JPH0310036B2 - - Google Patents
Info
- Publication number
- JPH0310036B2 JPH0310036B2 JP59208207A JP20820784A JPH0310036B2 JP H0310036 B2 JPH0310036 B2 JP H0310036B2 JP 59208207 A JP59208207 A JP 59208207A JP 20820784 A JP20820784 A JP 20820784A JP H0310036 B2 JPH0310036 B2 JP H0310036B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- value
- runner
- cause
- abnormal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 description 22
- 230000005856 abnormality Effects 0.000 description 22
- 230000010349 pulsation Effects 0.000 description 16
- 238000012545 processing Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 10
- 239000000498 cooling water Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000007689 inspection Methods 0.000 description 7
- 238000005086 pumping Methods 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 239000010687 lubricating oil Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013479 data entry Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B11/00—Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Water Turbines (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は水力発電所においてランナ本体に関す
る障害を監視し、重大な事故を未然に防止するこ
とに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to monitoring failures related to runner bodies in hydroelectric power plants and preventing serious accidents.
発電所、特に水力発電所は建設地点の地理条件
や運転制御の集中化などにより最近、殆んど無人
化となつており、概ね、水系毎に親制御所から遠
隔集中制御されるようになつた。しかし水力発電
所の安定な運転を維持するためには、従来より実
施されているように定期的に保守員が巡視点検を
行わなければならない。この保守点検は山奥に散
在する発電所に出向いて行なうため、特に冬期の
労力は非常なものがある。この省力化を計るた
め、日常の巡視点検業務を自動化し、これに設備
の異常診断機能をも付加し、事故の未然防止をも
検出したいとの要望が極めて強い。例えば、特開
昭56−113060号、同57−102573号などはポンプの
異常を保護するものではあるが、未然防止という
観点から対策されたものではない。
Power plants, especially hydroelectric power plants, have recently become largely unmanned due to the geographical conditions of their construction sites and the centralization of operation control, and each water system is generally controlled remotely and centrally from a parent control center. Ta. However, in order to maintain stable operation of hydroelectric power plants, maintenance personnel must conduct periodic inspection inspections, as has been done in the past. This maintenance and inspection is carried out at power stations scattered deep in the mountains, which requires a great deal of effort, especially in the winter. In order to save labor, there is an extremely strong desire to automate daily patrol inspection work, add equipment abnormality diagnosis functions to this, and detect and prevent accidents before they occur. For example, JP-A-56-113060 and JP-A No. 57-102573 protect against pump abnormalities, but they do not take measures from the perspective of prevention.
更に揚水発電所に致つては原子力および大形火
力発電所のベースロードの発電に対し、その特長
である負荷即応性のよさからピークロードの発電
を行うととともに、原子力および大形火力発電所
と組合せ電力系統全体の経済運用に寄付してお
り、今後も増々、そのニーズは高まるものと考え
られる。したがつてこれらの系統からの要求に対
応するため、主機の起動停止頻度は高まりかつ調
相機能の追加により運転モードも多様化の傾向に
ある。一方、主機は経済性等から高速大容量化の
傾向にあり一旦事故障害が発生するとその修復に
膨大な修復期間と修復費用を伴うのは必然であ
り、それらの事故障害を初期に検出できる監視装
置の設置が望まれている。ここで主機に関し予想
される障害の内、最も多大な影響を及ぼすものの
1つにランナ本体の破損がある。これは前記の様
に揚水発電所は、大容量化のため超高落差とする
ことが殆んどでこれに対しランナの強度に対する
研究も成されてはいるが実際にはランナ羽根等に
亀裂、破損といつた障害が発生する恐れがあり、
この現象は初期段階で検出することが困難であ
り、ランナ羽根の破損品がケーシング等を破壊し
異常音を発生することによりやつとわかるのが実
状である。ここまでになると復旧はランナ、ケー
シング等、主機全体に渡つてしまい時間的にも経
済的にも膨大となるため、これをランナ本体の亀
裂発生の初機段階で発見し重大事故に致る以前に
防止したいという要望が一段と強くなつてきた。 Furthermore, pumped storage power plants are used to generate peak load power in contrast to the base load power generation of nuclear and large thermal power plants due to their excellent load responsiveness. It contributes to the economic operation of the entire combined power system, and the need for this is expected to increase in the future. Therefore, in order to meet the demands from these systems, the frequency of starting and stopping of the main engine is increasing, and the operation modes are becoming more diverse due to the addition of phase adjustment functions. On the other hand, main engines tend to have higher speeds and larger capacities due to economic considerations, and once an accidental failure occurs, it is inevitable that it will take a huge amount of time and cost to repair. Installation of equipment is desired. Among the failures that can be expected regarding the main engine, one of the ones that will have the greatest impact is damage to the runner body. This is because, as mentioned above, most pumped storage power plants have extremely high heads in order to increase capacity, and although research has been done on the strength of the runners, in reality there are cracks in the runner blades, etc. , damage and other problems may occur.
This phenomenon is difficult to detect at an early stage, and can be easily detected when a damaged runner blade destroys the casing and produces abnormal noise. At this point, the entire main engine, including the runner and casing, will have to be repaired, which will take a huge amount of time and money. Therefore, it is important to discover cracks in the runner body at the initial stage and before a serious accident occurs. The desire to prevent this has become even stronger.
本発明の目的は従来技術の欠点を除去し水力発
電所にとつて重大事故であるランナ損傷を早期に
検出することにある。
The object of the present invention is to eliminate the drawbacks of the prior art and to detect runner damage at an early stage, which is a serious accident for hydropower plants.
本発明では初期段階の亀裂等によるランナバラ
ンスの崩れによる水車軸、水圧脈動およびランナ
上カバーの振動値を他の不具合現象による振動と
区別し、ランナ障害を早期に自動検出する装置を
計算機により実現し、重大事故の未然防止を可能
とする。
The present invention uses a computer to realize a device that automatically detects runner failure at an early stage by distinguishing the vibration values of the water wheel shaft, water pressure pulsation, and runner top cover due to runner imbalance caused by cracks in the initial stage from vibrations caused by other malfunction phenomena. This makes it possible to prevent serious accidents.
以下に本発明の一実施例を示す。 An example of the present invention is shown below.
ランナ羽根等に亀裂が発生または発生の徴候が
見られるとランナ回転に対するバランスが崩れ、
主軸、水圧脈動および上カバーに通常とは異なる
異常振動を発生し、この異常振動を検出できずに
運転を継続するとケーシング、ランナライナ等を
損傷することとなる。 If cracks appear or show signs of cracking in the runner blades, the balance with respect to runner rotation will be lost, and
Abnormal vibrations that are different from normal occur in the main shaft, water pressure pulsation, and upper cover, and if operation continues without being able to detect this abnormal vibration, the casing, runner liner, etc. will be damaged.
このため、早期発見には、まず主軸および上カ
バーの振動を常時監視している必要がある。 Therefore, for early detection, it is first necessary to constantly monitor the vibrations of the main shaft and upper cover.
主軸振動検出に関して第1図を用いて説明す
る。第1図は主軸振動のセンサー取付け位置を示
したものである。センサは発電機軸13と水車軸
14のカツプリング部12に取付けてある。カツ
プリング部12にセンサを取付けるため支持固定
棒15を取り付けセンサ(変位形もしくは加速形
のセンサ)10,11を取りつける。軸振動は図
中X,Yの2方向を検出すれば良く、X方向にセ
ンサ11、Y方向にセンサ10を取りつける。 Main shaft vibration detection will be explained using FIG. 1. Figure 1 shows the mounting position of the spindle vibration sensor. The sensor is attached to the coupling part 12 of the generator shaft 13 and the water wheel shaft 14. In order to attach the sensor to the coupling portion 12, a support fixing rod 15 is attached and sensors (displacement type or acceleration type sensor) 10, 11 are attached. It is sufficient to detect shaft vibration in two directions, X and Y in the figure, and a sensor 11 is installed in the X direction and a sensor 10 is installed in the Y direction.
主軸振動は上記センサにより直交2方向で常時
検出する。なお水車運転時は負荷によつて、また
揚水運転時は揚程によつて正常の振動振幅が異な
るため、設定値は各々負荷、揚程の関数となる。
第2図はその設定例を示す。 The main shaft vibration is constantly detected in two orthogonal directions by the above sensor. Note that the normal vibration amplitude differs depending on the load during water turbine operation and depending on the head during pumping operation, so the set value is a function of the load and head, respectively.
FIG. 2 shows an example of the setting.
ある発電所における実測値は発電方向で曲線2
0揚水側で曲線22の関数形となる。この値は各
発電所によつて異なるが、ほぼ同じ傾向を示す。
第2図は正常時の振動振幅値を表わしているが、
これよりセンサ10,11で計測した値が判断値
21,23よりオーバーオール値で大きければ、
振幅値が異常と判定し、ランナ障害検出装置によ
つて種々の異常要因を検出して、この主軸異常振
動がランナ障害によるものであるかどうかを判断
する。その要因は他に上カバー振動、水圧脈動等
があり、これは後に述べる。尚、ここでは振動を
オーバーオール値で監視しているが、振動として
はある周波数の振動のみが大となることが多い。
つまり、ランナブレードの枚数、回転数等によつ
て決められる値の整数倍の周波数のみが振動大と
なるため、オーバーオール値で異常を早期に発見
できにくいこともある。そのためこのセンサ1
0,11による値を周波数分析し、その結果を絶
対変位と周波数の関数で監視し、異常を検出す
る。第3図にその関係を示す。実測値31は、ラ
ンナブレード枚数N=5の周波数で大きな振幅を
もち、2×N(=5)×Zr(=6)、3×N×Zrの
周波数でも比較的大きな振幅を示す。ランナに障
害が発生した場合は、これとは異なる周波数に大
きな振幅値を示すので異常要因がランナに働いた
事がわかる。このため計算機には設定値30の様
なカーブを記憶させておきセンサ10,11によ
つて測定した値を周波数分析し、これと30とを
比較して異常を検出する。主軸振動異常を上記の
2方法で検出したら、そこからランナ障害を検出
する方法を次に示す。それを行うシステムを第4
図に示す。 The actual measured value at a certain power plant is curve 2 in the direction of power generation.
The function form is curve 22 on the 0 pumping side. Although this value differs depending on each power plant, it shows almost the same tendency.
Figure 2 shows the vibration amplitude values under normal conditions.
From this, if the values measured by sensors 10 and 11 are larger overall than the judgment values 21 and 23,
The amplitude value is determined to be abnormal, and the runner fault detection device detects various abnormal causes to determine whether the abnormal spindle vibration is due to a runner fault. Other factors contributing to this include upper cover vibration and water pressure pulsation, which will be discussed later. Incidentally, although the vibrations are monitored here in terms of overall values, it is often the case that only vibrations at a certain frequency are large.
In other words, only frequencies that are an integral multiple of the value determined by the number of runner blades, rotation speed, etc. cause large vibrations, so it may be difficult to detect abnormalities early based on overall values. Therefore, this sensor 1
The values of 0 and 11 are subjected to frequency analysis, and the results are monitored as a function of absolute displacement and frequency to detect abnormalities. Figure 3 shows the relationship. The actual measurement value 31 has a large amplitude at a frequency when the number of runner blades N=5, and also shows a relatively large amplitude at frequencies of 2×N (=5)×Zr (=6) and 3×N×Zr. If a failure occurs in the runner, a large amplitude value will be shown at a different frequency, indicating that an abnormal factor has affected the runner. For this reason, a curve such as a set value 30 is stored in the computer, and the values measured by the sensors 10 and 11 are frequency-analyzed, and this and 30 are compared to detect an abnormality. Once spindle vibration abnormality has been detected using the two methods above, the method for detecting runner failure will be described below. The fourth system to do that
As shown in the figure.
第4図に本発明の監視システム構成例を示す。
本システムはプラント機器(水力発電機器)54
よりデータ入力を行う。まず主軸の振動値55は
変換器51によりコンピユータ入力レベルに変換
され、計算機本体41内部の振動データ入力部4
7によりコンピユータ内部にとりこまれる。な
お、主軸振動値55は振動の振幅を計測する方法
や、音響を監視する方法、振動の周波数成分を計
測する方法があるが、各発電所の主機の特性に応
じた方法をとる。計算機本体41は演算処理を行
うCPU42、アルゴリズム等のプログラムを格
納しているシステムプログラムメモリ43、デー
タを格納しておくデータメモリ44、更に自動判
定結果等を印字表示するデータアウトプツトタイ
プライタ45、振動値を入力する振動データ入力
部47、振動の要因の判定に使用するデータの計
測値を入力するアナログ計測値入力部48、主機
の起動・停止などプログラム起動条件を入力する
デイジタルデータ入力部49、異常値を発見した
場合、警報データ70を警報表示器53に出力さ
せるためのデイジタルデータ出力部50、これら
のデータのやりとりをCPU42と行う計算機内
部インターフエースバス46から成つている。ま
た、アナログ計測値はコンピユータの入力レベル
に変換しなければならずこれをアナログデータ変
換器52によつて行う。 FIG. 4 shows an example of the configuration of the monitoring system of the present invention.
This system is plant equipment (hydroelectric power generation equipment) 54
Perform data entry. First, the vibration value 55 of the main shaft is converted to a computer input level by the converter 51, and the vibration data input section 4 inside the computer main body 41
7 into the computer. The main shaft vibration value 55 can be determined by measuring the amplitude of the vibration, by monitoring the sound, or by measuring the frequency component of the vibration, but the method is determined according to the characteristics of the main engine of each power plant. The computer main body 41 includes a CPU 42 that performs arithmetic processing, a system program memory 43 that stores programs such as algorithms, a data memory 44 that stores data, and a data output typewriter 45 that prints and displays automatic judgment results, etc. A vibration data input section 47 for inputting vibration values, an analog measurement value input section 48 for inputting measured values of data used to determine the cause of vibration, and a digital data input section 49 for inputting program starting conditions such as starting and stopping the main engine. , a digital data output section 50 for outputting alarm data 70 to an alarm display 53 when an abnormal value is found, and a computer internal interface bus 46 for exchanging these data with the CPU 42. Further, the analog measured value must be converted to a computer input level, and this is done by analog data converter 52.
ここで振動の要因判定となる計測値は上カバー
振動値56、軸受ギヤツプ値57、軸受潤滑油油
面値58、軸受冷却水流量59、軸受冷却水温度
60、落差61、負荷62、水圧脈動値63、ガ
イドベーンサーボモータ差圧64、弱点ピン切損
データ65、給気流速66、上カバーボルトゆる
み変換67、ランナーシールギヤツプ温度68の
各量である。 The measured values used to determine the cause of vibration are upper cover vibration value 56, bearing gap value 57, bearing lubricating oil level value 58, bearing cooling water flow rate 59, bearing cooling water temperature 60, head difference 61, load 62, and water pressure pulsation. value 63, guide vane servo motor differential pressure 64, weak point pin breakage data 65, air supply flow rate 66, upper cover bolt loosening conversion 67, and runner seal gap temperature 68.
第5図に監視システムの計算機処理フローを示
す。計算機のプログラムは常時、図示せぬタイマ
により周期的に起動がかかる。プログラムの起動
がかかるとまず、各入力データ(55〜69)の
入力を行い(A)、第4図のデータメモリ44へ保存
する(B)。この時点ではデータ入力及び、データの
メモリへの格納処理だけである。次に主軸振動値
55をメモリより取り出し、第2図、第3図のア
ルゴリズムに従い、振動値55が許容値を逸脱し
たかの判定を行う(C)。この値55が許容値以内な
ら主機の動作に異常はないと判断し、プログラム
処理を終了する。一方、(C)の判定において振動値
55が許容値を逸脱した場合は異常判定ルーチン
としてD〜Fの処理を行う。まず、主機の動作に
異常があつたことを通知するため警報出力を行う
(D)。警報データ70はデイジタル出力部50を介
して警報表示器53に表示される。計算機は次に
振動値異常の原因は主機のどこの不具合かを発見
するため、それまで記憶していたアナログ計測値
(56〜68)を用いて原因の解析を行う(E)。こ
の処理Eにより振動原因が解明されるため、それ
をデータアウトプツトタイプライタ45によりタ
イプアウト表示する(F)。これにより従来、振動値
が異常となつても原因の追求に時間がかかつた
り、不可能となつていたことがなくなり、点検及
び調査の時間ははるかに短くなる。また、発電所
が無人となつている場合は警報表示器53、デー
タアウトプツトタイプライタ45を遠方制御所に
設置すればよい。 FIG. 5 shows the computer processing flow of the monitoring system. The computer program is always activated periodically by a timer (not shown). When the program is started, first, each input data (55 to 69) is input (A) and stored in the data memory 44 in FIG. 4 (B). At this point, only data input and data storage into memory are performed. Next, the main shaft vibration value 55 is retrieved from the memory, and it is determined whether the vibration value 55 deviates from the allowable value according to the algorithms shown in FIGS. 2 and 3 (C). If this value 55 is within the allowable value, it is determined that there is no abnormality in the operation of the main engine, and the program processing is terminated. On the other hand, if the vibration value 55 deviates from the allowable value in the determination (C), processes D to F are performed as an abnormality determination routine. First, an alarm is output to notify that there is an abnormality in the operation of the main engine.
(D). The alarm data 70 is displayed on the alarm display 53 via the digital output section 50. Next, the computer analyzes the cause using the previously stored analog measurement values (56 to 68) in order to discover which malfunction in the main engine is the cause of the abnormal vibration value (E). Since the cause of the vibration is clarified by this process E, it is typed out and displayed on the data output typewriter 45 (F). As a result, even if the vibration value becomes abnormal, it no longer takes time or is impossible to find the cause, and the time for inspection and investigation becomes much shorter. Furthermore, if the power plant is unmanned, the alarm display 53 and data output typewriter 45 may be installed at a remote control center.
この第5図の処理中、異常処理ルーチンである
D〜FはA〜Cに比べはるかにCPUの負担(演
算処理時間が長くなる)となる。この様子を第6
図を用いて示す。第6図はCPU42の演算処理
の時間的変化を振動値正常時と振動値異常時とに
分けて示した図である。第6図において横軸は経
過時間tを示し、Tは図示せぬハードタイマによ
りプログラムの起動がかかる時間周期を示してい
る。まず正常時においては第6図の各入力データ
の入力A、入力データの保存B、振動値判定Cの
処理を行い(の区間)、その後計算機はアイド
ル時間へ移行する。つまり、振動値が許容値以
内の場合、CPUは殆んどアイドル区間にあり、
それほど高速なCPUを必要としない。次に振動
値異常時の場合は前述したと同様の処理を行う
区間の後に警報出力D、振動原因判定ルーチン
E、データタイプアウトFの処理を行う区間を
行う必要がある。この円間はCPUにとつて大き
な負荷となる複雑な処理が存在するため処理時間
がかかる。しかしこのの処理は正常時は動作し
ない。正常時において従来の方法では毎回の演算
処理区間でも行つていたが、この方法ではを
行う必要はないため、CPUの負荷ははるかに軽
いものとなる。もしの処理が長くなる場合は、
異常時のみ周期Tの時間を延ばしてもシステム全
体の応答性にさほど影響は出ない。 During the processing shown in FIG. 5, abnormality processing routines D to F place a much greater burden on the CPU (calculation processing time becomes longer) than routines A to C. This situation can be seen in the 6th
Illustrated with diagrams. FIG. 6 is a diagram showing temporal changes in the arithmetic processing of the CPU 42, divided into when the vibration value is normal and when the vibration value is abnormal. In FIG. 6, the horizontal axis indicates the elapsed time t, and T indicates the time period in which the program is started by a hard timer (not shown). First, during normal operation, the processing of each input data input A, input data storage B, and vibration value determination C shown in FIG. 6 is performed (section), and then the computer shifts to idle time. In other words, if the vibration value is within the allowable value, the CPU is mostly in the idle section,
Doesn't require a very fast CPU. Next, when the vibration value is abnormal, it is necessary to perform a section in which the alarm output D, vibration cause determination routine E, and data type out F are performed after the section in which the same processing as described above is performed. This interval requires complex processing that places a large load on the CPU, so it takes a long time to process. However, this process does not work normally. In normal conditions, the conventional method performs this at each calculation processing interval, but with this method, there is no need to perform this, so the load on the CPU is much lighter. If the process takes a long time,
Even if the period T is extended only in the event of an abnormality, the responsiveness of the entire system will not be affected much.
第7図に第5図の振動原因判定ルーチンEのア
ルゴリズムを示す。主軸振動異常101が示され
ると本アルゴリズムの起動がかかる。主軸振動異
常は第7図中の四角で囲まれた要因全てにより起
こる大きくわけると上カバーの振動によるものと
そうでないものとがある。そのため上カバー振動
値も異常値を示しているかという判定102を行
う。上カバー振動値異常がない場合は201〜2
04の原因が考えられるため103〜105の判
定処理を行う。まず軸受ギヤツプの固定部異常2
01が発生しているかの判定は軸受ギヤツプに取
り付けられているギヤツプセンサにより、ギヤツ
プ値の測定を行い規定許容値を越えているかどう
かを判定する(103)。また、軸受潤滑油が不
足している場合にも潤滑不足202ということで
振動が起こるため、軸受潤滑油油面値をレベルセ
ンサにより計測し、許容値を逸脱していないかの
判定104を行う。更に軸受に関しては冷却水断
水203による損傷が大きな原因となり得ること
より、軸受冷却水流量を流量計により測定し、許
容値以上の冷却水流量があるかどうかを判定し、
更に冷却水の温度を測温抵抗体等で測定し、温度
上昇異常を判定する(105)。これ以外での主
軸振動異常かつ上カバー振動正常の場合は発電機
電磁加振力異常もしくは水車バランス異常(20
4)が考えられるため精密点検の必要性をタイプ
アウト出力する。一方、上カバー振動値も異常で
あつた場合は205〜212の原因が考えられる
ため106〜113の判定を行う。まず落差によ
る影響106や負荷による影響104である場合
には水車本体の特性上問題点があると判断できる
ため長期監視対策(205)、もしくは精密調査
を行うことが必要とることをタイプ表示し、検
査、保守員へ知らせる。106,107が正常で
ある場合は、水圧脈動値をドラフト水圧、ランナ
背圧などを圧力変位センサにより計測し水圧脈動
値が許容値以内であるかの判定を行う(108)。
水圧脈動値が正常である場合は206〜209の
原因が考えられ、異常である場合は210〜21
2の原因がある。まず正常である場合は、揚水時
の給気異常206が考えられこれを給気流速計を
用いて測定し給気流速異常109かの判定を行
う。109が正常の場合上カバー合せ目ボルトの
締付ゆるみ207の原因があり、このボルトゆる
み変位をギヤツプセンサで計測し判定を行う(1
10)。110が正常な場合、ランナーシール損
傷208の要因があり、これをランナーシールギ
ヤツプ温度センサにより温度異常を判定する(1
11)。この他は上カバー自身の損傷209の要
因である。他方、水圧脈動値108が異常値であ
ると判定された場合は210〜212の要因が考
えられ、ガイドベーン損傷210の要因の場合、
ガイドベーンのメタルかじり等の原因を監視する
ため、ガイドベーンサーボモータの操作力を測定
(差圧を測る)(112)し判定を行う。210の
要因でない場合は、弱点ピン切損211が考えら
れ、切損検出センサによりこの判定を行う(11
3)。これ以外が目標のランナ障害(損傷等によ
る)211の要因であり、精密点検を要するた
め、予防保全の必要有としてタイプアウト表示す
る。 FIG. 7 shows an algorithm for the vibration cause determination routine E shown in FIG. When the spindle vibration abnormality 101 is indicated, this algorithm is activated. Main shaft vibration abnormalities are caused by all of the factors enclosed in the squares in FIG. 7. Broadly speaking, there are two types of abnormalities: those caused by upper cover vibration and those that are not. Therefore, a determination 102 is made as to whether the upper cover vibration value also shows an abnormal value. 201-2 if there is no upper cover vibration value abnormality
Since the cause of 04 is considered, the determination processing of 103 to 105 is performed. First, there is an abnormality in the fixed part of the bearing gap 2.
To determine whether 01 has occurred, the gap value is measured using a gap sensor attached to the bearing gap, and it is determined whether the gap value exceeds a specified allowable value (103). Furthermore, when there is a lack of bearing lubricating oil, vibrations occur due to lack of lubrication 202, so the bearing lubricating oil level is measured by a level sensor, and it is determined 104 whether or not it deviates from the allowable value. . Furthermore, since damage to bearings due to cooling water cutoff 203 can be a major cause, the bearing cooling water flow rate is measured with a flow meter, and it is determined whether or not the cooling water flow rate exceeds an allowable value.
Furthermore, the temperature of the cooling water is measured using a resistance temperature detector or the like, and an abnormal temperature rise is determined (105). If the main shaft vibration is abnormal and the top cover vibration is normal in other cases, the generator electromagnetic excitation force is abnormal or the water turbine balance is abnormal (20
4) is possible, so type out the necessity of detailed inspection. On the other hand, if the upper cover vibration value is also abnormal, the causes 205 to 212 are possible, so determinations 106 to 113 are performed. First, if it is an effect due to head 106 or an effect due to load 104, it can be determined that there is a problem with the characteristics of the water turbine itself, so long-term monitoring measures (205) or detailed investigation are required. Inspect and notify maintenance personnel. If 106 and 107 are normal, the draft water pressure, runner back pressure, etc. are measured using a pressure displacement sensor, and it is determined whether the water pressure pulsation value is within an allowable value (108).
If the water pressure pulsation value is normal, possible causes are 206-209, and if it is abnormal, 210-21
There are two causes. First, if it is normal, an air supply abnormality 206 during pumping is considered, and this is measured using an air supply flow meter to determine whether the air supply flow rate is abnormal 109. If 109 is normal, there is a cause of loosening of the upper cover seam bolt 207, and the displacement of this bolt loosening is measured with a gap sensor and determined (1
10). If 110 is normal, there is a cause of runner seal damage 208, and this is determined by the runner seal gap temperature sensor as a temperature abnormality (1
11). Others are the cause of damage 209 to the upper cover itself. On the other hand, if the water pressure pulsation value 108 is determined to be an abnormal value, factors 210 to 212 are considered, and in the case of guide vane damage 210,
In order to monitor the cause of guide vane metal galling, etc., the operating force of the guide vane servo motor is measured (differential pressure is measured) (112) and a determination is made. If it is not the cause of 210, the weak point pin breakage 211 is considered, and this determination is made by the breakage detection sensor (11
3). Other than this is the cause of the target runner failure (due to damage, etc.) 211 and requires detailed inspection, so it is typed out and displayed as requiring preventive maintenance.
このランナ損傷を見つけるまでには
(1) 主軸振動値
(2) 上カバー振動値
(3) 落差
(4) 負荷
(5) 水圧脈動値
(6) ガイドベーンサーボモータ差圧
(7) 弱点ピン折損
の要素を計測するわけだが上記の内(1)は既に説明
した。また(3)(4)(6)(7)は従来技術により測定は容易
である。このため(2)(5)の測定および判定方法を以
下に示す。 To find this runner damage: (1) Main shaft vibration value (2) Upper cover vibration value (3) Head (4) Load (5) Water pressure pulsation value (6) Guide vane servo motor differential pressure (7) Broken weak point pin Of the above, (1) has already been explained. Furthermore, (3), (4), (6), and (7) can be easily measured using conventional techniques. For this reason, the measurement and determination methods for (2) and (5) are shown below.
第8図は上カバー振動、水圧脈動の測定か所を
示す。上カバー振動は水平及び垂直の2方向で常
時検出する。水平側センサ取付位置は300、垂
直側センサ取付位置301で両方とも上カバー上
の位置である。なお第8図の中ではランナ30
5、主軸306、ケーシング304を示す。また
水圧脈動はランナ背圧を常時検出し、その振動セ
ンサ取付け位置は302である。 Figure 8 shows the measurement points for upper cover vibration and water pressure pulsation. Upper cover vibration is constantly detected in two directions: horizontal and vertical. The horizontal sensor mounting position is 300, and the vertical sensor mounting position 301 are both located on the upper cover. In addition, in Figure 8, runner 30
5. Main shaft 306 and casing 304 are shown. Further, the water pressure pulsation constantly detects the runner back pressure, and the vibration sensor is installed at position 302.
第9図は上カバー振動について示した図であ
り、上カバー振動は個々の水力発電所毎に特有の
傾向を示すが、実測値311,312から判断す
ると、水車運転時は負荷、落差の関数310、揚
水運転時は、揚程の関数313で表わすことがで
きる。しかし、水車運転側に関しては落差による
影響が少ない場合が多く、その場合は負荷の関数
となる。 Figure 9 is a diagram showing the upper cover vibration. The upper cover vibration shows a unique tendency for each individual hydropower station, but judging from the actual measurements 311 and 312, when the turbine is in operation, it is a function of the load and head. 310, during pumping operation, it can be expressed as a function 313 of pumping head. However, on the water turbine operation side, the influence of head is often small, and in that case it becomes a function of load.
実際の測定は振動振幅値をオーバーオール値で
監視する。設定関数310,313を測定値がオ
ーバーした値は、異常と判定する。 In actual measurement, the vibration amplitude value is monitored as an overall value. A value in which the measured value exceeds the setting functions 310 and 313 is determined to be abnormal.
第10図は水圧脈動(ランナ背圧)について示
した図であり、水圧脈動も個々の水力発電所毎に
特有の傾向を示すが、実測値321,323から
判断すると、水車運転時は負荷の関数320、揚
水運転時は揚程の関数322で表わすことができ
る。 Figure 10 is a diagram showing water pressure pulsation (runner back pressure). Although water pressure pulsation also shows a unique tendency for each individual hydroelectric power plant, judging from the actual measured values 321 and 323, when operating a water turbine, the load It can be expressed by a function 320 and a function 322 of pumping head during pumping operation.
実測は振動振幅値をオーバーオール値で監視し
設定関数320,322を実測データがオーバー
したら異常と判定する。 In the actual measurement, the vibration amplitude value is monitored as an overall value, and if the actual measurement data exceeds the setting functions 320 and 322, it is determined that there is an abnormality.
水圧脈動に関しては流水部設計法、管路、水車
押込み深さ、水車の種類(専用機、ポンプ水車、
フランシス水車、斜流水車等)で異なり、水力発
電所に共通の数式で表わすことはできないため、
試験によつて設定することが多い。 Regarding water pressure pulsation, the water flow section design method, pipeline, turbine push-in depth, type of water turbine (dedicated machine, pump turbine,
Francis turbine, diagonal flow turbine, etc.) and cannot be expressed using a common formula for hydroelectric power plants.
It is often determined by testing.
このように本実施例では、ランナ障害を早期に
発見するため、初期に表れるランナバランスの崩
れによる主軸振動をオーバーオール値と周波数分
析値の両面より常時監視し、これにおいて異常を
検出した際には、主軸振動を起こさせる他の障害
要因を自動的に検出し、計算機にて処理し自動判
断させ、即時にランナ障害を検出することを可能
とした。本発明では正常時にコンピユータはアイ
ドル動作をしているが、この区間に計測データの
最大・最小などを整理し、日報、月報等の動作を
行う事も可能であり、コンピユータの有効活用が
できる。また、本発明は水力発電主機の不具合が
主に水車主軸振動に継がることを応用している
が、同様の性質がなる火力発電機器にも第7図の
アルゴリズマを変更すること及びセンサの取付け
場所を考慮することにより応用可能である。この
場合、システム構成は本発明と同一のハードウエ
ア(計算機システム)構成となる。 In this way, in order to discover runner failures early, in this example, the spindle vibration caused by the runner imbalance that appears in the early stages is constantly monitored from both the overall value and the frequency analysis value, and when an abnormality is detected, , other failure factors that cause spindle vibration are automatically detected, processed by a computer, and automatically determined, making it possible to immediately detect runner failures. In the present invention, the computer is in idle operation during normal operation, but it is also possible to organize the maximum and minimum of measurement data in this section and perform operations such as daily reports, monthly reports, etc., and the computer can be used effectively. Furthermore, although the present invention applies the fact that malfunctions in the main hydropower generator are mainly caused by vibrations of the main shaft of the water turbine, the algorithm shown in Fig. 7 can be modified and the sensor installed for thermal power generation equipment with similar characteristics. It can be applied by considering the location. In this case, the system configuration will be the same hardware (computer system) configuration as the present invention.
本発明によれば、振動を自動監視し、重大事故
の未然防止、早期発見をマイクロコンピユータで
実施でき、更に異常時にはその原因を示すことに
より調査時間の大幅短縮及び適切な処理が行える
効果がある。
According to the present invention, vibrations can be automatically monitored and serious accidents can be prevented and detected early using a microcomputer.Furthermore, in the event of an abnormality, the cause can be shown, thereby greatly shortening the investigation time and allowing appropriate processing to be carried out. .
第1図は主軸振動センサ取付図、第2図は主軸
振動アルゴリズム、第3図は主軸振動周波数分析
アルゴリズム、第4図は監視計算機システム構成
図、第5図は計算機処理フロー図、第6図は計算
機処理時間タイムチヤート、第7図は振動値異常
発生原因判定アルゴリズム、第8図は水圧脈動、
上カバー振動センサ取付図、第9図は上カバー振
動アルゴリズム、第10図は水圧脈動(ランナ背
圧)アルゴリズムである。
41……計算機本体、42……CPU、43…
…システムプログラムメモリ、44……データメ
モリ、45……データアウトプツトタイプライ
タ、46……計算機内部インターフエースバス、
47……振動データ入力部、48……アナログ計
測値入力部、49……デイジタルデータ入力部、
50……デイジタルデータ出力部、51……振動
データ変換器、52……アナログデータ変換器、
53……警報表示器、54……プラント機器、5
5……主軸振動値、56……上カバー振動値、5
7……軸受ギヤツプ値、58……軸受潤滑油油面
値、59……軸受冷却水流量、60……軸受冷却
水温度、61……落差、62……負荷、63……
水圧脈動値、64……ガイドベーンサーボモータ
差圧、65……弱点ピン切損データ、66……給
気流速、67……上カバーボルトゆるみ変位、6
8……ランナーシールギヤツプ温度、69……主
機起動状態、70……警報データ。
Figure 1 is the installation diagram of the spindle vibration sensor, Figure 2 is the spindle vibration algorithm, Figure 3 is the spindle vibration frequency analysis algorithm, Figure 4 is the configuration diagram of the monitoring computer system, Figure 5 is the computer processing flow diagram, and Figure 6 is is the computer processing time time chart, Figure 7 is the algorithm for determining the cause of vibration value abnormality, Figure 8 is the water pressure pulsation,
Fig. 9 shows the upper cover vibration sensor installation diagram, Fig. 9 shows the upper cover vibration algorithm, and Fig. 10 shows the water pressure pulsation (runner back pressure) algorithm. 41... Computer body, 42... CPU, 43...
...System program memory, 44...Data memory, 45...Data output typewriter, 46...Computer internal interface bus,
47... Vibration data input section, 48... Analog measurement value input section, 49... Digital data input section,
50... Digital data output section, 51... Vibration data converter, 52... Analog data converter,
53...Alarm indicator, 54...Plant equipment, 5
5... Main shaft vibration value, 56... Upper cover vibration value, 5
7... Bearing gap value, 58... Bearing lubricating oil level value, 59... Bearing cooling water flow rate, 60... Bearing cooling water temperature, 61... Head, 62... Load, 63...
Water pressure pulsation value, 64... Guide vane servo motor differential pressure, 65... Weak point pin breakage data, 66... Air supply flow rate, 67... Upper cover bolt loosening displacement, 6
8...Runner seal gap temperature, 69...Main engine starting status, 70...Alarm data.
Claims (1)
水車ランナ障害検出装置において、水車ランナの
振動を検出し取り込む手段と、予めランナ羽根の
亀裂・破損による所定の振動データと前記取り込
んだ振動とを比較判定する手段と、前記取り込ん
だ振動が前記所定の振動であると判定されたなら
警報を出力する手段と、前記振動の発生原因を探
索する手段と、該振動発生原因を出力する手段と
を有することを特徴とする水車ランナ障害検出装
置。1. In a water turbine runner failure detection device that detects a shift in the rotational balance of a water turbine runner, a means for detecting and capturing vibrations of the water turbine runner is compared and determined by comparing the captured vibration with predetermined vibration data due to cracks and damage of the runner blades. means for outputting an alarm if the captured vibration is determined to be the predetermined vibration, means for searching for the cause of the vibration, and means for outputting the cause of the vibration. A water turbine runner fault detection device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59208207A JPS6187979A (en) | 1984-10-05 | 1984-10-05 | Water turbine runner fault detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59208207A JPS6187979A (en) | 1984-10-05 | 1984-10-05 | Water turbine runner fault detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6187979A JPS6187979A (en) | 1986-05-06 |
JPH0310036B2 true JPH0310036B2 (en) | 1991-02-12 |
Family
ID=16552440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59208207A Granted JPS6187979A (en) | 1984-10-05 | 1984-10-05 | Water turbine runner fault detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6187979A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0666241A (en) * | 1992-08-11 | 1994-03-08 | Tokyo Electric Power Co Inc:The | Soundeness diagnostic unit for rotary machine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2747108B2 (en) * | 1990-11-22 | 1998-05-06 | 株式会社東芝 | Optimal operation setting method of movable impeller |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968572A (en) * | 1982-10-14 | 1984-04-18 | Toshiba Corp | Monitoring and controlling method of abnormality in plant |
-
1984
- 1984-10-05 JP JP59208207A patent/JPS6187979A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968572A (en) * | 1982-10-14 | 1984-04-18 | Toshiba Corp | Monitoring and controlling method of abnormality in plant |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0666241A (en) * | 1992-08-11 | 1994-03-08 | Tokyo Electric Power Co Inc:The | Soundeness diagnostic unit for rotary machine |
Also Published As
Publication number | Publication date |
---|---|
JPS6187979A (en) | 1986-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7409319B2 (en) | Method and apparatus for detecting rub in a turbomachine | |
JPH01267436A (en) | Method and apparatus for measuring fatigue of vibration member | |
Gupta | Vibration—A tool for machine diagnostics and condition monitoring | |
JPH0312246B2 (en) | ||
JPH0310036B2 (en) | ||
JPH01101418A (en) | Diagnosing device for rotary machine | |
CN113686378B (en) | Method for monitoring running state of top cover of water turbine | |
JPH0543052B2 (en) | ||
JPS6131324B2 (en) | ||
JPS5813221A (en) | Watching apparatus for tilting pad bearing | |
JPH02232529A (en) | Method and apparatus for diagnosing vibration of rotary machine | |
Stegemann et al. | Monitoring and vibrational diagnostic of rotating machinery in power plants | |
Husnjak et al. | Dynamical loads and the consequences in the Rough Load Zone Operation–case studies | |
JPS58615A (en) | Method of monitoring bearing | |
JPS6216329B2 (en) | ||
JPH0129248B2 (en) | ||
Lee et al. | Rotordynamic analysis and operation test of the power turbine with the concept of the Lee diagram | |
Jackson et al. | Design, Testing And Commissioning Of A Synchronous Motor-Gear-Axial Compressor. | |
JPS6330983Y2 (en) | ||
JP2002168242A (en) | Abnormality-detecting device and method for thrust bearing | |
JPH03279836A (en) | Unbalance monitoring diagnostic device for rotary machine | |
Song et al. | Research on fault characteristic analysis and diagnosis method of cantilever roadheader rotor system | |
JPH0514854B2 (en) | ||
JP2547905B2 (en) | Axis system abnormality detection device | |
Bahrin et al. | Investigation of pump and motor healthiness based on vibration analysis at uthm biodiesel plant |