JPH0311681A - Semiconductor laser excitation solid-state laser apparatus - Google Patents
Semiconductor laser excitation solid-state laser apparatusInfo
- Publication number
- JPH0311681A JPH0311681A JP14404289A JP14404289A JPH0311681A JP H0311681 A JPH0311681 A JP H0311681A JP 14404289 A JP14404289 A JP 14404289A JP 14404289 A JP14404289 A JP 14404289A JP H0311681 A JPH0311681 A JP H0311681A
- Authority
- JP
- Japan
- Prior art keywords
- face
- state laser
- solid
- semiconductor laser
- polygonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 35
- 230000005284 excitation Effects 0.000 title description 8
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 12
- 239000000470 constituent Substances 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005086 pumping Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0606—Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0615—Shape of end-face
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08095—Zig-zag travelling beam through the active medium
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、金属、半導体、セラミックス等の加工あるい
はコアギユレータとして医療に用いる高出力の半導体レ
ーザ励起固体レーザ装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-output semiconductor laser-excited solid-state laser device used for processing metals, semiconductors, ceramics, etc., or for medical purposes as a coagulator.
(従来の技術)
従来、固体レーザ装置の励起には、アークランプやフラ
ッシュランプ等が用いられてきたが、励起効率が低いた
め、レーザ全体の効率は悪く、また、ランプや固体レー
ザ媒質の放熱のために装置は大形とならざるを得なかっ
た。近年、高出力の半導体レーザが開発されるに及び、
これを固体レーザの励起光源として用いるようになって
きた。(Prior art) Conventionally, arc lamps, flash lamps, etc. have been used to excite solid-state laser devices, but due to low excitation efficiency, the efficiency of the entire laser is poor, and the heat dissipation of the lamp and solid-state laser medium is poor. Therefore, the device had to be large. In recent years, with the development of high-power semiconductor lasers,
This has come to be used as an excitation light source for solid-state lasers.
中でもNd:YAGレーザ媒質の軸端面を半導体レーザ
で軸励起する方法は、Wも効率よくしかも安定にT E
Mo、モードで発振する方法として注目されている。Among them, the method of axially exciting the axial end face of the Nd:YAG laser medium with a semiconductor laser is a method that can efficiently and stably generate T E of W.
It is attracting attention as a method of oscillating in Mo mode.
この種の従来の半導体レーザ励起固体レーザ装置につい
て、第4図により説明する。同図において、従来の半導
体レーザ励起固体レーザ装置は、ネオジム(Nd)を注
入したNd:YAGロッド1を挟んで、上記のNd:Y
AGロッド1の後端面に形成した平面状の内部反射鏡と
凹面状の外部反射鏡2で光共振器を形成したYAGレー
ザと、上記のNd:YAGロッド1を励起する半導体レ
ーザ3と、上記の半導体レーザ3の出射光を上記のNd
:YAGロット1の後端面に集光する集光レンズ4とか
ら構成される。A conventional semiconductor laser-excited solid-state laser device of this type will be explained with reference to FIG. In the same figure, a conventional semiconductor laser pumped solid-state laser device has a structure in which a Nd:YAG rod 1 injected with neodymium (Nd) is sandwiched between the Nd:YAG
A YAG laser in which an optical resonator is formed by a planar internal reflecting mirror formed on the rear end surface of the AG rod 1 and a concave external reflecting mirror 2; a semiconductor laser 3 that excites the Nd:YAG rod 1; The emitted light of the semiconductor laser 3 is
: Consisting of a condensing lens 4 that condenses light onto the rear end surface of the YAG lot 1.
半導体レーザ3の出射光を集光レンズ4でNd:YAG
ロッド1の軸端面に集光して、YAGレーザを励起する
方法は、軸励起のため半導体レーザ光とYAGレーザ光
の結合効率がよいため、励起効率が高いばかりでなく、
TEMooモードで安定して作動するが、励起箇所が1
点で、しかも、半導体レーザ3の高出力化に限界がある
ため、YAGレーザの高出力化が難しいという問題があ
る。The output light of the semiconductor laser 3 is converted into Nd:YAG by the condenser lens 4.
The method of exciting the YAG laser by focusing light on the axial end face of the rod 1 not only has high excitation efficiency, but also has high coupling efficiency between the semiconductor laser light and the YAG laser light due to axial excitation.
It works stably in TEMoo mode, but only one excitation point
Moreover, since there is a limit to increasing the output of the semiconductor laser 3, there is a problem in that it is difficult to increase the output of the YAG laser.
この問題の解決策として、本発明者は、第5図。As a solution to this problem, the inventors proposed the method shown in FIG.
第6図および第7図に示すような多角柱状Nd:YAG
ロッド1の各多角柱構成面で、YAGレーザ光をスパイ
ラル状に反射させ、各構成面の反射点(・印)を複数の
半導体レーザで励起する側面励起方式を提案した。Polygonal columnar Nd:YAG as shown in Figures 6 and 7
We have proposed a side excitation method in which the YAG laser beam is reflected in a spiral shape on each polygonal prism surface of the rod 1, and the reflection points (marked with *) on each surface are excited by a plurality of semiconductor lasers.
発明者の提案した側面励起方式の半導体レーザ励起固体
レーザ装置について、説明する。第5図は本発明者によ
る半導体レーザ励起固体レーザ装置の構成を示す斜視図
、第6図はその固体レーザ部を示す斜視図、第7図はそ
の固体レーザ媒質の展開図、第8図はその出力特性図で
ある。A side-pumping type semiconductor laser-pumped solid-state laser device proposed by the inventor will be described. FIG. 5 is a perspective view showing the configuration of a semiconductor laser pumped solid-state laser device by the present inventor, FIG. 6 is a perspective view showing the solid-state laser section, FIG. 7 is a developed view of the solid-state laser medium, and FIG. It is an output characteristic diagram.
第5図において、本発明による半導体レーザ励起固体レ
ーザ装置は、−辺の幅が5m、長さが32mの六角柱状
で、両端面中央に中心軸に対して角度Oを11°にした
、内部反射鏡となる反射面5aおよび出射面5bを形成
したNd:YA、Gロッド5と、第6図に破線で示すよ
うに、上記の反射面5aから出射面5bに内部反射を繰
り返しながら進むYAGレーザ光の各反射点5Cに合わ
せて、六角柱の各構成面5dに対向するように配置した
それぞれ複数個のレンズ一体形半導体レーザ6と、上記
の出射面5bに相対向するように凹面側を配置した曲率
半径1mの外部反射鏡7とから構成されている。さらに
、これらの構成部品の反射率および透過率を、Nd:Y
AGロッド5の反射面5aが波長1.06戸mに対して
99%以上の反射率、その出射面5bが同じ波長1.0
6戸に対して99%の透過率、その六角柱構成面5dが
波長]、 、 067mに対しては99%以」二の反射
率と波長0.809μmに対して90%以」二の透過率
をそれぞれ有するように、また、外部反射鏡7の凹面鏡
面が、波長1.06戸に対して80%の反射率を有する
ようにコーティングを施した。In FIG. 5, the semiconductor laser-excited solid-state laser device according to the present invention has a hexagonal prism shape with a width of 5 m on the negative side and a length of 32 m, and has an interior with an angle O of 11° with respect to the central axis at the center of both end faces. The Nd:YA, G rod 5 has a reflecting surface 5a serving as a reflecting mirror and an output surface 5b, and the YAG rod 5 moves from the reflecting surface 5a to the output surface 5b while repeating internal reflection, as shown by the broken line in FIG. A plurality of lens-integrated semiconductor lasers 6 are arranged to face each of the constituent surfaces 5d of the hexagonal prism in accordance with each reflection point 5C of the laser beam, and a concave surface side is arranged to face each of the constituent surfaces 5d of the hexagonal prism, and a concave surface side is arranged so as to face the emission surface 5b. It consists of an external reflecting mirror 7 with a radius of curvature of 1 m. Furthermore, the reflectance and transmittance of these components are determined by Nd:Y
The reflective surface 5a of the AG rod 5 has a reflectance of 99% or more for a wavelength of 1.06 m, and its output surface 5b has a reflectance of 1.0 m for the same wavelength.
Transmittance of 99% for 6 houses, whose hexagonal prism constituent surface 5d is the wavelength], Reflectance of 99% or more for 067 m and transmission of 90% or more for wavelength 0.809 μm The coating was applied so that the concave mirror surface of the external reflecting mirror 7 had a reflectance of 80% for a wavelength of 1.06 mm.
その結果、第8図の出力特性図に示すように、発明者の
提案した半導体レーザ励起固体レーザ装置が発振するた
めの、レンズ一体形半導体レーザ6の発振しきい入力値
は0.9W、最大出力は入力値がIOWのとき3.2W
であった。なお、このときのレンズ一体形半導体レーザ
6の一個当りの出力は、0.28Wである。As a result, as shown in the output characteristic diagram of FIG. 8, the oscillation threshold input value of the lens-integrated semiconductor laser 6 for the semiconductor laser pumped solid-state laser device proposed by the inventor to oscillate is 0.9W, the maximum. Output is 3.2W when input value is IOW
Met. Note that the output per lens-integrated semiconductor laser 6 at this time is 0.28W.
(発明が解決しようとする課題)
発明者の提案した上述の側面励起方式の半導体レーザ励
起固体レーザ装置は、第4図に示した従来の軸励起方式
と同様に、半導体レーザ光とYAGレーザ光の結合効率
がよいため、励起効率が高いばかりでなく、T E M
、、モードで安定に作動し、しかも多数のレンズ一体形
半導体レーザ6で励起するので高出力の半導体レーザ励
起固体レーザ装置が得られる。しかしながら、六角柱状
Nd:YAGロッド5の端面を加工して、それぞれ両端
面から突起する反射面5aおよび出射面5bを加工する
ため、平面に加工することは容易であるが、球面に加工
することは難しいという問題があった。(Problems to be Solved by the Invention) The above-mentioned side-pumping type semiconductor laser pumped solid-state laser device proposed by the inventor uses semiconductor laser light and YAG laser light, similar to the conventional axial-pumping type solid-state laser device shown in FIG. Not only is the excitation efficiency high because of the good coupling efficiency of T E M
, , mode, and is excited by a large number of lens-integrated semiconductor lasers 6, a high-output semiconductor laser pumped solid-state laser device can be obtained. However, since the end faces of the hexagonal columnar Nd:YAG rod 5 are processed to form the reflective surface 5a and the output surface 5b that protrude from both end faces, it is easy to process them into a flat surface, but it is difficult to process them into a spherical surface. The problem was that it was difficult.
そのため、出射面5bを平面とし、外部反射鏡7を設け
る必要があり、さらに小形化を進めることが難しいとい
う問題があった。Therefore, it is necessary to make the output surface 5b a flat surface and provide an external reflecting mirror 7, which poses a problem in that it is difficult to further downsize the device.
本発明は上記の問題を解決するもので、外部反射鏡のな
い超小形で高出力の半導体レーザ励起固体レーザ装置を
提供するものである。The present invention solves the above problems and provides an ultra-small, high-output semiconductor laser pumped solid-state laser device without an external reflecting mirror.
(課題を解決するための手段)
上記の課題を解決するため、本発明は、六角柱状Nd:
YAGロッドの六角柱構成面の端部に設けた突起部に反
射面および出射面を形成するものである。(Means for Solving the Problems) In order to solve the above problems, the present invention provides hexagonal columnar Nd:
A reflecting surface and an emitting surface are formed on the protrusion provided at the end of the hexagonal prism-constituting surface of the YAG rod.
(作 用)
上記の構成により、反射面および出射面の加工は端面に
妨げられないので、容易になる。従って、出射面に容易
に球面加工を施すことができるため、外部反射鏡を省く
ことができ、さらに小形化を進めることが可能となる。(Function) With the above configuration, the processing of the reflection surface and the emission surface is not hindered by the end face, so it becomes easy. Therefore, since the exit surface can be easily processed into a spherical surface, an external reflecting mirror can be omitted, and further miniaturization can be achieved.
(実施例)
本発明の一実施例について、第1図ないし第3図により
説明する。(Example) An example of the present invention will be described with reference to FIGS. 1 to 3.
第1図、第2図および第3図は、それぞれ本発明による
半導体レーザ励起固体レーザ装置の構成を示す斜視図、
その固体レーザ部の斜視図および固体レーザ媒質の展開
図である。FIG. 1, FIG. 2, and FIG. 3 are perspective views showing the configuration of a semiconductor laser pumped solid-state laser device according to the present invention, respectively;
FIG. 2 is a perspective view of the solid-state laser section and a developed view of the solid-state laser medium.
これらの図に示す実施例が、第5図ないし第8図に示し
た発明者の提案例と異なる点は、六角柱状Nd:YAG
ロッド5の両端面近傍に、断面三角形の突起5eおよび
5fを形成し、これに軸中心線と11°の傾斜角Oをな
す反射面5aおよび出射面5bを設けた点と、外部反射
鏡7の代りに、上記の出射面5bを曲率半径1mの凸面
に加工し、波長1.067mに対し80%の反射率を持
つようにコーティングを施した点である。その他は変わ
らないので、同じ構成部品には同一符号を付してその説
明を省略する。The difference between the embodiments shown in these figures and the examples proposed by the inventors shown in FIGS. 5 to 8 is that the hexagonal columnar Nd:YAG
Protrusions 5e and 5f with a triangular cross section are formed near both end faces of the rod 5, and a reflecting surface 5a and an output surface 5b are provided thereon, forming an inclination angle O of 11° with the axial center line, and an external reflecting mirror 7. Instead, the output surface 5b is processed into a convex surface with a radius of curvature of 1 m, and coated to have a reflectance of 80% for a wavelength of 1.067 m. Since the other components are the same, the same components are given the same reference numerals and their explanations will be omitted.
また、その動作および出力特性も、発明者の提案と変わ
らないので、その説明も省略する。Furthermore, since its operation and output characteristics are the same as those proposed by the inventor, their explanation will be omitted.
なお、本発明では、六角柱状Nd:YAGロッド5を用
いたが、角数を増加し、各構成面に対向して設置するレ
ンズ一体形半導体レーザの数を増やしてもよい。また、
集光レンズを一体に組み込んだが、光ファイバを利用し
て、反射点5Cを励起してもよい。Although the hexagonal columnar Nd:YAG rod 5 is used in the present invention, the number of angles may be increased, and the number of lens-integrated semiconductor lasers installed facing each component surface may be increased. Also,
Although a condensing lens is integrated, an optical fiber may be used to excite the reflection point 5C.
(発明の効果)
以上説明したように、本発明によれば、多角柱状固体レ
ーザ媒質に形成した反射面および出射面の加工が、極め
て容易となるため、出射面の凸球面加工が可能となり、
外部反射鏡のない、超小形で高出力、且つ安価な半導体
レーザ励起固体レーザ装置が得られる。従って、高出力
を要する加工用および医療用に大きく貢献する。(Effects of the Invention) As explained above, according to the present invention, it is extremely easy to process the reflection surface and the emission surface formed on the polygonal columnar solid-state laser medium, so it is possible to process the emission surface into a convex spherical surface.
An ultra-small, high-output, and inexpensive semiconductor laser-excited solid-state laser device without an external reflecting mirror can be obtained. Therefore, it greatly contributes to processing and medical applications that require high output.
第1図、第2図および第3図は本発明による側面励起方
式の半導体レーザ励起固体レーザ装置の構成を示す斜視
図、その六角柱状Nd:YAGロッドの斜視図およびそ
の展開図、第4図は従来の軸励起方式の半導体レーザ励
起固体レーザ装置の7
斜視図、第5図、第6図、第7図および第8図は発明者
が提案した側面励起方式の半導体レーザ励起固体レーザ
装置の構成を示す斜視図、その固体レーザ部の斜視図、
その固体レーザ媒質の展開図および出力特性図である。
1 ・Nd:YAGロッド、 2,7 ・・・外部反射
鏡、 3 ・・・半導体レーザ、 4・・・集光レンズ
、 5・・・六角柱状Nd:YAGロッド、 5a・・
・反射面、 5b・・・出射面、 5c・・・反射点、
5d・・・六角柱構成面、 5e、5f・・・突起、
6 ・・・レンズ一体形半導体レーザ。1, 2, and 3 are perspective views showing the configuration of a side-pumped type semiconductor laser pumped solid-state laser device according to the present invention, a perspective view of its hexagonal columnar Nd:YAG rod, and a developed view thereof, and FIG. 4. 7 is a perspective view of a conventional axially pumped semiconductor laser pumped solid-state laser device, and FIGS. 5, 6, 7, and 8 are side-pumped semiconductor laser pumped solid-state laser devices proposed by the inventor A perspective view showing the configuration, a perspective view of the solid-state laser part,
FIG. 2 is a developed diagram and an output characteristic diagram of the solid-state laser medium. 1 ・Nd:YAG rod, 2, 7 ... external reflecting mirror, 3 ... semiconductor laser, 4 ... condensing lens, 5 ... hexagonal columnar Nd:YAG rod, 5a...
・Reflection surface, 5b... Output surface, 5c... Reflection point,
5d...Hexagonal prism configuration surface, 5e, 5f...Protrusion,
6...Lens integrated semiconductor laser.
Claims (1)
に、上記の多角柱構成面と傾斜角を有する反射面および
出射面を形成し、且つ上記の反射面は平面に、出射面は
凸球面として光共振器を構成した固体レーザ媒質と、上
記の多角柱構成面のスパイラル状の反射点に集光するよ
うに配置した複数個の半導体レーザとから構成された半
導体レーザ励起固体レーザ装置。It has a polygonal column shape, and a reflecting surface and an output surface having an inclination angle with the polygonal column forming surfaces are formed on protrusions provided on the polygonal column forming surfaces near both ends, and the reflecting surface is a flat surface and the output surface is a plane. A semiconductor laser-excited solid-state laser device comprising a solid-state laser medium with an optical resonator configured as a convex spherical surface, and a plurality of semiconductor lasers arranged so as to focus light on a spiral reflection point of the polygonal prism configuration surface. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14404289A JP2558523B2 (en) | 1989-06-08 | 1989-06-08 | Semiconductor laser pumped solid-state laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14404289A JP2558523B2 (en) | 1989-06-08 | 1989-06-08 | Semiconductor laser pumped solid-state laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0311681A true JPH0311681A (en) | 1991-01-18 |
JP2558523B2 JP2558523B2 (en) | 1996-11-27 |
Family
ID=15352969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14404289A Expired - Lifetime JP2558523B2 (en) | 1989-06-08 | 1989-06-08 | Semiconductor laser pumped solid-state laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2558523B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003535480A (en) * | 2000-05-30 | 2003-11-25 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Optically pumped surface emitting semiconductor laser device. |
-
1989
- 1989-06-08 JP JP14404289A patent/JP2558523B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003535480A (en) * | 2000-05-30 | 2003-11-25 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Optically pumped surface emitting semiconductor laser device. |
JP4819290B2 (en) * | 2000-05-30 | 2011-11-24 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Laser apparatus and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2558523B2 (en) | 1996-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5432811A (en) | Laser rod with polyhedron shaped ends | |
US6160934A (en) | Hollow lensing duct | |
US5966392A (en) | Butt-coupling pumped single-mode solid-state laser with fiber-coupled diode | |
JPH0311681A (en) | Semiconductor laser excitation solid-state laser apparatus | |
JP3271603B2 (en) | LD pumped solid-state laser device | |
JPH05121803A (en) | Semiconductor excitation solid-state laser | |
JPH088477A (en) | Solid state laser device | |
JPH0311680A (en) | Semiconductor laser excitation solid-state laser apparatus | |
JPH0637368A (en) | Laser and beam expander | |
JP2757608B2 (en) | Semiconductor laser pumped solid state laser | |
JP2906867B2 (en) | Laser diode pumped solid-state laser wavelength converter | |
JPH0311682A (en) | Semiconductor laser excitation solid-state laser apparatus | |
JP2676920B2 (en) | Semiconductor laser pumped solid-state laser device | |
JPH11284257A (en) | Semiconductor laser excited solid laser device | |
JPH0448664A (en) | Array semiconductor laser edge-pumped solid-state laser | |
JP2001015837A (en) | Solid state laser oscillator | |
JP2596462B2 (en) | Semiconductor laser pumped solid-state laser device | |
JP2000183433A (en) | Solid-state shg laser | |
JPH033379A (en) | Solid-state laser device | |
JPH03150885A (en) | Semiconductor laser excited solid state laser device | |
JP2685331B2 (en) | Semiconductor laser pumped solid-state laser device | |
JPH11177165A (en) | Light excitation method for solid state laser | |
JP2546145B2 (en) | Lamp pumped TEMoo mode solid state laser device | |
JPH10107344A (en) | Laser device | |
JPH06132586A (en) | Solid-state laser device |