品性であることが
望ましい。そのような樹脂としては、例えば、非品性ポ
リエステル、非品性ポリアミド、非品性ポリアミドイミ
ド、ポリイミド、ポリウレタン、ポリウレタンウレア、
ポリウレア、アクリル系樹脂、エポキシ系樹脂、酢酸ビ
ニル系樹脂、非品性ポリオレフィン樹脂、又は各種樹脂
をブレンドしたものや共重合体等が挙げられる。
The viscoelastic damping resin used in the viscoelastic resin composition for damping material of the present invention is desirably of poor quality from the viewpoint of improving damping performance. Examples of such resins include non-grade polyester, non-grade polyamide, non-grade polyamideimide, polyimide, polyurethane, polyurethane urea,
Examples include polyurea, acrylic resin, epoxy resin, vinyl acetate resin, non-grade polyolefin resin, and blends and copolymers of various resins.

高温での接着性を向上させる目的で架橋剤を用いても良
い。
A crosslinking agent may be used for the purpose of improving adhesiveness at high temperatures.

本発明は、上記粘弾性制振樹脂に無機粉末成分を配合す
ることを特徴とする。複合型制振材料の接着剤として本
発明の制振材料用粘弾性樹脂組成物を用いることにより
常温における樹脂単身の接着強度より高い接着強度が得
られ、制振性能を高度に確保できるものである。粘弾性
制振樹脂に無機粉末を充填することにより樹脂全体の剛
性が高まるため接着強度が向上するものと考えられる。
The present invention is characterized in that an inorganic powder component is blended into the viscoelastic damping resin. By using the viscoelastic resin composition for vibration damping materials of the present invention as an adhesive for composite vibration damping materials, adhesive strength higher than that of the resin alone at room temperature can be obtained, and a high level of vibration damping performance can be ensured. be. It is thought that by filling the viscoelastic vibration damping resin with inorganic powder, the rigidity of the entire resin increases, thereby improving the adhesive strength.

無機粉末の種類としては広範囲なものを使用できるが、
上記粘弾性制振樹脂のガラス転移点に与える影響が少な
く、制振性能に悪影響を及ぼさない無機粉末を使用する
のが好ましい。特に、炭酸カルシウム、シリカ、カオリ
ン、カーボンブラック、アルミナ、酸化チタン、亜鉛華
、マイカ、黒鉛等が本発明の目的に対して望ましい特性
を有する。これらの無機粉末は単独状態は勿論、混合し
た状態で使用しても同様の効果を発揮することができる
。粘弾性制振樹脂に添加する無機粉末成分は樹脂との界
面密着性を向上させる目的で種々の表面改質剤による表
面改質を施しても良い。そのような表面改質剤としては
シランカップリング剤、チタネートカップリング剤等の
無機系改質剤または有機系ブライマー等が挙げられる。
A wide range of inorganic powders can be used, but
It is preferable to use an inorganic powder that has little influence on the glass transition point of the viscoelastic vibration damping resin and does not adversely affect the vibration damping performance. In particular, calcium carbonate, silica, kaolin, carbon black, alumina, titanium oxide, zinc white, mica, graphite, etc. have desirable properties for the purpose of the present invention. These inorganic powders can exhibit similar effects when used alone or in a mixed state. The inorganic powder component added to the viscoelastic damping resin may be surface-modified with various surface modifiers for the purpose of improving interfacial adhesion with the resin. Examples of such surface modifiers include inorganic modifiers such as silane coupling agents and titanate coupling agents, and organic brimers.

本発明に用いる無機粉末成分の粒径は中間樹脂層厚の1
/3以下にすることが好ましく、粒径をこのようにする
ことにより樹脂単体の場合に得られる接着強度より高い
接着強度を得ることができる。本発明に用いる無機粉末
成分の粒径が中間樹脂層厚の1/3を越えると接着強度
が低下するので好ましくない。これは無機粉末の平均粒
径が樹脂層厚の1/3を越えると粒子と樹脂の界面に欠
陥が発生し易くなるため接着強度が低下すると考えられ
る。例えば、後述の実施例において、中間樹脂層厚が0
.05mmの場合では、粒径14μmの炭酸カルシウム
迄は本発明の効果は認められるが、粒径17μmのシリ
カ、21μmのカオリン、90amの炭酸カルシウムを
用いた場合には本発明の所望の効果が認められない。ま
た添加する無機粉末成分として炭酸カルシウムを樹脂固
形分100重量部に対し、1〜250重量部、より好ま
しくは1〜150重量部で添加することにより、制振性
能を低下させることな(接着強度を大幅に向上させるこ
とが可能となる。尚この場合、粒径の細かい粒子はど多
量に添加することができる。炭酸カルシウムの添加量が
樹脂固形分100重量部に対して250重量部を越える
と常温での制振性能及び接着性能が著しく低下するので
好ましくない。同様にシリカ及びカオリンを添加した場
合添加量が樹脂固形分100重量部に対して1〜50重
量部、より好ましくは1〜25重量部の範囲において制
振性能を低下させることなく接着強度を大幅に向上させ
ることが可能となる。添加量が樹脂固形分100重量部
に対して1〜50重量部の範囲を越えると常温での接着
性能が著しく低下するので好ましくない。無機粉末の添
加量が成る一定量を越えた場合に、接着強度及び制振性
能がともに低下するのは、粘弾性制振樹脂の占める割合
が減り、樹脂にかかる応力が大きくなりすぎるためと考
えられる。
The particle size of the inorganic powder component used in the present invention is 1 part of the intermediate resin layer thickness.
It is preferable to set the particle size to 1/3 or less, and by setting the particle size in this manner, it is possible to obtain an adhesive strength higher than that obtained when using the resin alone. If the particle size of the inorganic powder component used in the present invention exceeds 1/3 of the thickness of the intermediate resin layer, it is not preferable because the adhesive strength will decrease. This is considered to be because when the average particle size of the inorganic powder exceeds 1/3 of the resin layer thickness, defects tend to occur at the interface between the particles and the resin, resulting in a decrease in adhesive strength. For example, in the examples described below, the intermediate resin layer thickness is 0.
.. In the case of 05 mm, the effect of the present invention was observed up to calcium carbonate with a particle size of 14 μm, but the desired effect of the present invention was observed when using silica with a particle size of 17 μm, kaolin with a particle size of 21 μm, and calcium carbonate with a particle size of 90 μm. I can't. In addition, by adding calcium carbonate as an inorganic powder component in an amount of 1 to 250 parts by weight, more preferably 1 to 150 parts by weight, based on 100 parts by weight of the resin solid content, it is possible to avoid deteriorating vibration damping performance (adhesive strength). In this case, fine particles can be added in large quantities.The amount of calcium carbonate added exceeds 250 parts by weight per 100 parts by weight of resin solid content. If silica and kaolin are added, the amount of addition is 1 to 50 parts by weight, more preferably 1 to 50 parts by weight, based on 100 parts by weight of resin solid content. In the range of 25 parts by weight, it is possible to significantly improve the adhesive strength without reducing vibration damping performance.If the amount added exceeds the range of 1 to 50 parts by weight per 100 parts by weight of resin solid content, it is possible to improve the adhesive strength at room temperature. This is undesirable because the adhesion performance deteriorates markedly.If the amount of inorganic powder added exceeds a certain amount, both the adhesive strength and vibration damping performance decrease because the proportion of the viscoelastic vibration damping resin decreases. This is thought to be because the stress applied to the resin becomes too large.

本発明は、上記粘弾性樹脂組成物に、更に電気抵抗溶接
性を付与する目的で導電性を有する粒子を配合したこと
を特徴とする。粘弾性樹脂に無機粉末成分と導電性を有
する粒子とを混合添加することにより、粘弾性樹脂のみ
を使用した場合の接着強度より高い接着強度を確保しつ
つ、高い制振性能を保持し、且つ良好な電気抵抗溶接性
を得ることが可能となる。
The present invention is characterized in that conductive particles are further blended into the viscoelastic resin composition for the purpose of imparting electrical resistance weldability. By mixing and adding an inorganic powder component and conductive particles to the viscoelastic resin, it is possible to maintain high vibration damping performance while ensuring a higher adhesive strength than when using only the viscoelastic resin. It becomes possible to obtain good electric resistance weldability.

本発明において、導電性を有する粒子としては広範な種
類の導電性粒子が使用可能であり、特に限定されるもの
ではないが、これらの導電性を有する粒子としては、良
好な導電性が得られる金属物質を使用するのが特に好ま
しい。そのような粒子としては、例えばステンレス、銅
、黄銅、ニッケル等を粉末状に加工した金属物質、銅メ
ツキ処理したガラス粒子、ニッケルメッキ処理したガラ
ス粒子、又はカーボンブラック、グラファイト等の導電
性炭素質物質等を挙げることができる。これらの導電性
物質は単独で使用できるほか、2種以上を組合せて使用
することもできる。またより良好な導電性を発現させる
ためには制振材料に挟みこまれた後の粒子の厚みが中間
樹脂層の厚みの0.8〜1.0倍であるのが好ましい。
In the present invention, a wide variety of conductive particles can be used as the conductive particles, and although there are no particular limitations, these conductive particles can provide good conductivity. Particular preference is given to using metallic substances. Such particles include, for example, metal substances made of powdered stainless steel, copper, brass, nickel, etc., copper-plated glass particles, nickel-plated glass particles, or conductive carbon materials such as carbon black and graphite. Examples include substances. These conductive substances can be used alone or in combination of two or more. Further, in order to exhibit better conductivity, it is preferable that the thickness of the particles after being sandwiched between the vibration damping materials is 0.8 to 1.0 times the thickness of the intermediate resin layer.

また導電性を有する粒子の好ましい添加量は、中間層に
対する容量%で0.5〜10%にするのが好ましく、こ
の範囲で添加するかぎり、接着強度は損なわれない。
The amount of conductive particles to be added is preferably 0.5 to 10% by volume relative to the intermediate layer, and as long as the amount is within this range, the adhesive strength will not be impaired.

〔実施例〕〔Example〕

以下、実施例により、本発明について詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

1〜11び 1〜9 エポキシ架橋ポリエステル樹脂を基本樹脂とし、これに
無機粉末成分及び導電性を有する粒子として、平均粒径
0.05mmのニッケル粉を第1表及び第2表に示した
通りに加え、粘弾性樹脂組成物を作成した。
1 to 11 and 1 to 9 Epoxy crosslinked polyester resin is used as the basic resin, and nickel powder with an average particle size of 0.05 mm is used as an inorganic powder component and conductive particles as shown in Tables 1 and 2. In addition, a viscoelastic resin composition was created.

作成した粘弾性樹脂組成物を0.8mm厚のリン酸塩処
理鋼板2枚の間に0.05mm厚ではさみ込み複合型制
振金属板を作成し、その剪断接着強度をJISK 68
50に準じて測定した。又、制振性能は振動周波数50
082における損失係数を求めた。さらに、溶接性につ
いては、複合型制振金属板を実際の溶接機に取りつけ、
250kgf 、9.6kA、10サイクルの条件で溶
接試験を行い、判定した。
The created viscoelastic resin composition was sandwiched at a thickness of 0.05 mm between two 0.8 mm thick phosphate-treated steel plates to create a composite vibration damping metal plate, and its shear adhesive strength was measured according to JISK 68.
Measured according to No. 50. In addition, the vibration damping performance has a vibration frequency of 50
The loss coefficient at 082 was determined. Furthermore, regarding weldability, we attached the composite vibration damping metal plate to an actual welding machine.
A welding test was conducted under the conditions of 250 kgf, 9.6 kA, and 10 cycles, and the judgment was made.

実施例1.2.3及び4は、粒径1.4μmの炭酸カル
シウムと導電性を有する粒子を加えたサンプルである。
Examples 1.2.3 and 4 are samples in which calcium carbonate having a particle size of 1.4 μm and conductive particles were added.

無機粉末成分を加えていない、比較例1及び2のサンプ
ルと比べ、剪断接着強度の増加が認められる。又、制振
性能は常温付近における損失係数で0.1以上であり、
高い性能を保っている。同様に、実施例5及び6は粒径
14μmの炭酸カルシウムと導電性を有する粒子を加え
たサンプル、実施例7及び8は粒径2.6μmのシリカ
と導電性を有する粒子を加えたサンプル、実施例9及び
10は粒径2.5μmのカオリンと導電性を有する粒子
を加えたサンプルであり、無機粉末成分を加えていない
、比較例1及び2のサンプルと比べ、剪断接着強度の増
加が認められる。実施例11は、炭酸カルシウム、シリ
カ及びカオリンを混合添加した例であり無機粉末を混合
添加しても性能は劣化していない。比較例3,4,5,
6,7.8及び9は、導電性を有する粒子を加えた他、
無機粉末成分を過剰に加えたサンプル又は粒径が中間樹
脂層厚の1/3を越えた無機粉末成分を加えたサンプル
であり、剪断接着強度が極めて低くなっている。又、制
振性能も0.1に満たないサンプルも認められる。
An increase in shear adhesive strength is observed compared to the samples of Comparative Examples 1 and 2 to which no inorganic powder component was added. In addition, the vibration damping performance has a loss coefficient of 0.1 or more near normal temperature,
Maintains high performance. Similarly, Examples 5 and 6 are samples in which calcium carbonate with a particle size of 14 μm and conductive particles are added, Examples 7 and 8 are samples in which silica with a particle size of 2.6 μm and conductive particles are added, Examples 9 and 10 are samples in which kaolin with a particle size of 2.5 μm and conductive particles were added, and the shear adhesive strength increased compared to the samples of Comparative Examples 1 and 2, in which no inorganic powder components were added. Is recognized. Example 11 is an example in which calcium carbonate, silica, and kaolin were mixed and added, and the performance did not deteriorate even if inorganic powder was mixed and added. Comparative examples 3, 4, 5,
6, 7.8 and 9 added conductive particles, and
This is a sample in which an excessive amount of inorganic powder component is added, or a sample in which an inorganic powder component whose particle size exceeds 1/3 of the thickness of the intermediate resin layer is added, and the shear adhesive strength is extremely low. In addition, some samples with damping performance of less than 0.1 were also observed.

〔発明の効果〕〔Effect of the invention〕

本発明による制振材用粘弾性樹脂組成物を用いて作成し
た複合型制振金属板は、無機粉末成分を含まない粘弾性
樹脂組成物を用いて作成した複合型制振金属板に比べ、
常温における接着強度が高く、かつ制振性能を高度に保
つことができ、さらに、導電性を有する粒子によって電
気抵抗溶接も可能である。このように、本発明による粘
弾性樹脂組成物は、制振材料用粘弾性樹脂組成物として
極めて有用である。
The composite vibration damping metal plate made using the viscoelastic resin composition for damping material according to the present invention has a higher level of vibration damping than the composite vibration damping metal plate made using the viscoelastic resin composition containing no inorganic powder component.
It has high adhesive strength at room temperature, can maintain high vibration damping performance, and can also be used for electric resistance welding due to the conductive particles. Thus, the viscoelastic resin composition according to the present invention is extremely useful as a viscoelastic resin composition for vibration damping materials.

以下余白Margin below

Claims (1)

【特許請求の範囲】 1、粘弾性制振樹脂に、導電性を有する粒子と平均粒径
が樹脂層厚の1/3以下である無機粉末成分とを配合し
て成ることを特徴とする制振材料用粘弾性樹脂組成物。 2、無機粉末成分として、樹脂固形分100重量部に対
し、炭酸カルシウム1〜250重量部配合して成ること
を特徴とする請求項1記載の制振材料用粘弾性樹脂組成
物。 3、無機粉末成分として、樹脂固形分100重量部に対
し、シリカ1〜50重量部配合して成ることを特徴とす
る請求項1記載の制振材料用粘弾性樹脂組成物。 4、無機粉末成分として、樹脂固形分100重量部に対
し、カオリン1〜50重量部配合して成ることを特徴と
する請求項1記載の制振材料用粘弾性樹脂組成物。
[Scope of Claims] 1. A control characterized by blending conductive particles and an inorganic powder component with an average particle size of 1/3 or less of the resin layer thickness into a viscoelastic vibration damping resin. Viscoelastic resin composition for vibration materials. 2. The viscoelastic resin composition for vibration damping materials according to claim 1, characterized in that 1 to 250 parts by weight of calcium carbonate is blended as an inorganic powder component with respect to 100 parts by weight of resin solid content. 3. The viscoelastic resin composition for vibration damping materials according to claim 1, characterized in that 1 to 50 parts by weight of silica is blended as an inorganic powder component with respect to 100 parts by weight of resin solid content. 4. The viscoelastic resin composition for vibration damping materials according to claim 1, wherein the inorganic powder component is 1 to 50 parts by weight of kaolin per 100 parts by weight of resin solid content.
JP25701289A 1989-10-03 1989-10-03 Viscoelastic resin composition for vibration damper Pending JPH03119063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25701289A JPH03119063A (en) 1989-10-03 1989-10-03 Viscoelastic resin composition for vibration damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25701289A JPH03119063A (en) 1989-10-03 1989-10-03 Viscoelastic resin composition for vibration damper

Publications (1)

Publication Number Publication Date
JPH03119063A true JPH03119063A (en) 1991-05-21

Family

ID=17300503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25701289A Pending JPH03119063A (en) 1989-10-03 1989-10-03 Viscoelastic resin composition for vibration damper

Country Status (1)

Country Link
JP (1) JPH03119063A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571176A1 (en) * 2004-03-01 2005-09-07 Mitsubishi Gas Chemical Company, Inc. Resin composition with high vibration damping ability
JP2006052377A (en) * 2004-03-01 2006-02-23 Mitsubishi Gas Chem Co Inc Resin composition with high vibration damping property
JP2007051735A (en) * 2005-08-19 2007-03-01 Mitsubishi Gas Chem Co Inc Vibration damping member for pipe arrangement
JP2007051238A (en) * 2005-08-19 2007-03-01 Mitsubishi Gas Chem Co Inc Vibration-damping member for disk type recording medium
JP2007056165A (en) * 2005-08-25 2007-03-08 Mitsubishi Gas Chem Co Inc Highly vibration-damping coating
JP2007054235A (en) * 2005-08-24 2007-03-08 Mitsubishi Gas Chem Co Inc High damping shoe sole
EP2050983A1 (en) * 2006-08-09 2009-04-22 Mitsubishi Gas Chemical Company, Inc. Vibration-damping material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571176A1 (en) * 2004-03-01 2005-09-07 Mitsubishi Gas Chemical Company, Inc. Resin composition with high vibration damping ability
JP2006052377A (en) * 2004-03-01 2006-02-23 Mitsubishi Gas Chem Co Inc Resin composition with high vibration damping property
JP2007051735A (en) * 2005-08-19 2007-03-01 Mitsubishi Gas Chem Co Inc Vibration damping member for pipe arrangement
JP2007051238A (en) * 2005-08-19 2007-03-01 Mitsubishi Gas Chem Co Inc Vibration-damping member for disk type recording medium
JP2007054235A (en) * 2005-08-24 2007-03-08 Mitsubishi Gas Chem Co Inc High damping shoe sole
JP2007056165A (en) * 2005-08-25 2007-03-08 Mitsubishi Gas Chem Co Inc Highly vibration-damping coating
EP2050983A1 (en) * 2006-08-09 2009-04-22 Mitsubishi Gas Chemical Company, Inc. Vibration-damping material
EP2050983A4 (en) * 2006-08-09 2010-11-17 Mitsubishi Gas Chemical Co Vibration-damping material
US8030388B2 (en) 2006-08-09 2011-10-04 Mitsubishi Gas Chemical Company, Inc. Vibration-damping material

Similar Documents

Publication Publication Date Title
US3399103A (en) Vibration damping composition and laminated construction
US3399104A (en) Vibration damping composition and laminated construction
JPH03119063A (en) Viscoelastic resin composition for vibration damper
JPS61185554A (en) Sprayable plastisol composition and sound-absorbing material
JPS62152750A (en) Viscoelastic composition for vibration-damping material
JPH0354261A (en) Viscoelastic resin composition for vibration-damping material
EP3118273B1 (en) Multilayer material usable particularly as damping material
JP7377977B2 (en) Surface treatment composition for damping steel plate and damping steel plate
JPH07157740A (en) Adhesive resin composition
JPH05200938A (en) Resin composite type damping metal plate
JPS6375056A (en) Visco-elastic composition for composite-type vibration-damping material
JPS5836450A (en) Viscous elastic mixture for vibration inhibiting material
JPH02273231A (en) Composite damping material for room temperature
JP5436027B2 (en) Seismic isolation structure plug and seismic isolation structure
JPS598368B2 (en) Viscoelastic mixture for vibration damping parts
JPH0791490A (en) Viscoelastic composition for damping material and resin complex type damping metallic sheet using the composition
JPS6149337B2 (en)
KR20210078970A (en) Surface treatment composition for vibration damping steel sheet and vibration damping steel sheet
JPS62158777A (en) Panel damping material
JPH03167283A (en) Adhesive composition for aluminum alloy
JPH0420557A (en) Powder coating composition for sealing electric and electronic parts
JPH0777781B2 (en) Damping floor base material
JPS60238342A (en) Polymer composition and vibration damper
JPH03759A (en) Viscoelastic resin for vibration damper
JPS5920658A (en) Vibration absorbing material laminated