JPH03100157A - Production of shape memory alloy - Google Patents
Production of shape memory alloyInfo
- Publication number
- JPH03100157A JPH03100157A JP23748189A JP23748189A JPH03100157A JP H03100157 A JPH03100157 A JP H03100157A JP 23748189 A JP23748189 A JP 23748189A JP 23748189 A JP23748189 A JP 23748189A JP H03100157 A JPH03100157 A JP H03100157A
- Authority
- JP
- Japan
- Prior art keywords
- shape memory
- memory alloy
- plasma spraying
- metal powders
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 239000000843 powder Substances 0.000 claims abstract description 59
- 238000007750 plasma spraying Methods 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000011248 coating agent Substances 0.000 claims description 23
- 238000000576 coating method Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 17
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 239000011812 mixed powder Substances 0.000 claims description 5
- 230000009466 transformation Effects 0.000 abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052802 copper Inorganic materials 0.000 abstract description 8
- 239000010949 copper Substances 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 238000002156 mixing Methods 0.000 abstract description 5
- 238000005275 alloying Methods 0.000 abstract description 4
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 238000010306 acid treatment Methods 0.000 abstract 1
- 238000004090 dissolution Methods 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 238000005507 spraying Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910004337 Ti-Ni Inorganic materials 0.000 description 4
- 229910011209 Ti—Ni Inorganic materials 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 238000004663 powder metallurgy Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910017535 Cu-Al-Ni Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、形状記憶合金の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a shape memory alloy.
従来、形状記憶合金は溶解法、及び粉末冶金法等によっ
て製造されている。溶解法によって、例えばTi−Ni
合金のような実用材を製造する場合は、溶解→鋳造→熱
間加工→冷間加工→成形加工及び形状記憶処理の多数の
工程がとられていた。Conventionally, shape memory alloys have been manufactured by melting methods, powder metallurgy methods, and the like. By dissolution method, for example, Ti-Ni
When manufacturing practical materials such as alloys, a number of steps have been taken: melting → casting → hot working → cold working → forming and shape memory treatment.
しかし、T i −N i系合金は加工硬化が大きく、
形状記憶性があるため、冷間加工において多数の中間焼
鈍を行う必要があり、複雑な形状を形成加工することは
困難であった。また、Cu−Al−Ni系形状記憶合金
の場合も、溶解鋳造法によってインゴットを得る際の結
晶粒の粗大化に起因する熱間加工および冷間加工におけ
る困難性が問題であった。However, Ti-Ni alloys have large work hardening,
Since it has shape memory, it is necessary to perform a large number of intermediate annealings during cold working, making it difficult to form and process a complicated shape. Further, in the case of Cu-Al-Ni type shape memory alloys, there is also a problem of difficulty in hot working and cold working due to coarsening of crystal grains when obtaining an ingot by melting and casting.
これに対して、粉末冶金法では上記の溶解法における成
形加工性の問題がなく、所望の形状をもった形状記憶合
金を得ることができる。しかし、超高圧下での熱間等方
圧加工(HI P)処理等の煩雑な工程を必要とし、ま
た焼結が高温(約1000℃)で行われることから結晶
粒が粗大化し、機械特性が劣化するという問題があった
。On the other hand, the powder metallurgy method does not have the problem of moldability in the above-mentioned melting method, and it is possible to obtain a shape memory alloy having a desired shape. However, it requires complicated processes such as hot isostatic processing (HIP) under ultra-high pressure, and since sintering is performed at high temperatures (approximately 1000°C), the crystal grains become coarse and the mechanical properties deteriorate. There was a problem of deterioration.
上述したような問題を解決する形状記憶合金の製造方法
として、プラズマ溶射による形状記憶合金の製造方法が
開示されている(特開昭63−140072号)。As a method for manufacturing a shape memory alloy that solves the above-mentioned problems, a method for manufacturing a shape memory alloy by plasma spraying has been disclosed (Japanese Patent Application Laid-Open No. 140072/1983).
しかしながら、上記のプラズマ溶射による形状記憶合金
の製造方法では、バルクの状態で形状記憶性をもつ金属
粉末を使用するため、予め形状記憶合金粉末を何らかの
製造方法に従って製造して準備する必要があり、最終製
品までの製造工程が多く、作業効率が低く、また生産コ
ストが高いといった問題があった。However, in the method for manufacturing shape memory alloys by plasma spraying described above, since metal powder that has shape memory properties in the bulk state is used, it is necessary to prepare shape memory alloy powder by manufacturing it in advance according to some manufacturing method. There are problems in that there are many manufacturing steps up to the final product, low work efficiency, and high production costs.
さらに、上述の溶解法、粉末冶金法及びプラズマ溶射に
よる形状記憶合金の製造方法では、形状記憶合金の成分
比率は合金全域において一定であり、形状記憶合金の変
態温度は合金の成分比率によってほとんど決定されるた
め、連続的または段階的に異なった変態温度を有する形
状記憶合金の製造は、従来の製造方法ではほとんど不可
能であった。Furthermore, in the above-mentioned melting method, powder metallurgy method, and plasma spraying method for manufacturing shape memory alloys, the component ratio of the shape memory alloy is constant throughout the alloy, and the transformation temperature of the shape memory alloy is almost determined by the component ratio of the alloy. Therefore, it has been almost impossible to manufacture shape memory alloys with continuously or stepwise different transformation temperatures using conventional manufacturing methods.
本発明は、上述した問題点を解決するためになされたも
のであり、所望の製品形状が容易に得られ、かつ製造工
程及び生産コストが少なく、機械加工性及び形状記憶性
に優れた形状記憶合金の製造方法を提供することを目的
とする。The present invention was made in order to solve the above-mentioned problems, and it is possible to easily obtain a desired product shape, reduce the manufacturing process and production cost, and have excellent machinability and shape memory properties. The purpose of the present invention is to provide a method for producing an alloy.
また、作業工程を増加させることなく連続的または段階
的に異なった変態温度を有する形状記憶合金の製造方法
を提供することを目的とする。Another object of the present invention is to provide a method for manufacturing a shape memory alloy having transformation temperatures that vary continuously or stepwise without increasing the number of work steps.
この目的を解決するために、本発明は形状記憶合金の成
分元素からなる二種以上の金属粉末を所定の比率で混合
した混合粉末をプラズマ溶射装置に供給して、または前
記二種以上の金属粉末を所定の供給比率で同時に前記プ
ラズマ溶射装置に供給して、所望の形状を有する心型上
に溶射被膜を形成し、この溶射被膜を熱処理して合金化
する構成とした。In order to solve this object, the present invention supplies a mixed powder in which two or more kinds of metal powders made of component elements of a shape memory alloy are mixed at a predetermined ratio to a plasma spraying apparatus, or The powders were simultaneously supplied to the plasma spraying apparatus at a predetermined supply ratio to form a sprayed coating on a core having a desired shape, and the sprayed coating was heat-treated to form an alloy.
また、前記二種以上の金属粉末を連続的または段階的に
変化する供給比率で同時に前記プラズマ溶射装置に供給
して、所望の形状を有する心型上に溶射被膜を形成し、
この溶射被膜を熱処理して合金化する構成とした。Further, the two or more types of metal powders are simultaneously supplied to the plasma spraying apparatus at a supply ratio that varies continuously or stepwise to form a sprayed coating on a core having a desired shape,
This thermal spray coating was heat-treated to form an alloy.
予め形状記憶合金の成分元素からなる二種以上の金属粉
末を所定の比率で混合して調製された混合粉末がプラズ
マ溶射装置に供給されて所望の形状を有する心型上に溶
射被膜が形成され、または前記二種以上の金属粉末が所
定の供給比率で同時にプラズマ溶射装置に供給されて所
望の形状を有する心型上に溶射被膜が形成され、このよ
うに形成された溶射被膜は前記二種以上の金属粉末が均
一に混合され、かつその被膜密度は従来の製造方法によ
って得られたバルク形状の形状記憶合金とほぼ等しく、
この溶射被膜を真空で熱処理することにより合金化がな
され、前記6型に対応した複雑な形状の形状記憶合金が
得られる。さらに、前記二種以上の金属粉末が連続的ま
たは段階的に変化する供給比率で同時にプラズマ溶射装
置に供給されて所望の形状を有する心型上に溶射被膜が
形成され、この溶射被膜を真空で熱処理することにより
合金化がなされ、上記の供給比率に対応して連続的また
は段階的に異なった変態温度を有する形状記憶合金が得
られる。A mixed powder prepared in advance by mixing two or more types of metal powders consisting of component elements of a shape memory alloy at a predetermined ratio is supplied to a plasma spraying device, and a sprayed coating is formed on a core having a desired shape. , or the above two or more types of metal powders are simultaneously supplied to a plasma spraying apparatus at a predetermined supply ratio to form a sprayed coating on a core having a desired shape, and the sprayed coating thus formed is composed of the above two types of metal powders. The above metal powders are mixed uniformly, and the film density is almost equal to that of the bulk shape memory alloy obtained by conventional manufacturing methods.
Alloying is achieved by heat-treating this sprayed coating in a vacuum, and a shape memory alloy having a complex shape corresponding to the above-mentioned type 6 is obtained. Further, the two or more types of metal powders are simultaneously supplied to a plasma spraying device at supply ratios that vary continuously or stepwise to form a sprayed coating on a core having a desired shape, and this sprayed coating is heated in a vacuum. Alloying is achieved by heat treatment, and shape memory alloys having transformation temperatures that vary continuously or stepwise in accordance with the above-mentioned supply ratio are obtained.
以下、本発明の実施例について図面を参照して説明する
。Embodiments of the present invention will be described below with reference to the drawings.
第1図は、本発明の形状記憶合金の製造方法を説明する
ためのプラズマ溶射装置の概略構成図である。第1図に
おいて、プラズマ溶射ガン1は粉末供給装置2のノズル
2aから供給される金属粉末を銅製の管状心型3の表面
にプラズマ溶射するためのものである。FIG. 1 is a schematic configuration diagram of a plasma spraying apparatus for explaining the method for manufacturing a shape memory alloy of the present invention. In FIG. 1, a plasma spray gun 1 is for plasma spraying metal powder supplied from a nozzle 2a of a powder supply device 2 onto the surface of a copper tubular core mold 3.
プラズマ溶射ガン1と銅製の管状心型3は、雰囲気調整
可能なチャンバー(図示せず)内に配設されており、チ
ャンバー内は先ず10’TORR程度まで真空に引かれ
た後、アルゴンガスを流入しながら排気を続けることに
よって、酸素分圧が低く保たれている。このようなチャ
ンバー内雰囲気としては、例えば約50TORRの減圧
アルゴンガス雰囲気とすることができる。このように、
水素ガスを使用せずにアルゴンガス単独とすることによ
って、後述するT i −N i糸形状記憶合金を製造
する場合、Ti粉末の水素脆性の発現を防止することが
できる。The plasma spray gun 1 and the copper tubular core 3 are placed in a chamber (not shown) in which the atmosphere can be adjusted.The chamber is first evacuated to about 10'TORR, and then argon gas is injected into the chamber. The partial pressure of oxygen is kept low by continuing to pump out air while flowing in. The atmosphere inside the chamber can be, for example, a reduced pressure argon gas atmosphere of about 50 TORR. in this way,
By using argon gas alone without using hydrogen gas, it is possible to prevent hydrogen embrittlement of the Ti powder from occurring when producing the Ti-Ni thread shape memory alloy described below.
粉末供給装置2から供給される金属粉末は、目的とする
形状記憶合金の成分元素からなる二種以上の金属粉末を
所定の比率で混合した混合粉末である。例えば、T i
−N i糸形状記憶合金を製造する場合、Ti粉とN
i粉とを重量比が45=55となるように正確の秤量し
た後、充分の攪拌混合した混合粉末を用いることができ
る。使用する金属粉末の粒径は5〜105μm程度、好
ましくは10〜74μm程度である。The metal powder supplied from the powder supply device 2 is a mixed powder obtained by mixing two or more kinds of metal powders consisting of component elements of the target shape memory alloy at a predetermined ratio. For example, T i
- When manufacturing Ni thread shape memory alloy, Ti powder and N
It is possible to use a mixed powder obtained by accurately weighing the powder and powder i so that the weight ratio becomes 45=55, and then sufficiently stirring and mixing the powder. The particle size of the metal powder used is about 5 to 105 μm, preferably about 10 to 74 μm.
粉末供給装置2から供給される上述の金属粉末をプラズ
マ溶射ガン1によって銅製の管状6型3の表面にプラズ
マ溶射して、所望の厚さの溶射被膜が形成されたところ
でプラズマ溶射が中止される。The above metal powder supplied from the powder supply device 2 is plasma sprayed onto the surface of the copper tubular 6 type 3 by the plasma spray gun 1, and the plasma spraying is stopped when a sprayed coating of a desired thickness is formed. .
プラズマ溶射によって溶射被膜が形成された銅製の管状
6型3は、酸(硝酸)処理による溶解除去、または機械
加工による切削除去が行われ、管状のT i −N i
混合溶射被膜が得られる。The copper tubular type 6 type 3 on which the sprayed coating was formed by plasma spraying is dissolved and removed by acid (nitric acid) treatment or cut and removed by machining, and the tubular T i -N i
A mixed spray coating is obtained.
このような減圧雰囲気プラズマ溶射によって得られる溶
射被膜は、Ti粉とNi粉とが均一に混合されており、
大気中で行われるプラズマ溶射によって得られる溶射被
膜に比べて空隙が極めて少なく、その被膜密度は従来の
製造方法によって得られたバルク形状の形状記憶合金と
ほぼ等しい密度(99%以上)である。さらに、アルゴ
ンガス雰囲気中でのプラズマ溶射によるため、溶射中の
酸素混入によるTi粉、Ni粉の酸化が防止される。The sprayed coating obtained by such plasma spraying in a reduced pressure atmosphere is a uniform mixture of Ti powder and Ni powder,
Compared to the sprayed coating obtained by plasma spraying performed in the atmosphere, there are extremely few voids, and the coating density is approximately the same density (99% or more) as that of the bulk shape memory alloy obtained by conventional manufacturing methods. Furthermore, since plasma spraying is performed in an argon gas atmosphere, oxidation of Ti powder and Ni powder due to oxygen contamination during spraying is prevented.
このようにして得られた溶射被膜は、拡散熱処理によっ
て合金化が行われる。拡散熱処理は、例えば、溶射波膜
を真空下で1000℃に10時間加熱保持することによ
って行われる。The sprayed coating thus obtained is alloyed by diffusion heat treatment. The diffusion heat treatment is performed, for example, by heating and holding the sprayed wave film at 1000° C. for 10 hours under vacuum.
第2図は、本発明の他の実施例を説明するためのプラズ
マ溶射装置の概略構成図である。第2図において、プラ
ズマ溶射ガン11は粉末供給装置12のノズル12a及
び粉末供給装置13のノズル13aから供給される金属
粉末を銅製の平板状6型14の表面にプラズマ溶射する
ためのものである。FIG. 2 is a schematic configuration diagram of a plasma spraying apparatus for explaining another embodiment of the present invention. In FIG. 2, a plasma spray gun 11 is for plasma spraying metal powder supplied from a nozzle 12a of a powder supply device 12 and a nozzle 13a of a powder supply device 13 onto the surface of a copper flat plate-shaped 6-type 14. .
上述した実施例と同様に、プラズマ溶射ガン11と銅製
の平板状6型14は、雰囲気調整可能なチャンバー(図
示せず)内に配設されている。Similar to the above-described embodiment, the plasma spray gun 11 and the six flat copper molds 14 are placed in a chamber (not shown) in which the atmosphere can be adjusted.
そして、二つの粉末供給装置12.13は、例えばTi
−Ni系形状記憶合金を製造する場合、Ti粉とNi粉
とを別個に、かつ同時にプラズマ溶射ガン11に供給す
る。このときの供給比率は、上述の実施例に従えば、T
i粉とNi粉との重量比が45:55となるような比率
である。このように、目的とする形状記憶合金の成分元
素からなる二種以上の金属粉末をそれぞれ所定の供給比
率で同時にプラズマ溶射装置に供給することによって、
要求される形状記憶合金の変態温度に応じて容易に合金
組成を変えることができる。なお、使用する金属粉末の
粒径は5〜105μm程度、好ましくは10〜74μm
程度である。The two powder supply devices 12 and 13 are, for example, Ti powder.
- When manufacturing a Ni-based shape memory alloy, Ti powder and Ni powder are supplied separately and simultaneously to the plasma spray gun 11. According to the above embodiment, the supply ratio at this time is T
The ratio is such that the weight ratio of i powder to Ni powder is 45:55. In this way, by simultaneously supplying two or more types of metal powders consisting of the component elements of the target shape memory alloy to the plasma spraying apparatus at predetermined supply ratios,
The alloy composition can be easily changed depending on the required transformation temperature of the shape memory alloy. The particle size of the metal powder used is about 5 to 105 μm, preferably 10 to 74 μm.
That's about it.
このようにして得られる溶射被膜は、Ti粉とNi粉と
が均一に混合されており、上述の実施例と同様に空隙が
極めて少なく、高い被膜密度を有するものである。The sprayed coating thus obtained contains a uniform mixture of Ti powder and Ni powder, has extremely few voids, and has a high coating density, as in the above-mentioned embodiments.
さらに、本発明では第2図に示されるプラズマ溶射装置
において、二つの粉末供給装置12゜13からプラズマ
溶射ガン11に供給されるTi粉とNi粉の供給比率を
連続的に、または段階的に変化させることもできる。第
3図は、第2図に示されるプラズマ溶射装置においてT
i粉とNi粉の供給比率を連続的にTi粉量が多くなる
ように変化させて形成された平板状の溶射被膜15を示
す図である。この溶射波膜15の面15aは銅製の平板
状6型14の表面に接していた面であり、この面L5a
から、反対側の面15b方向に溶射被膜15は厚みXを
有している。また、第4図は、第3図に示される平板状
の溶射被膜15の面15aから面15b方向へのTi−
Ni組成の変化を示す図である。第4図において、面1
5aではTi :N1=35 :65であり、面15b
ではTi:N1=65:35となっている。−般にTi
−Ni系形状記憶合金では、Ni量が0.1at%増す
ことにより変態温度が約10℃低下するので、この溶射
被膜15の面15aは面15bより約300℃低い変態
温度を有する。Furthermore, in the present invention, in the plasma spraying apparatus shown in FIG. It can also be changed. FIG. 3 shows T in the plasma spraying apparatus shown in FIG.
It is a figure which shows the flat thermal spray coating 15 formed by continuously changing the supply ratio of i powder and Ni powder so that the amount of Ti powder may increase. The surface 15a of this sprayed wave film 15 is the surface that was in contact with the surface of the copper flat plate type 6 14, and this surface L5a
The sprayed coating 15 has a thickness X in the direction of the opposite surface 15b. Further, FIG. 4 shows Ti-
FIG. 3 is a diagram showing changes in Ni composition. In Figure 4, surface 1
5a, Ti:N1=35:65, and surface 15b
Then, Ti:N1=65:35. -Generally Ti
In the -Ni-based shape memory alloy, the transformation temperature is lowered by about 10° C. by increasing the amount of Ni by 0.1 at %, so the surface 15a of the sprayed coating 15 has a transformation temperature about 300° C. lower than the surface 15b.
第4図ではTi量が多くなるように供給比率が連続的に
変化しているが、TI量が段階的に多くなるようにして
もよく、また厚さXのほぼ中央でTi量が最大となるよ
うにしてもよく、供給比率の変化には特に制限はない。In Fig. 4, the supply ratio changes continuously so that the amount of Ti increases, but the amount of Ti may also be increased stepwise, or the amount of Ti is maximum at approximately the center of the thickness X. There is no particular restriction on the change in the supply ratio.
このように、本発明では溶射成膜方向で変態温度の異な
る形状記憶合金を容易に製造することができる。As described above, in the present invention, it is possible to easily produce a shape memory alloy having different transformation temperatures in the thermal spray coating direction.
上述の各実施例では、Ti−Ni系形状記憶合金を例に
説明したが、他の二成分系、または三成分系以上の多成
分系の形状記憶合金であっても同様に本発明を実施する
ことができる。In each of the above embodiments, the Ti-Ni shape memory alloy was used as an example, but the present invention can be similarly carried out with other two-component shape memory alloys, or multi-component shape memory alloys with three or more components. can do.
以上詳述しとことから明らかなように、本発明によれば
、形状記憶合金の成分元素からなる金属粉末を用いてプ
ラズマ溶射によって形状記憶合金を製造するため、生産
コストの低減、製造工程の簡略化が可能であり、また得
られる形状記憶合金は所望の形状とすることができ、さ
らに作業工程を増加させることなく連続的または段階的
に異なった変態温度を有する形状記憶合金の製造が可能
となる。As is clear from the detailed description above, according to the present invention, a shape memory alloy is manufactured by plasma spraying using metal powder consisting of constituent elements of a shape memory alloy, thereby reducing production costs and simplifying the manufacturing process. Simplification is possible, and the resulting shape memory alloy can be made into a desired shape, and it is also possible to manufacture shape memory alloys with different transformation temperatures continuously or stepwise without increasing the number of work steps. becomes.
第1図は本発明の形状記憶合金の製造方法を説明するた
めのプラズマ溶射装置の概略構成図、第2図は本発明の
他の実施例を説明するためのプラズマ溶射装置の概略構
成図、第3図は第2図に示されるプラズマ溶射装置にお
いてTi粉とNi粉の供給比率を連続的にTi粉量が多
くなるように変化させて形成された平板状の溶射被膜を
示す図、第4図は第3図に示される平板状の溶射被膜の
厚さ方向のTi−Ni組成の変化を示す図である。
1.11・・・プラズマ溶射ガン、2.12゜13・・
・粉末供給装置、2 a、 12 a、 13 a
・・・ノズル、3.14・・・6型、15・・・溶射被
膜。FIG. 1 is a schematic configuration diagram of a plasma spraying apparatus for explaining the method for manufacturing a shape memory alloy of the present invention, FIG. 2 is a schematic configuration diagram of a plasma spraying apparatus for explaining another embodiment of the present invention, Figure 3 is a diagram showing a flat thermal sprayed coating formed by continuously changing the supply ratio of Ti powder and Ni powder so that the amount of Ti powder increases in the plasma spraying apparatus shown in Figure 2; FIG. 4 is a diagram showing changes in the Ti--Ni composition in the thickness direction of the flat plate-shaped sprayed coating shown in FIG. 3. 1.11...Plasma spray gun, 2.12゜13...
・Powder supply device, 2 a, 12 a, 13 a
...Nozzle, 3.14...6 type, 15...Thermal spray coating.
Claims (2)
粉末を所定の比率で混合した混合粉末をプラズマ溶射装
置に供給して、または前記二種以上の金属粉末を所定の
供給比率で同時に前記プラズマ溶射装置に供給して、所
望の形状を有する心型上に溶射被膜を形成し、この溶射
被膜を熱処理して合金化することを特徴とする形状記憶
合金の製造方法。1. The plasma spraying is performed by supplying a mixed powder in which two or more types of metal powders consisting of component elements of the shape memory alloy are mixed at a predetermined ratio to a plasma spraying device, or by simultaneously supplying the two or more metal powders at a predetermined supply ratio. 1. A method for producing a shape memory alloy, which comprises supplying a shape memory alloy to an apparatus to form a thermally sprayed coating on a core having a desired shape, and heat-treating the thermally sprayed coating to form an alloy.
変化する供給比率で同時に前記プラズマ溶射装置に供給
することを特徴とする請求項1記載の形状記憶合金の製
造方法。2. 2. The method for manufacturing a shape memory alloy according to claim 1, wherein the two or more metal powders are simultaneously supplied to the plasma spraying apparatus at a supply ratio that varies continuously or stepwise.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23748189A JPH03100157A (en) | 1989-09-13 | 1989-09-13 | Production of shape memory alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23748189A JPH03100157A (en) | 1989-09-13 | 1989-09-13 | Production of shape memory alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03100157A true JPH03100157A (en) | 1991-04-25 |
Family
ID=17015966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23748189A Pending JPH03100157A (en) | 1989-09-13 | 1989-09-13 | Production of shape memory alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03100157A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10208868A1 (en) * | 2002-03-01 | 2003-09-18 | Mtu Aero Engines Gmbh | Vibration damping component and/or its coating is produced by plasma spraying or rapid solidification processing deposition of a metal alloy or intermetallic compound |
CN102400081A (en) * | 2011-10-25 | 2012-04-04 | 西安交通大学 | Method for preparing wear-resistant TiNi shape memory alloy coating by using argon arc welding |
RU2475567C1 (en) * | 2011-06-17 | 2013-02-20 | Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет " (ГОУВПО "КубГТУ") | Plant for obtaining nanostructured coatings from material with shape memory effect on cylindrical surface of parts |
JP2014011460A (en) * | 2012-06-28 | 2014-01-20 | Kojun Seimitsu Kogyo Kofun Yugenkoshi | Method of producing metal element |
RU2674532C1 (en) * | 2018-06-15 | 2018-12-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Vacuum unit for nanostructured coating made of material with shape memory effect on part surface |
-
1989
- 1989-09-13 JP JP23748189A patent/JPH03100157A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10208868A1 (en) * | 2002-03-01 | 2003-09-18 | Mtu Aero Engines Gmbh | Vibration damping component and/or its coating is produced by plasma spraying or rapid solidification processing deposition of a metal alloy or intermetallic compound |
DE10208868B4 (en) * | 2002-03-01 | 2008-11-13 | Mtu Aero Engines Gmbh | Method for producing a component and / or a layer of a vibration-damping alloy or intermetallic compound and component produced by this method |
RU2475567C1 (en) * | 2011-06-17 | 2013-02-20 | Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет " (ГОУВПО "КубГТУ") | Plant for obtaining nanostructured coatings from material with shape memory effect on cylindrical surface of parts |
CN102400081A (en) * | 2011-10-25 | 2012-04-04 | 西安交通大学 | Method for preparing wear-resistant TiNi shape memory alloy coating by using argon arc welding |
JP2014011460A (en) * | 2012-06-28 | 2014-01-20 | Kojun Seimitsu Kogyo Kofun Yugenkoshi | Method of producing metal element |
RU2674532C1 (en) * | 2018-06-15 | 2018-12-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Vacuum unit for nanostructured coating made of material with shape memory effect on part surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102302317B1 (en) | Method For Forming Powder Of High Entropy Ceramic And Method For Forming Thermal Spray Coatings Layer Using Powder Of High Entropy Ceramic | |
US6056857A (en) | Cryogenic annealing of sputtering targets | |
KR102359630B1 (en) | W-ni sputter target | |
CN110257784A (en) | A kind of preparation process of high-compactness molybdenum niobium alloy sputtering target material | |
CN106319463A (en) | Preparation method for rolling processing of tungsten-titanium alloy target material | |
CN104470658A (en) | Metal crucible and method of forming the same | |
US6168833B1 (en) | Process for coating with ceramic vaporizing materials | |
US11938542B2 (en) | Method for finishing a workpiece made by additive manufacturing | |
JPH03100157A (en) | Production of shape memory alloy | |
CN106244988A (en) | A kind of high resistant target manufacture method | |
CN112111714B (en) | Preparation method of tantalum-aluminum alloy sputtering target material | |
CN115255367B (en) | Nickel-aluminum alloy sputtering target material and hot pressing preparation method thereof | |
CN113088901B (en) | Nickel-chromium alloy sputtering target material and hot isostatic pressing preparation method thereof | |
TWI588267B (en) | High purity tungsten metal material and preparation method of tungsten target | |
US4332617A (en) | Method of fabricating thin-walled articles of tungsten-nickel-iron alloy | |
CN113088909A (en) | Nickel-chromium alloy sputtering target material and hot-pressing preparation method thereof | |
JP2004190056A (en) | Heat-resistant coated member | |
CN112059181A (en) | Nickel-manganese-indium shape memory alloy part and 4D forming method thereof | |
JP2767972B2 (en) | Method for producing TiAl-based intermetallic compound layer | |
JP2004002938A (en) | Target material for sputtering or ion plating and method of producing the same | |
RU2821178C1 (en) | Method of producing volumetric articles from high-entropy alloy alloyed with nitrogen by selective laser melting | |
JPH05214520A (en) | Sputtering target for titanium | |
Gromov et al. | Methods of Manufacturing the High-Entropy Alloys | |
RU2829621C1 (en) | Method of producing spherical powder of high-entropy alloy alloyed with nitrogen | |
JP4140083B2 (en) | NiAlMo sputtering target and manufacturing method thereof |