[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03117617A - Cooling structure of internal combustion engine - Google Patents

Cooling structure of internal combustion engine

Info

Publication number
JPH03117617A
JPH03117617A JP1255030A JP25503089A JPH03117617A JP H03117617 A JPH03117617 A JP H03117617A JP 1255030 A JP1255030 A JP 1255030A JP 25503089 A JP25503089 A JP 25503089A JP H03117617 A JPH03117617 A JP H03117617A
Authority
JP
Japan
Prior art keywords
generating element
cooling
internal combustion
combustion engine
intake pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1255030A
Other languages
Japanese (ja)
Inventor
Urataro Asaka
浅香 浦太郎
Toshiyuki Azuma
東 敏行
Kiyoshi Katahira
片平 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP1255030A priority Critical patent/JPH03117617A/en
Publication of JPH03117617A publication Critical patent/JPH03117617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To effectively cool a high temperature portion without a cooling medium in a simple structure by operating a thermal electric power generating element installed on the high temperature portion of an internal combustion engine according to a control signal from a control device. CONSTITUTION:A ring-shaped thermal electric power generating element 18 for cooling an intake pipe 11 is installed on the outer periphery on the intake port 7 side of the intake pipe 11. The outer periphery of a cylinder 2 is covered with a cylindrical thermal electric power generating element 20 formed by the same material as the thermal generating element 18. In this arrangement, when the thermal electric power generating element 18 is operated by a control device 16 at the time of long time low speed running at high outside air temperature, heat energy absorbed from the intake pipe 11 is converted into electric energy, whereby the intake pipe 11 is positively cooled. Cooling for the cylinder 2 is performed by operating the thermal electric power generating element 20 by a control device 16. Accordingly, an internal combustion engine E can be cooled without a cooling medium such as cooling water, cooling air or the like.

Description

【発明の詳細な説明】 A8発明の目的 (1)産業上の利用分野 本発明は、内燃機関の運転により加熱されて高温になる
シリンダや吸気管を、冷却水や冷却風を用いることなく
冷却する内燃機関の冷却構造に関する。
Detailed Description of the Invention A8 Purpose of the Invention (1) Industrial Application Field The present invention is a method for cooling cylinders and intake pipes that are heated to high temperatures by the operation of an internal combustion engine without using cooling water or cooling air. This invention relates to a cooling structure for an internal combustion engine.

(2)従来の技術 従来の内燃機関の冷却方式は水冷式と空冷式に大別され
、水冷式の場合にはシリンダブロックやシリンダヘッド
に形成したウォータジャケットにウォータポンプで冷却
水を供給して冷却を行い、温度上昇した冷却水はラジェ
ータおよびラジェータファンにより冷却している。また
、空冷式の場合にはシュラウド等を介して導入した冷却
風を高温部に形成したフィンに当てることにより冷却を
行っている。
(2) Conventional technology Conventional cooling systems for internal combustion engines are broadly divided into water-cooling and air-cooling. In the case of water-cooling, a water pump supplies cooling water to a water jacket formed in the cylinder block or cylinder head. Cooling water, whose temperature has risen, is cooled by a radiator and a radiator fan. In the case of an air-cooled type, cooling is performed by applying cooling air introduced through a shroud or the like to fins formed in the high temperature section.

(3)発明が解決しようとする課題 しかしながら、上述の水冷式あるいは空冷式のいずれの
冷却方式によっても、ウォータジャケット、ウォータポ
ンプ、ラジェータ、ラジェータファン、シュラウド、フ
ィン等を必要とし、これが重量増加、コスト上昇、メン
テナンスの困難化の要因となっている。また、キャブレ
タと吸気ボート間を接続する吸気管もインシュレータを
介して取り付けてあっても極端な条件下では過熱状態に
なる場合があった。このためにパーコレーション等が発
生する不都合がある。
(3) Problems to be Solved by the Invention However, with either the water-cooling type or the air-cooling type described above, water jackets, water pumps, radiators, radiator fans, shrouds, fins, etc. are required, which increases weight and This is a factor that increases costs and makes maintenance difficult. Furthermore, even if the intake pipe connecting the carburetor and the intake boat is installed via an insulator, it may become overheated under extreme conditions. For this reason, there is an inconvenience that percolation and the like occur.

本発明は、前述の事情に鑑みてなされたもので、内燃機
関の高温部を水や空気等の冷媒を用いることなく、簡単
な構造で効果的に冷却することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to effectively cool a high-temperature section of an internal combustion engine with a simple structure without using a refrigerant such as water or air.

B1発明の構成 (1)課題を解決するための手段 前記目的を達成するために、本発明は、内燃機関の高温
部に、該高温部から奪った熱エネルギーを電気エネルギ
ーに変換する熱発電素子を装着し、制御装置からの制御
信号に基づいて前記熱発電素子を作動させて前記高温部
を冷却することを第1の特徴とする。
B1 Structure of the Invention (1) Means for Solving the Problems In order to achieve the above-mentioned object, the present invention provides a thermoelectric power generating element, which is installed in a high-temperature section of an internal combustion engine and converts thermal energy taken from the high-temperature section into electrical energy. The first feature is that the thermoelectric power generating element is cooled by attaching the thermoelectric generator and operating the thermoelectric generating element based on a control signal from a control device.

また、本発明は前記第1の特徴に加えて、熱発電素子を
バッテリに接続し、このバッテリを前記熱発電素子が発
電した電力で充電することを第2の特徴とする。
In addition to the first feature, the present invention has a second feature that the thermoelectric power generation element is connected to a battery, and the battery is charged with the electric power generated by the thermoelectric power generation element.

更に、本発明は前記第1の特徴に加えて、前記熱発電素
子が、珪化鉄にマンガンを添加してなるn型半導体と、
珪化鉄にコバルトを添加してなるn型半導体の積層体か
ら構成されることを第3の特徴とする。
Furthermore, in addition to the first feature, the present invention provides that the thermoelectric generating element includes an n-type semiconductor formed by adding manganese to iron silicide;
The third feature is that it is composed of a stack of n-type semiconductors made by adding cobalt to iron silicide.

(2)作 用 前述の本発明の第1の特徴によれば、内燃機関の高温部
に装着した熱発電素子が制御装置からの制御信号によっ
て作動すると、高温部の熱エネルギーが熱発電素子によ
って電気エネルギーに変換され、その結果該高温部の冷
却が行われる。
(2) Effect According to the above-described first feature of the present invention, when the thermoelectric generating element installed in the high temperature section of the internal combustion engine is activated by a control signal from the control device, the thermal energy of the high temperature section is transferred by the thermoelectric generating element. It is converted into electrical energy, resulting in cooling of the hot part.

また、本発明の第2の特徴によれば、高温部から奪われ
た熱エネルギーが熱発電素子によって電気エネルギーに
変換され、この電気エネルギーがバッテリの充電に利用
される。これによりジェネレータの省略あるいは小型化
が可能となる。
According to the second feature of the present invention, thermal energy taken from the high temperature section is converted into electrical energy by the thermoelectric generating element, and this electrical energy is used to charge the battery. This makes it possible to omit or downsize the generator.

更に、本発明の第3の特徴によれば、珪化鉄にコバルト
あるいはマンガンを添加した半導体を用いることにより
、高性能で製造の容易な熱発電素子を安価に得ることが
できる。
Furthermore, according to the third feature of the present invention, by using a semiconductor in which cobalt or manganese is added to iron silicide, a high-performance, easy-to-manufacture thermoelectric power generation element can be obtained at low cost.

(3)実施例 以下、図面に基づいて本発明の詳細な説明する。(3) Examples Hereinafter, the present invention will be explained in detail based on the drawings.

図面は自動二輪車に搭載される4サイクル内燃機関を示
すもので、この機関Eはクランクケース1から延びるシ
リンダ2と、このシリンダ2の頂部に装着されるシリン
ダへラド3とを備えている。
The drawing shows a four-stroke internal combustion engine mounted on a motorcycle, and this engine E includes a cylinder 2 extending from a crankcase 1 and a cylinder head 3 attached to the top of the cylinder 2.

クランクケース1に軸支したクランクシャフト4とシリ
ンダ2に摺動自在に嵌合するピストン5はコネクティン
グロッド6を介して連結されており、シリンダへラド3
に形成した吸気ポート7と排気ポート8には各々吸気弁
9と排気弁10が装着されている。
A crankshaft 4 supported by a crankcase 1 and a piston 5 slidably fitted into a cylinder 2 are connected via a connecting rod 6.
An intake valve 9 and an exhaust valve 10 are attached to the intake port 7 and the exhaust port 8, respectively, which are formed in the intake port 7 and the exhaust port 8, respectively.

吸気ポート7から上方に延びて中間部において水平方向
に彎曲する吸気管11の上流端にはスロットル弁を内装
した周知のキャブレフ12が装着されており、このキャ
ブレフ12において燃料タンクから供給された燃料とエ
アクリーナから供給されたエアとが混合して霧化し、前
記吸気管11および吸気ポート7を通ってシリンダヘッ
ド3の燃焼室に供給される。
A well-known carburetor 12 equipped with a throttle valve is installed at the upstream end of an intake pipe 11 that extends upward from the intake port 7 and curves horizontally in the middle. The air is mixed with air supplied from the air cleaner, atomized, and supplied to the combustion chamber of the cylinder head 3 through the intake pipe 11 and the intake port 7.

吸気管11のキャブレフ12側の内壁には、該内壁の全
周を覆うように配設した発熱素子13a。
A heating element 13a is disposed on the inner wall of the intake pipe 11 on the carburetor reflex 12 side so as to cover the entire circumference of the inner wall.

13bによって覆われている。この発熱素子13a、1
3bは吸気管11の屈曲方向外側と内側に位置するよう
に2個に分割されて装着されており、スロットル開度を
検出するスロットル開度検出器14、および機関Eの所
定部位の温度を検出する温度検出器15からの検出信号
が入力される制御装置16を介してバッテリ17から給
電される。
13b. This heating element 13a, 1
3b is installed in two parts so as to be located on the outside and inside in the bending direction of the intake pipe 11, and is installed to detect the throttle opening degree detector 14 that detects the throttle opening degree and the temperature of a predetermined part of the engine E. Power is supplied from a battery 17 via a control device 16 to which a detection signal from a temperature sensor 15 is input.

前記発熱素子13a、13bはカーボンの粉末をエポキ
シ樹脂やウレタン樹脂に混合して電気抵抗の大きな厚さ
0.2mm−0,3mmの薄膜状とし、これを耐熱性の
樹脂に挟んでフィルム状に形成したもので、接着剤を用
いて吸気管11の内面に貼着されている。この発熱素子
13a、13bはカーボンおよび樹脂により構成されて
いるために任意の形状に成形することが可能であり、し
かも低コストで製造することができる。
The heating elements 13a and 13b are made by mixing carbon powder with epoxy resin or urethane resin to form a thin film with a thickness of 0.2 mm to 0.3 mm with high electrical resistance, and sandwiching this between heat-resistant resin to form a film. It is attached to the inner surface of the intake pipe 11 using an adhesive. Since the heating elements 13a and 13b are made of carbon and resin, they can be molded into any shape and can be manufactured at low cost.

吸気管11の吸気ポート7側の外周には、該吸気管11
を冷却するためのリング状の熱発電素子18が装着され
ている。熱発電素子18は後で詳述するように一種の半
導体で、制御装置16からの制御信号によって作動して
吸気管11の熱エネルギーを奪い、これを電気エネルギ
ーに変換する機能を有している。熱発電素子18はレギ
ュレータ19介して前記バッテリ17に接続されており
、該熱発電素子18の発電した電力をバッテリ17の充
電に利用している。
On the outer periphery of the intake pipe 11 on the intake port 7 side, the intake pipe 11
A ring-shaped thermoelectric generating element 18 for cooling is attached. The thermoelectric generating element 18 is a type of semiconductor, as will be described in detail later, and has the function of being activated by a control signal from the control device 16 to take away thermal energy from the intake pipe 11 and convert it into electrical energy. . The thermoelectric generator 18 is connected to the battery 17 via a regulator 19, and the electric power generated by the thermoelectric generator 18 is used to charge the battery 17.

上記熱発電素子18は、珪素と鉄の粉末を混合して焼結
した珪化鉄を主成分とし、マンガンを原子数にして約3
.3%添加したp型半導体と、コバルトを原子数にして
約1.7%添加したn型半導体よりなる厚さ0.3圓〜
0.8胴の素子から構成されており、画素子を積層して
直列に接続し、その隙間を伝熱性に優れたホーロー材で
埋めた構造を備えている。そして、上記熱発電素子18
は焼結により形成されるために形状が任意であり、しか
も鉄や珪素等の安価な材料を用いているために低コスト
で製造可能である。
The thermoelectric power generating element 18 is mainly composed of iron silicide, which is obtained by mixing and sintering silicon and iron powder, and contains about 3 manganese atoms.
.. A thickness of 0.3 μm or more consisting of a p-type semiconductor doped with 3% and an n-type semiconductor doped with approximately 1.7% cobalt in atoms.
It is composed of 0.8 cylinder elements, and has a structure in which pixel elements are stacked and connected in series, and the gaps between them are filled with enamel material that has excellent heat conductivity. Then, the thermoelectric generating element 18
Since it is formed by sintering, the shape can be arbitrary, and since it uses inexpensive materials such as iron and silicon, it can be manufactured at low cost.

シリンダ2の外周は前記熱発電素子18と同一の材料で
形成した筒状の熱発電素子20により覆われており、こ
の熱発電素子20もシリンダ2の冷却を行うべ(スロッ
トル開度検出器14と温度検出器15からの検出信号が
入力される制御装置16に接続されて制御されるととも
に、その作動によって発電した電気エネルギーを利用す
べくレギュレータ19を介してバッテリ17に接続され
ている。
The outer periphery of the cylinder 2 is covered with a cylindrical thermoelectric generator 20 made of the same material as the thermoelectric generator 18, and this thermoelectric generator 20 also cools the cylinder 2 (throttle opening detector 14). It is connected to and controlled by a control device 16 to which the detection signal from the temperature sensor 15 is input, and is also connected to a battery 17 via a regulator 19 to utilize the electrical energy generated by its operation.

次に、前述の構成を備えた本発明の実施例の作用につい
て説明する。
Next, the operation of the embodiment of the present invention having the above-described configuration will be explained.

温度検出器15が検出する機関温度Teが所定値以下の
時に機関Eの始動を行う場合には、制御装置16により
バッテリ17から発熱素子13a。
When starting the engine E when the engine temperature Te detected by the temperature detector 15 is below a predetermined value, the control device 16 controls the heating element 13a from the battery 17.

13bに電力が供給され、該発熱素子13a、13bは
速やかに温度上昇する。低温時にキャブレタ12から吸
気管11に供給される燃料は充分に霧化しておらず、比
較的大きな燃料粒子が屈曲した吸気管11の外側に貼着
した発熱素子13aに衝突すると、この燃料粒子は該発
熱素子13aによって加熱されて速やかに蒸発する。一
方、吸気管11の屈曲部の内側に貼着した発熱素子13
bに付着して重力の作用で流下する燃料も、この発熱素
子13bによって加熱されて速やかに蒸発する。このよ
うにして、機関Eの温度が低い冷間始動時に燃料の蒸発
が効果的に行われて始動性が向上する。
Electric power is supplied to the heating elements 13b, and the temperature of the heating elements 13a and 13b quickly rises. The fuel supplied from the carburetor 12 to the intake pipe 11 at low temperatures is not sufficiently atomized, and when relatively large fuel particles collide with the heating element 13a attached to the outside of the bent intake pipe 11, the fuel particles It is heated by the heating element 13a and evaporates quickly. On the other hand, the heating element 13 attached to the inside of the bent part of the intake pipe 11
The fuel that adheres to b and flows down due to the action of gravity is also heated by this heating element 13b and quickly evaporates. In this way, fuel is effectively evaporated during a cold start when the temperature of the engine E is low, improving startability.

機関Eの始動後も機関温度Teが100°C以下でスロ
ットル開度Thが50%以下のときは、発熱素子13a
、13bへの給電を継続して機関Eの暖気運転をスムー
ズに行わせ、機関温度Teが100℃に達すると暖気運
転が終了したとして発熱素子13a、13bに対する給
電を中止する。
Even after the engine E has started, if the engine temperature Te is 100°C or less and the throttle opening Th is 50% or less, the heating element 13a
, 13b is continued to smoothly warm up the engine E, and when the engine temperature Te reaches 100° C., it is assumed that the warm-up operation has ended and the power supply to the heating elements 13a and 13b is stopped.

ただし、機関温度Teが100°C以下であってもスロ
ットル開度Thが50%以上である場合は、機関Eの高
出力が要求される時であり、この場合には発熱素子13
a、13bへの給電は行われない。
However, even if the engine temperature Te is 100°C or less, if the throttle opening Th is 50% or more, high output of the engine E is required, and in this case, the heating element 13
Power is not supplied to a and 13b.

発熱素子13a、13bによる吸気管11の加熱は、上
記冷間始動時以外にも、例えば寒冷時に吸気管11がオ
ーバークールによるアイシングを起こす可能性のある時
にも行われる。
Heating of the intake pipe 11 by the heat generating elements 13a and 13b is performed not only at the time of the above-mentioned cold start, but also when the intake pipe 11 is likely to cause icing due to overcooling, for example, in cold weather.

逆に、外気温が高い時に長時間の低速走行を行うと、キ
ャブレタ12から吸気管11に供給される燃料の流量が
減少して燃料による吸気管11の冷却が期待できなくな
る。このような場合には、制御装置16によって熱発電
素子18が作動し、吸気管11から吸収した熱エネルギ
ーを電気エネルギーに変換することにより該吸気管11
を積極的に冷却する。このようにして、発熱素子13a
On the other hand, if the vehicle is driven at low speed for a long time when the outside temperature is high, the flow rate of fuel supplied from the carburetor 12 to the intake pipe 11 decreases, and cooling of the intake pipe 11 by the fuel cannot be expected. In such a case, the thermoelectric generating element 18 is activated by the control device 16 to convert the thermal energy absorbed from the intake pipe 11 into electrical energy.
Actively cool down. In this way, the heating element 13a
.

13bと熱発電素子18を選択的に作動させることによ
り、吸気管11の温度を適温に保つことができる。また
、機関Eの停止直後には燃料による冷却が全く行われな
くなり、しかも高温のシリンダヘッド3からの伝熱によ
り吸気管11の温度が急激に上昇するが、このような場
合には機関Eの停止後に例えば15分間だけ熱発電素子
18を作動させることにより吸気管11の過熱が防止さ
れる。
By selectively operating the thermoelectric generator 13b and the thermoelectric generator 18, the temperature of the intake pipe 11 can be maintained at an appropriate temperature. Furthermore, immediately after the engine E stops, cooling by fuel is not performed at all, and the temperature of the intake pipe 11 rises rapidly due to heat transfer from the high-temperature cylinder head 3. Overheating of the intake pipe 11 is prevented by operating the thermoelectric generating element 18 for, for example, 15 minutes after the engine stops.

上述の吸気管11の冷却に伴って熱発電素子18が発電
した電力は、レギュレータ19を介してバッテリ17に
供給されて充電に利用される。これにより、従来のバッ
テリ充電用のジェネレータを廃止、あるいは小型化する
ことができる。
Electric power generated by the thermoelectric generating element 18 as the intake pipe 11 is cooled is supplied to the battery 17 via the regulator 19 and used for charging. This allows the conventional battery charging generator to be abolished or downsized.

また、従来冷却用のフィンによって行われていたシリン
ダ2の冷却も、その外周に装着した熱発電素子20によ
り行われ、冷却により発電された電力は前述と同様にバ
ッテリ17の充電に利用される。
In addition, the cooling of the cylinder 2, which was conventionally performed by cooling fins, is also performed by the thermoelectric generating element 20 attached to the outer periphery of the cylinder 2, and the electric power generated by cooling is used to charge the battery 17 as described above. .

以上、本発明の実施例を詳述したが、本発明は、前記実
施例に限定されるものではなく、特許請求の範囲に記載
された本発明を逸脱することなく種々の小設計変更を行
うことが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the embodiments described above, and various small design changes can be made without departing from the scope of the invention described in the claims. Is possible.

例えば、実施例において示した発熱素子13a。For example, the heating element 13a shown in the embodiment.

13bおよび熱発電素子18.20を作動させる条件お
よびその数値は一例にすぎず、必要に応して適宜変更可
能なものである。また、必ずしも吸気管11とシリンダ
2の両方に熱発電素子1820を装着する必要はなく、
いずれか一方のみに装着可能であることは勿論のこと、
機関Eの運転中に高温になるシリンダヘッド3に熱発電
素子を装着することも可能である。
The conditions and numerical values for operating the thermoelectric generators 13b and 18, 20 are merely examples, and can be changed as necessary. Furthermore, it is not necessarily necessary to attach the thermoelectric generating element 1820 to both the intake pipe 11 and the cylinder 2.
Of course, it can be attached to only one side,
It is also possible to attach a thermoelectric generating element to the cylinder head 3, which becomes hot during operation of the engine E.

C0発明の効果 以上のように本発明の第1の特徴によれば、冷却水や冷
却風等の冷媒を用いずに機関の冷却を行うことができる
ため、従来必要としていたウォータジャケット、ウォー
タポンプ、ラジェータ、ラジェータファン、シュラウド
、およびフィン等が不要となる。その結果、部品点数が
減少してコストの削減が可能となるだけでなく、重量の
減少によるドライバビリティと燃費の向上、更にヒート
マスの減少による暖気性能の向上も可能となる。
Effects of the C0 Invention As described above, according to the first feature of the present invention, the engine can be cooled without using a refrigerant such as cooling water or cooling air. , radiator, radiator fan, shroud, fins, etc. are no longer required. As a result, it is possible not only to reduce costs by reducing the number of parts, but also to improve drivability and fuel efficiency by reducing weight, and to improve warm-up performance by reducing heat mass.

また、本発明の第2の特徴によれば、高温部を冷却する
際に熱発電素子が発電する電気エネルギーがバッテリの
充電に利用されるため、ジェネレータの省略あるいは小
型化が可能となる。
Furthermore, according to the second feature of the present invention, the electrical energy generated by the thermoelectric generating element when cooling the high temperature section is used to charge the battery, so that the generator can be omitted or miniaturized.

更に、本発明の第3の特徴によれば、珪化鉄にコバルト
あるいはマンガンを添加した半導体を用いることにより
、高性能で製造の容易な熱発電素子を安価に得ることが
できる。
Furthermore, according to the third feature of the present invention, by using a semiconductor in which cobalt or manganese is added to iron silicide, a high-performance, easy-to-manufacture thermoelectric power generation element can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明ので実施例を示すもので、その冷却構造を
採用した内燃機関の部分断面図である。 2・・・シリンダ(高温部)、11・・・吸気管(高温
部)、16・・・制御装置、17・・・バッテリ、18
・・・熱発電素子、20・・・熱発電素子 E・・・内燃機関
The drawing shows an embodiment of the present invention, and is a partial sectional view of an internal combustion engine employing the cooling structure. 2... Cylinder (high temperature part), 11... Intake pipe (high temperature part), 16... Control device, 17... Battery, 18
...Thermoelectric power generation element, 20...Thermoelectric power generation element E...Internal combustion engine

Claims (3)

【特許請求の範囲】[Claims] (1)内燃機関(E)の高温部(2、11)に、該高温
部(2、11)から奪った熱エネルギーを電気エネルギ
ーに変換する熱発電素子(18、20)を装着し、制御
装置(16)からの制御信号に基づいて前記熱発電素子
(18、20)を作動させて前記高温部(2、11)を
冷却することを特徴とする内燃機関の冷却構造。
(1) A thermoelectric generating element (18, 20) that converts the thermal energy taken from the high-temperature part (2, 11) into electrical energy is attached to the high-temperature part (2, 11) of the internal combustion engine (E), and control is performed. A cooling structure for an internal combustion engine, characterized in that the thermoelectric generating element (18, 20) is operated based on a control signal from a device (16) to cool the high temperature section (2, 11).
(2)前記熱発電素子(18、20)をバッテリ(17
)に接続し、このバッテリ(17)を前記熱発電素子(
18、20)が発電した電力で充電することを特徴とす
る、請求項(1)記載の内燃機関の冷却構造。
(2) The thermoelectric generating elements (18, 20) are connected to the battery (17).
), and this battery (17) is connected to the thermoelectric generating element (
The cooling structure for an internal combustion engine according to claim 1, wherein the cooling structure for an internal combustion engine is charged with the electric power generated by the parts 18 and 20).
(3)前記熱発電素子(18、20)が、珪化鉄にマン
ガンを添加してなるp型半導体と、珪化鉄にコバルトを
添加してなるn型半導体の積層体から構成されることを
特徴とする、請求項(1)記載の内燃機関の冷却構造。
(3) The thermoelectric generating element (18, 20) is composed of a laminate of a p-type semiconductor made by adding manganese to iron silicide and an n-type semiconductor made by adding cobalt to iron silicide. A cooling structure for an internal combustion engine according to claim (1).
JP1255030A 1989-09-29 1989-09-29 Cooling structure of internal combustion engine Pending JPH03117617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255030A JPH03117617A (en) 1989-09-29 1989-09-29 Cooling structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255030A JPH03117617A (en) 1989-09-29 1989-09-29 Cooling structure of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03117617A true JPH03117617A (en) 1991-05-20

Family

ID=17273205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255030A Pending JPH03117617A (en) 1989-09-29 1989-09-29 Cooling structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03117617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098713A1 (en) 2008-03-06 2009-09-09 Iveco Motorenforschung AG Thermoelectric heat recuperation system
DE102009017311A1 (en) * 2009-04-11 2010-10-14 Mag Europe Gmbh Thermoelectric device for producing electrical energy from heat produced by internal combustion engine of motor vehicle, has generator arranged such that electrical energy is generated from heat guided from inner wall towards outer wall
JP2013231411A (en) * 2012-05-01 2013-11-14 Hino Motors Ltd Heat recovery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098713A1 (en) 2008-03-06 2009-09-09 Iveco Motorenforschung AG Thermoelectric heat recuperation system
DE102009017311A1 (en) * 2009-04-11 2010-10-14 Mag Europe Gmbh Thermoelectric device for producing electrical energy from heat produced by internal combustion engine of motor vehicle, has generator arranged such that electrical energy is generated from heat guided from inner wall towards outer wall
JP2013231411A (en) * 2012-05-01 2013-11-14 Hino Motors Ltd Heat recovery system

Similar Documents

Publication Publication Date Title
US4598687A (en) Intercooler for supercharged internal combustion engine
GB1560769A (en) Low-compression piston internalcombustion engine with turbosupercharging and control of the intake air temperature
JPH0534490B2 (en)
KR101723313B1 (en) Control device for internal combustion engine
CN102207045A (en) Method for thermoelectric energy conversion in an exhaust gas recirculation system
JP6417949B2 (en) Thermoelectric generator
CN109578136A (en) Hermetically sealed water cooling mute power generator group
JP2005083251A (en) Thermoelectric generator
JP2003175720A (en) On-vehicle air-conditioning system
JP2000516324A (en) Independent cooling system for internal combustion engines
JPH03117617A (en) Cooling structure of internal combustion engine
JPS63111268A (en) Exhaust heat utilizing device for engine
CN106870098A (en) A kind of engine-cooling system
JPS5968545A (en) Accelerating device of warm-up for internal-combustion engine
CN209458026U (en) Hermetically sealed water cooling mute power generator group
KR20160009064A (en) Charge air cooler and associated charge air circuit
KR102214077B1 (en) Generation system using engine and method for controlling the same
CN210686064U (en) Pressure storage type engine
CN211230638U (en) Vehicle engine waste heat utilization equipment
JPS6234924B2 (en)
JPH0455225Y2 (en)
SU1498933A1 (en) Ic-engine
JPH03117666A (en) Intake pipe heat structure of internal combustion engine
US11428194B2 (en) Gas engine power generation system
JPH0212546Y2 (en)