JPH03100136A - Aluminum alloy material for die - Google Patents
Aluminum alloy material for dieInfo
- Publication number
- JPH03100136A JPH03100136A JP23582089A JP23582089A JPH03100136A JP H03100136 A JPH03100136 A JP H03100136A JP 23582089 A JP23582089 A JP 23582089A JP 23582089 A JP23582089 A JP 23582089A JP H03100136 A JPH03100136 A JP H03100136A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- mold
- wear resistance
- toughness
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 46
- 239000000956 alloy Substances 0.000 title claims abstract description 29
- 239000000843 powder Substances 0.000 claims abstract description 19
- 239000004033 plastic Substances 0.000 claims abstract description 10
- 229920003023 plastic Polymers 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims description 14
- 239000011856 silicon-based particle Substances 0.000 claims description 9
- 238000005056 compaction Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910000765 intermetallic Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 20
- 229910045601 alloy Inorganic materials 0.000 abstract description 11
- 238000000465 moulding Methods 0.000 abstract description 7
- 239000000919 ceramic Substances 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 230000007797 corrosion Effects 0.000 abstract description 4
- 229920001971 elastomer Polymers 0.000 abstract description 3
- 239000005060 rubber Substances 0.000 abstract description 3
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 238000010137 moulding (plastic) Methods 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000003466 welding Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000007872 degassing Methods 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 238000007731 hot pressing Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000009849 vacuum degassing Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018507 Al—Ni Inorganic materials 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007782 splat cooling Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は複雑な形状をもった部品を成形するときの金型
用材料に関するもので、特にプラスチック、ゴム、金属
、またはセラミックスなどの粉末射出成形金型として使
用されるアルミニウム合金材料に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a material for molds used when molding parts with complex shapes, and particularly for powder injection of plastics, rubber, metals, or ceramics. This invention relates to aluminum alloy materials used as molds.
[従来の技術]
プラスチックの射出成形用金型やブロー成形用金型は、
一般に鉄鋼材料が用いられている。[Prior art] Plastic injection molds and blow molding molds are
Steel materials are generally used.
しかし、多量生産を必要としない金型は、アルミニウム
合金が使用されている。However, aluminum alloys are used for molds that do not require mass production.
アルミニウム合金製の金型は、耐摩耗性、耐軟化性、高
温強度及び靭性が鉄鋼材料に較べ劣るため、金型寿命は
短いが、次にあげる利点があるので、好んで使用されて
きた。Molds made of aluminum alloys are inferior in wear resistance, softening resistance, high-temperature strength, and toughness compared to steel materials, and therefore have a short mold life, but have been preferred because they have the following advantages.
■ 切削性が良好なため型ぼり加工速度が早(、型製作
時間が短い。また、機械加工時の工具の寿命が長い。■ Due to good machinability, molding speed is fast (and mold making time is short. Also, tool life during machining is long).
■ 比重が小さいため、金型の製作、取付けなどのハン
ドリングが容易である。■ Due to its low specific gravity, handling such as making molds and installing it is easy.
■ 耐食性が良好なため、休止時の保守管理が容易であ
る。■ Good corrosion resistance makes maintenance management easy during downtime.
■ 熱伝導度が高いため、金型として冷却能が高く、成
形サイクルの短縮がはかれる。■ Due to its high thermal conductivity, it has a high cooling capacity as a mold and can shorten the molding cycle.
アルミニウム合金の種類は強度を必要とするのでJIS
合金では7075.7079などのAl−Zn−Mg−
Cu合金が用いられてきた。The type of aluminum alloy requires strength, so JIS
For alloys, Al-Zn-Mg- such as 7075.7079
Cu alloys have been used.
前述のようにアルミニウム合金金型は、アルミニウム合
金中で、強度や耐摩耗性に優れた合金を使用しているが
、鉄鋼材料に比較すると金型寿命が短い。たとえば、鉄
鋼材料金型では10万ショット以上型打ち可能であるが
、アルミニウム合金金型では3000〜5000シヨ・
ット位である。このためにアルミニウム合金金型は寿命
の短い簡易型の金型として用いられるのみであった。ま
た、鉄鋼材料とアルミニウム合金との金型寿命は約30
倍も差があり、アルミニウム合金金型の優位性を生かす
ことができなかった。As mentioned above, aluminum alloy molds use an aluminum alloy that has excellent strength and wear resistance, but the mold life is short compared to steel materials. For example, a steel material mold can be stamped with more than 100,000 shots, but an aluminum alloy mold can be stamped with 3,000 to 5,000 shots.
It is about 100%. For this reason, aluminum alloy molds have only been used as simple molds with short lifespans. In addition, the mold life of steel materials and aluminum alloys is approximately 30 years.
There was a difference of twice as much, and it was not possible to take advantage of the superiority of aluminum alloy molds.
アルミニウム合金で鉄鋼の1/10以上の寿命をもつも
のが開発されることが望まれており、本発明者らは「粉
末冶金法でSiを15〜40%、Cuを10%以下含し
、Si粒子の平均径を10μ謳以下としたアルミニウム
合金材料」を提案した(特願昭+53−56288)。It is desired that an aluminum alloy with a lifespan of 1/10 or more than that of steel be developed, and the present inventors have developed an aluminum alloy that contains 15 to 40% Si and 10% or less Cu by powder metallurgy. proposed an aluminum alloy material in which the average diameter of Si particles is 10 μm or less (Japanese Patent Application No. 53-56288).
[発明が解決しようとする課8]
前述したようにアルミニウム合金で製作された金型は、
鉄鋼材料に比べ寿命が短いことから、簡易型の金型とし
て用いられていた。しかし、アルミニウム合金の改良に
よりアルミニウム合金の寿命が長くなったこと、切削性
が良好な点から複雑な形状をもった金型に使用されるよ
うになった。例えば、第1図に示すようなスイッチボッ
クスのようなプラスチック成形体は、軽量化のため、四
隅に設けたボルト穴は、ボックスの側壁に一体化したも
のから独立した円筒を直立させ、薄肉化を図っている。[Question 8 to be solved by the invention] As mentioned above, the mold made of aluminum alloy is
Because it has a shorter lifespan than steel materials, it was used as a simple mold. However, improvements in aluminum alloys have extended the lifespan of aluminum alloys, and due to their good machinability, they have come to be used in molds with complex shapes. For example, in order to reduce the weight of a plastic molded body such as the switch box shown in Figure 1, the bolt holes provided at the four corners are replaced by an upright cylinder that is independent from the one integrated into the side wall of the box, making the wall thinner. We are trying to
このためには金型の下型(雄型)は、第2図に示すよう
に薄肉のリブが片持梁的に直立したものとなっている。For this purpose, the lower mold (male mold) of the mold has thin ribs that stand upright in a cantilevered manner, as shown in FIG.
このような金型にプラスチック溶融物を射出すると、薄
肉リブは曲げ荷重を受け、これの付は根が折損すること
となる。When a plastic melt is injected into such a mold, the thin ribs are subjected to bending loads, and the roots of the ribs may break.
そこで本発明の目的は、さきに提案した「粉末冶金法で
Siを15〜40%、Cuを10%以下含有し、Si粒
子の平均径を10μm以下としたアルミニウム合金材料
」を改良し、このような薄肉部が折損することのないア
ルミニウム合金金型材料を提供するものである。Therefore, the purpose of the present invention is to improve the previously proposed ``aluminum alloy material containing 15 to 40% Si and 10% or less Cu, and making the average diameter of Si particles 10 μm or less using a powder metallurgy method.'' An object of the present invention is to provide an aluminum alloy mold material that does not cause such thin wall portions to break.
[課題を解決するための手段]
以上の問題点を解決するため、アルミニウム合金の成分
組成、溶製条件、熱処理条件および金属組織などを種々
変化させながら、強度、耐摩耗性、靭性、切削性(表面
あらさ)などへの影響について検討した結果、粉末成形
によるA1合金において少なくともSi及びCuを合金
成分として含有させ、かつ、Siの粒径を特定範囲に保
持することが有効であることを見出し、本発明を完成し
た。[Means for solving the problem] In order to solve the above problems, we have improved the strength, wear resistance, toughness, and machinability of the aluminum alloy by variously changing its composition, melting conditions, heat treatment conditions, metal structure, etc. As a result of studying the effects on (surface roughness), etc., we found that it is effective to contain at least Si and Cu as alloy components in A1 alloy formed by powder compaction, and to maintain the Si particle size within a specific range. , completed the invention.
すなわち、第1の発明は重量%でSi6〜14%、Cu
0.5〜10%を含有し、残部Alおよび不可避的
不純物からなる成分組成の粉末成形により得られたアル
ミニウム合金であって、かつ、Si粒子の平均径が0.
3〜10μ−であることを特徴とするアルミニウム合金
材料である。That is, the first invention contains 6 to 14% Si and Cu in weight%.
0.5 to 10%, and the balance is Al and unavoidable impurities, and the average diameter of Si particles is 0.5% to 10%.
It is an aluminum alloy material characterized by having a thickness of 3 to 10μ.
第2の発明は重量%でSi 6〜14%、CuO15
〜10%、Mg0.3〜6%を含有し、残部Al及び不
可避的不純物からなる成分組成の粉末成形により得られ
たアルミニウム合金であって、かつ、Si粒子の平均粒
径が0.3〜10μ−であることを特徴とするアルミニ
ウム合金材料である。第3の発明は重量%でSi 6
〜14%、Cu 0.5〜10%を含有し、さらにF
eSMnおよびNiからなる群から選ばれた金属の1種
または2種以上を単独または合計で0.3〜6%含有し
、残部Alおよび不可避的不純物からなる成分組成の粉
末成形により得られたアルミニウム合金であって、かつ
、Siおよび金属間化合物粒子の平均径が0.3〜10
μ■であることを特徴とするアルミニウム合金材料であ
る。The second invention is Si 6 to 14%, CuO 15% by weight.
~10%, Mg0.3~6%, and the balance is Al and unavoidable impurities, the aluminum alloy is obtained by powder compaction, and the average particle size of Si particles is 0.3 ~ It is an aluminum alloy material characterized by having a thickness of 10μ. The third invention is Si6 in weight%
~14%, Cu 0.5~10%, and further F
eAluminum obtained by powder compaction with a composition containing 0.3 to 6% of one or more metals selected from the group consisting of SMn and Ni, singly or in total, and the balance consisting of Al and inevitable impurities. alloy, and the average diameter of Si and intermetallic compound particles is 0.3 to 10
It is an aluminum alloy material characterized by μ■.
さらに第4の発明は重量%でSl 6〜14%、Cu
0.5〜10%、Mg0.3〜6%を含有し、さらに
、Fe、、Mn及びNiからなる群から選ばれた金属の
1種又は2種以上を単独または合計で04〜6%含有し
、残部Al及び不可避的不純物からなる成分組成の粉末
成形により得られたアルミニウム合金であって、かつ、
Si及び金属間化合物粒子の平均径が0.3〜10μ■
であることを特徴とするアルミニウム合金材料である。Furthermore, the fourth invention has a weight percentage of 6 to 14% Sl, Cu
0.5 to 10%, Mg 0.3 to 6%, and further contains one or more metals selected from the group consisting of Fe, Mn, and Ni, singly or in total, 0.4 to 6%. An aluminum alloy obtained by powder compaction with a composition consisting of the remainder Al and unavoidable impurities, and
The average diameter of Si and intermetallic compound particles is 0.3 to 10 μ■
It is an aluminum alloy material characterized by:
次に本発明アルミニウム合金の組成の限定理由について
述べる。Next, the reasons for limiting the composition of the aluminum alloy of the present invention will be described.
Siは、A1基地中にSi粒子として分散し、含有量の
増加とともに耐摩耗性を高め、熱膨張係数を下げて機械
加工時の発熱による歪を抑制するとともに弾性係数を上
げて射出成形時の溶融樹脂圧による金型の変形を抑制す
る。Si is dispersed as Si particles in the A1 base, and increases wear resistance as the content increases, lowers the coefficient of thermal expansion to suppress distortion due to heat generated during machining, and increases the modulus of elasticity to improve resistance during injection molding. Suppresses mold deformation due to molten resin pressure.
Siが6%未満では耐摩耗性が不足し、従来の金型用ア
ルミニウム合金7075を上まわる耐摩耗性が得られな
い。14%を越えると靭性が低下するため薄肉のリブを
有する金型では、リブの折損が生じやすくなる。このた
めSi含有量は、6〜14%とするのが好ましい。If the Si content is less than 6%, the wear resistance will be insufficient, and it will not be possible to obtain a wear resistance superior to that of the conventional aluminum alloy 7075 for molds. If it exceeds 14%, the toughness decreases, and in molds with thin ribs, the ribs are likely to break. Therefore, the Si content is preferably 6 to 14%.
Cuは、合金に時効硬化性を付与し、硬さの向上による
耐摩耗性の向上をもたらす。Cuが0.5%未満では効
果が十分でなく、10%を越えると効果が飽和するとと
もに耐食性の劣下が著しいため、0.5〜10%と定め
た。Cu imparts age hardenability to the alloy and improves wear resistance due to improved hardness. If the Cu content is less than 0.5%, the effect will not be sufficient, and if it exceeds 10%, the effect will be saturated and the corrosion resistance will deteriorate significantly, so it was set at 0.5 to 10%.
MgはCuと共存して時効硬化による硬さの向上、耐摩
耗性の向上をもたらす。Mgが0.3%未満では効果が
十分でなく、6%を癲えると効果が飽和するため、0.
3〜B%と定めた。Mg coexists with Cu to improve hardness and wear resistance through age hardening. If the Mg content is less than 0.3%, the effect will not be sufficient, and if the Mg content is 6%, the effect will be saturated.
It was set at 3-B%.
FeSMn、Niの各成分は合金の耐熱性を高める。す
なわち、金型使用時の温度(たとえば100〜150℃
)において、硬さの低下(軟化)を抑え、また常温〜高
温の強度も高める。更に熱膨張係数を下げ、弾性係数を
上げる効果もある。これらの成分は各単独あるいは総和
で0.3%未満の含有量では効果が十分でなく、6%を
越えると材料が脆くなり、金型の加工時または使用時に
欠けを生じやす(なる。Each component of FeSMn and Ni increases the heat resistance of the alloy. That is, the temperature during use of the mold (e.g. 100-150℃
), it suppresses the decrease in hardness (softening) and also increases the strength at room temperature to high temperature. It also has the effect of lowering the coefficient of thermal expansion and increasing the modulus of elasticity. If the content of these components is less than 0.3% individually or in total, the effect will not be sufficient, and if the content exceeds 6%, the material will become brittle and easily chipped during mold processing or use.
また、Si及び金属間化合物の粒子の平均径は、0.3
μm未満では耐摩耗性が不足し、10μ■を越えると切
削加工工具のチッピングや摩耗が生じやすく、また被加
工面の面粗度が粗くなり、鏡面仕上げが得られなくなる
。In addition, the average diameter of particles of Si and intermetallic compounds is 0.3
If it is less than 10 μm, wear resistance will be insufficient, and if it exceeds 10 μm, chipping or wear of the cutting tool will easily occur, and the surface to be machined will have a rough surface roughness, making it impossible to obtain a mirror finish.
本発明のアルミニウム合金の製造は、各種の方法がある
が、一般に次のような方法で製造する。すなわち、前述
の組成のアルミニウム合金を溶解した後、溶湯を急冷凝
固させる。通常は100℃/秒以上の冷却速度で冷却さ
れる。具体的にはアトマイズ法やスプラットクーリング
法が適用される。こうして得た粉末を (a)予備圧縮
−容器封入−加熱真空脱ガスー押出、(b)予備圧縮−
容器封入−加熱真空脱ガスーホットプレス、(C)予備
圧縮−容器封入−加熱真空脱ガスーホットプレスー容器
除去−押出、(d)予備圧縮−加熱−押出、(e)予備
圧縮−容器封入−加熱真空脱ガスーHIP(高温等方圧
圧縮)などの工程により固化成形する。具体的には (
a)の方法ではCIPまたは金型圧縮によりアルミニウ
ム合金粉末を真密度の60〜90%程度まで予備圧縮し
た後所定の容器に封入して3oo〜550℃に加熱しな
がら真空排気を行い脱ガスを行う。Although there are various methods for producing the aluminum alloy of the present invention, it is generally produced by the following method. That is, after melting the aluminum alloy having the above-mentioned composition, the molten metal is rapidly solidified. Usually, it is cooled at a cooling rate of 100° C./second or more. Specifically, the atomization method and the splat cooling method are applied. The powder thus obtained is (a) pre-compressed - sealed in a container - heated vacuum degassing - extruded, (b) pre-compressed -
Container filling - heating vacuum degassing - hot press, (C) precompression - container filling - heating vacuum degassing - hot press - container removal - extrusion, (d) precompression - heating - extrusion, (e) precompression - container filling - heating It is solidified and molded through processes such as vacuum degassing and HIP (high temperature isostatic pressure compression). in particular (
In method a), aluminum alloy powder is pre-compressed to about 60-90% of its true density by CIP or mold compression, then sealed in a predetermined container and heated to 300-550°C while being evacuated and degassed. conduct.
脱ガス時に加熱温度が300℃未満の場合、脱ガスが不
十分となり最終製品に膨れが生じたり、気孔が生ずる。If the heating temperature during degassing is less than 300° C., degassing will be insufficient and the final product will swell or have pores.
550℃を越えるとs五粒子が成長し粗大になる。こう
して脱ガスが行われた予備圧縮品(ビレット)を3oo
〜520 ”Cの温度に加熱し、押出を行う。When the temperature exceeds 550°C, the s5 particles grow and become coarse. The pre-compressed product (billet) that has been degassed in this way is
Heat to a temperature of ~520"C and extrude.
(b)の方法は押出に代えてホットプレス(高温で据え
込み圧縮すること)によりアルミニウム合金材としたも
ので、(C)はホットプレスの後容器を切削除去し押出
したもの、(d)は予備圧縮後空気中、真空中またはN
2、Ar等のガス中で加熱して脱ガスし、その後押出す
るもの、(e)は押出やホットプレスに代えてHIP処
理によりアルミニウム合金材を得るものである。Method (b) uses hot pressing (upsetting and compression at high temperatures) to produce an aluminum alloy material instead of extrusion, method (C) is the method in which the container is cut and removed after hot pressing, and extrusion is performed in method (d). is in air, vacuum or N after precompression.
2. The aluminum alloy material is heated in a gas such as Ar to degas it and then extruded, and (e) the aluminum alloy material is obtained by HIP treatment instead of extrusion or hot pressing.
なお、いずれの方法においても予備圧縮を省略して、粉
末を直接容器に封入することも可能である。In addition, in either method, it is also possible to omit preliminary compression and directly enclose the powder in a container.
金型のサイズが大きく、大寸法の材料が必要なときは、
上記のいずれかの工程、中でも (b)のホットプレス
やHIPにより固化成形した後、鍛造や圧延により延ば
して大寸法の材料とする。When the mold size is large and large-sized materials are required,
After solidifying and forming by any of the above steps, especially (b) hot pressing or HIP, the material is expanded by forging or rolling to obtain a large-sized material.
このようにして製造した合金材は従来の金型用アルミニ
ウム合金材より耐摩耗性、強度および硬度、耐熱性にす
ぐれ、熱膨張係数が低く、弾性係数が高いなどの特性を
有し、金型用材料として最適である。また、熱伝導度も
7075合金などとほとんど変わらないため、機械加工
の工具寿命はほとんど短くならない。放電加工も可能で
ある。The alloy material manufactured in this way has properties such as superior wear resistance, strength, hardness, and heat resistance, low coefficient of thermal expansion, and high modulus of elasticity compared to conventional aluminum alloy materials for molds. It is ideal as a material for In addition, the thermal conductivity is almost the same as that of 7075 alloy, so the tool life for machining will hardly be shortened. Electric discharge machining is also possible.
さらにアルマイト処理も可能である。この処理は耐摩耗
性をさらに高めるために行うもので、通常硬質アルマイ
トが採用される。また金型の設計変更を行う場合、ある
いは誤って深彫りした場合には溶接により肉盛りするこ
とも可能である。溶接方法としてはTIG、MIGなど
も可能であるが、できれば溶接面積を小さくできる電子
ビーム溶接あるいはプラズマアーク溶接などが望ましい
。溶加棒としてはB A 4043、B A 4045
、B A 4145、B A 4047、B A 40
03、B A 4004、B A 4005、B A
4NO4などが用いられる。なお、溶接を行う場合には
、粉末の固化成形時に脱ガス温度を高くし、あるいは脱
ガス時間を長くし、材料中の水素量を0.5cc/10
0gA 1以下、望ましくは0.3cc/100gA
1以下とするのがよい。この際脱ガス温度は490〜5
50℃とするのが望ましい。Furthermore, alumite treatment is also possible. This treatment is performed to further increase wear resistance, and hard alumite is usually used. In addition, if the design of the mold is changed, or if deep engraving is performed by mistake, it is also possible to build up the material by welding. Although TIG and MIG are possible welding methods, it is preferable to use electron beam welding or plasma arc welding, which can reduce the welding area. B A 4043, B A 4045 as filler rods
, BA 4145, BA 4047, BA 40
03, BA 4004, BA 4005, BA
4NO4 etc. are used. In addition, when welding, increase the degassing temperature or lengthen the degassing time during solidification and molding of the powder, and reduce the amount of hydrogen in the material by 0.5cc/10.
0gA 1 or less, preferably 0.3cc/100gA
It is better to set it to 1 or less. At this time, the degassing temperature is 490-5
The temperature is preferably 50°C.
[実施例] 以下に実施例を挙げ、本発明をさらに詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.
実施例1
第1表に示すNo、1〜No、30の合金を溶解し、エ
アアトマイズにより急冷凝固粉末を作成した。Example 1 Alloys No. 1 to No. 30 shown in Table 1 were melted and rapidly solidified powder was created by air atomization.
得られた粉末を粒径297μ以下に分級した後、金型圧
縮(CIP)により真密度の70〜75%まで予備圧縮
し、Al容器に挿入して加熱しながら真空脱ガスを行っ
た。加熱温度は500℃とした。このようにして得たビ
レットを400”Cに加熱し、押出比14にて押出し、
外径401mの棒を得た。これらNo、1〜No、30
の押出棒に500℃×2hr→水冷−175℃X 8h
rの熱処理を行った。The obtained powder was classified to have a particle size of 297 μm or less, and then preliminarily compressed to 70 to 75% of the true density by mold compression (CIP), inserted into an Al container, and vacuum degassed while being heated. The heating temperature was 500°C. The billet thus obtained was heated to 400"C and extruded at an extrusion ratio of 14,
A rod with an outer diameter of 401 m was obtained. These No. 1 to No. 30
Extrusion rod at 500℃ x 2hr → water cooling at -175℃ x 8h
A heat treatment of r was performed.
第1表のNo、31.82の合金は溶解後外径150I
の鋳塊を作成し、これを上記と同条件で押出した。No
Jlの押出棒には、上記と同じ熱処理をNo、32の押
出棒について470℃X 2hr→水冷→115℃X
7hr→175℃X 8hrの条件で熱処理(T73処
理)を行った。The alloy No. 31.82 in Table 1 has an outer diameter of 150I after melting.
An ingot was prepared and extruded under the same conditions as above. No
The extruded rod of Jl was subjected to the same heat treatment as above, and the extruded rod of No. 32 was heated at 470°C for 2 hours → water cooled → 115°C
Heat treatment (T73 treatment) was performed under the conditions of 7 hours→175° C.×8 hours.
以上の材料について、ミクロ組織における粒子径(Si
粒子、Al−5i−Fe系化合物粒子、AlAl−8i
−系化合物粒子、Al−Ni系化合物粒子などすべての
粒子の平均直径)、常温硬さ(ロックウェルロスケール
)、150℃加熱後の常温硬さ(ロックウェルロスケー
ル)、常温引張強さ、150℃で100hr保持した後
の150℃での引張強さ、大越式摩耗試験(乾式、荷重
2.1kg 、摩擦距離8001%相手材5500)に
おける比摩耗量、パフ研磨後の表面粗さ(R□8)及び
金型として射出成形したときの摩耗発生までのショツト
数又は薄肉リブ折損が発生するまでのショツト数を測定
した。Regarding the above materials, the particle size in the microstructure (Si
particles, Al-5i-Fe-based compound particles, AlAl-8i
- average diameter of all particles such as compound particles, Al-Ni compound particles, etc.), hardness at room temperature (Rockwell scale), hardness at room temperature after heating to 150°C (Rockwell scale), tensile strength at room temperature, Tensile strength at 150°C after being held at 150°C for 100 hours, specific wear amount in Okoshi type abrasion test (dry type, load 2.1kg, friction distance 8001%, mating material 5500), surface roughness after puff polishing (R □8) and when injection molding was performed using a mold, the number of shots until wear occurred or the number of shots until thin rib breakage occurred was measured.
金型摩耗は、樹脂溶融物が高速で射出されるので、この
通路部が損耗する。通路幅が約2μI広くなると、樹脂
の流通が悪くなるので、これを測定し、寿命の判定とし
た。Mold wear occurs because the molten resin is injected at high speed, and this passage section is worn out. When the passage width increases by approximately 2 μI, the flow of the resin deteriorates, so this was measured and used to determine the life span.
結果は第2表の通りである。本発明合金No。The results are shown in Table 2. Invention alloy No.
1〜No、18の場合、比摩耗量が小さく、特に707
5 (N o、32)より大幅に小さい。また表面粗さ
は7075と同程度に小さく、表面仕上げ性が良好であ
る。また、No、1〜No、18の中では、Mgを含ま
ないNo、1及び2とMgを含むNo。1 to No. 18, the specific wear amount is small, especially 707
5 (N o, 32). Moreover, the surface roughness is as small as that of 7075, and the surface finish is good. Further, among Nos. 1 to 18, Nos. 1 and 2 do not contain Mg, and Nos. contain Mg.
3、No、4を比較するとMgの添加により硬さが増す
傾向が示されており、又Fe、Mn。A comparison of No. 3, No. 4, and No. 4 shows that the hardness tends to increase with the addition of Mg, and also with Fe and Mn.
Niを含むN o、 5〜N o、18はNo、1〜N
o、4より加熱後の硬さおよび150℃の引張強さが高
いことがわかる。No including Ni, 5 to No, 18 is No, 1 to N
It can be seen that the hardness after heating and the tensile strength at 150° C. are high from No. 0 and 4.
比較合金No、19.20はSi量が少ないため比摩耗
量が大きく、eoo、1000シヨツトで金型の寿命と
なった。N o、21.23はSl量が多いために金型
のリブが、2500.1100シヨツトで折損した。N
o、22は、Cu、Mgが低く、硬さ及び引張強さが
低く、比摩耗量が大きく、摩耗で1500シヨツトで寿
命となった。N o、24は、CU量をNo、25はM
g量をそれぞれ多くしたものであるが、その高強度があ
られれず、リブの折損が生じた。No、26〜30は、
Fes Mn、Ni量が単独又は合計で多すぎるため、
金型の切削加工時に欠損が生じやすく、又金型のリブ部
に折損が生じた。No、11は、セラミックス粒子の大
きさが大きく、切削時の表面粗さが大きく、金型材料に
適さないものとなった。NoJ2は、従来使用されてい
た7075の溶融鋳造材であるが、耐摩耗性が充分でな
い。Comparative alloy No. 19.20 had a large specific wear amount due to a small amount of Si, and the mold life was reached at eoo, 1000 shots. In No. 21.23, the rib of the mold broke at 2500.1100 shots due to the large amount of Sl. N
No. 22 had low Cu and Mg content, low hardness and tensile strength, large specific wear amount, and reached the end of its life after 1500 shots of wear. No, 24 is CU amount No, 25 is M
Although the amount of g was increased, the high strength could not be achieved and the ribs broke. No. 26-30 are
Fes Mn, Ni amount is too large individually or in total,
Chips were likely to occur during cutting of the mold, and the ribs of the mold were broken. In No. 11, the size of the ceramic particles was large and the surface roughness during cutting was large, making it unsuitable as a mold material. NoJ2 is a conventionally used molten cast material of 7075, but it does not have sufficient wear resistance.
第1表
第1表つづき
第2表
ts2表
[発明の効果]
(1)以上説明したように、本発明のアルミニウム合金
材料は、アルミニウム合金が持つ機械加工性、軽量性、
耐食性、熱伝導性、表面処理性(アルマイト処理性)、
溶接性などの利点を損なうことなく、耐摩耗性、耐熱性
及び靭性が向上しており、プラスチック、ゴム、金属粉
末、セラミック粉末等の成形用金型に好適で、その使用
寿命を著しく改善することができる。Table 1 Table 1 Continued Table 2 ts2 Table [Effects of the Invention] (1) As explained above, the aluminum alloy material of the present invention has the machinability, light weight, and
Corrosion resistance, thermal conductivity, surface treatment (anodized),
It has improved wear resistance, heat resistance and toughness without sacrificing advantages such as weldability, making it suitable for molds for molding plastics, rubber, metal powders, ceramic powders, etc., and significantly improving their service life. be able to.
第1図は本発明の金型により成形した部品の斜視図、
第2図は第1図に示す成形品を成形するための金型(雄
型)。FIG. 1 is a perspective view of a part molded by the mold of the present invention, and FIG. 2 is a mold (male mold) for molding the molded product shown in FIG.
Claims (4)
含有し、残部Al及び不可避的不純物からなる成分組成
の粉末成形により得られたアルミニウム合金であって、
かつ、Si粒子の平均径が0.3〜10μmであること
を特徴とする耐摩耗性及び靭性に優れたプラスチック成
形金型用アルミニウム合金材料。(1) An aluminum alloy obtained by powder compaction containing 6 to 14% of Si and 0.5 to 10% of Cu by weight, with the balance consisting of Al and unavoidable impurities,
An aluminum alloy material for plastic molds having excellent wear resistance and toughness, characterized in that the average diameter of Si particles is 0.3 to 10 μm.
Mg0.3〜6%を含有し、残部Alおよび不可避的不
純物からなる成分組成の粉末成形により得られたアルミ
ニウム合金であって、かつ、Si粒子の平均径が0.3
〜10μmであることを特徴とする耐摩耗性及び靭性に
優れたプラスチック成形金型用アルミニウム合金材料。(2) Si 6 to 14%, Cu 0.5 to 10% by weight,
An aluminum alloy obtained by powder compaction with a component composition containing 0.3 to 6% Mg, the balance consisting of Al and unavoidable impurities, and the average diameter of Si particles is 0.3
An aluminum alloy material for plastic molds with excellent wear resistance and toughness, characterized by a thickness of ~10 μm.
含有し、さらにFe、MnおよびNiからなる群から選
ばれた金属の1種または2種以上を単独および合計で0
.3〜6%含有し、残部Al及び不可避的不純物からな
る成分組成の粉末成形により得られたアルミニウム合金
であって、かつ、Siおよび金属間化合物粒子の平均径
が0.3〜10μであることを特徴とする耐摩耗性、耐
熱性及び靭性とに優れたプラスチック成形金型用アルミ
ニウム合金材料。(3) Contains 6 to 14% of Si and 0.5 to 10% of Cu by weight, and further contains one or more metals selected from the group consisting of Fe, Mn, and Ni, both singly and in total.
.. An aluminum alloy obtained by powder compaction with a composition containing 3 to 6% and the balance consisting of Al and unavoidable impurities, and the average diameter of Si and intermetallic compound particles is 0.3 to 10μ. An aluminum alloy material for plastic molds with excellent wear resistance, heat resistance, and toughness.
Mg0.3〜6%を含有し、さらにFe、MnおよびN
iからなる群から選ばれた金属の1種または2種以上を
単独および合計で0.3〜8%含有し、残部Alおよび
不可避的不純物からなる成分組成の粉末成形により得ら
れたアルミニウム合金であって、かつ、Siおよび金属
間化合物粒子の平均径が0.3〜10μmであることを
特徴とする耐摩耗性、耐熱性及び靭性とに優れたプラス
チック成形金型用アルミニウム合金材料。(4) Si 6 to 14%, Cu 0.5 to 10% by weight,
Contains 0.3-6% Mg, and further contains Fe, Mn and N
An aluminum alloy obtained by powder compaction containing 0.3 to 8% of one or more metals selected from the group consisting of i, singly and in total, with the balance consisting of Al and inevitable impurities. An aluminum alloy material for a plastic mold having excellent wear resistance, heat resistance and toughness, characterized in that the average diameter of Si and intermetallic compound particles is 0.3 to 10 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23582089A JPH03100136A (en) | 1989-09-13 | 1989-09-13 | Aluminum alloy material for die |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23582089A JPH03100136A (en) | 1989-09-13 | 1989-09-13 | Aluminum alloy material for die |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03100136A true JPH03100136A (en) | 1991-04-25 |
Family
ID=16991741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23582089A Pending JPH03100136A (en) | 1989-09-13 | 1989-09-13 | Aluminum alloy material for die |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03100136A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09249931A (en) * | 1995-03-30 | 1997-09-22 | Kobe Steel Ltd | High corrosion resistant aluminum alloy excellent in machinability |
CN102808119A (en) * | 2012-09-07 | 2012-12-05 | 重庆大学 | Light high-temperature wear-resistant aluminum alloy |
CN104313404A (en) * | 2014-09-30 | 2015-01-28 | 无锡康柏斯机械科技有限公司 | Alloy material for fixed blade of axial flow compressor and preparation method of alloy material |
CN114729425A (en) * | 2019-12-04 | 2022-07-08 | 日之出控股株式会社 | Aluminum alloy for casting and aluminum casting cast using same |
-
1989
- 1989-09-13 JP JP23582089A patent/JPH03100136A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09249931A (en) * | 1995-03-30 | 1997-09-22 | Kobe Steel Ltd | High corrosion resistant aluminum alloy excellent in machinability |
CN102808119A (en) * | 2012-09-07 | 2012-12-05 | 重庆大学 | Light high-temperature wear-resistant aluminum alloy |
CN104313404A (en) * | 2014-09-30 | 2015-01-28 | 无锡康柏斯机械科技有限公司 | Alloy material for fixed blade of axial flow compressor and preparation method of alloy material |
CN114729425A (en) * | 2019-12-04 | 2022-07-08 | 日之出控股株式会社 | Aluminum alloy for casting and aluminum casting cast using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5561829A (en) | Method of producing structural metal matrix composite products from a blend of powders | |
CN1969051A (en) | Middle alloy for copper alloy casting and its casting method | |
US20170021421A1 (en) | Copper-based alloys and their use for infiltration of powder metal parts | |
FR2604186A1 (en) | PROCESS FOR MANUFACTURING HYPERSILICALLY ALUMINUM ALLOY PARTS OBTAINED FROM COOLED COOLED POWDERS AT HIGH SPEED | |
US4244738A (en) | Method of and apparatus for hot pressing particulates | |
KR20130061189A (en) | High-strength magnesium alloy wire and method for manufacturing same, high-strength magnesium alloy product, and high-strength magnesium alloy spring | |
JPS60208443A (en) | Aluminum alloy material | |
JPH03100136A (en) | Aluminum alloy material for die | |
US4889557A (en) | Aluminium alloy having an excellent forgiability | |
JPH03100137A (en) | Aluminum alloy material for die | |
JPH0340099B2 (en) | ||
KR20090132799A (en) | Method for manufacturing magnesium-alloy by using complex powder metallurgy process | |
EP0902097A1 (en) | Zinc-base alloy for mold, zinc-base alloy block for mold and method for preparing the same | |
JP2020007594A (en) | Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material | |
JP2000109944A (en) | Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body | |
SK50192008U1 (en) | Fluid-tight sintered metall parts and production method | |
US3958316A (en) | Liquid phase-sintered molybdenum base alloys having additives and shaping members made therefrom | |
JP2005048285A (en) | RAW MATERIAL POWDER FOR Al-Si BASED ALLOY SINTERED COMPONENT, METHOD OF PRODUCING Al-Si BASED ALLOY SINTERED COMPONENT, AND Al-Si BASED ALLOY SINTERED COMPONENT | |
JP2959912B2 (en) | Discharge coating composite | |
JPH11302807A (en) | Manufacture of aluminum alloy for compressor vane | |
KR102726784B1 (en) | Manufacturing Method of Bulk for Extrusion of Different Lightweight Alloy Powder | |
JPH0671406A (en) | Injection sleeve for die casting and method for casting aluminum or aluminum alloy member | |
JPH02299740A (en) | Forming mold for high-temperature molten metal | |
JPH0641620B2 (en) | Mold manufacturing method | |
JPH11300461A (en) | Sleeve for die casting machine |