JPH03108661A - Separating method of substance relevant to nucleic acid - Google Patents
Separating method of substance relevant to nucleic acidInfo
- Publication number
- JPH03108661A JPH03108661A JP1247015A JP24701589A JPH03108661A JP H03108661 A JPH03108661 A JP H03108661A JP 1247015 A JP1247015 A JP 1247015A JP 24701589 A JP24701589 A JP 24701589A JP H03108661 A JPH03108661 A JP H03108661A
- Authority
- JP
- Japan
- Prior art keywords
- nucleic acid
- ion
- molecular weight
- sample
- glucomannan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000126 substance Substances 0.000 title claims abstract description 46
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 44
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 44
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 18
- 108090000623 proteins and genes Proteins 0.000 claims description 13
- 102000004169 proteins and genes Human genes 0.000 claims description 13
- 238000005342 ion exchange Methods 0.000 abstract description 35
- 229920002581 Glucomannan Polymers 0.000 abstract description 33
- 229940046240 glucomannan Drugs 0.000 abstract description 33
- 239000002245 particle Substances 0.000 abstract description 21
- 239000012798 spherical particle Substances 0.000 abstract description 20
- LUEWUZLMQUOBSB-FSKGGBMCSA-N (2s,3s,4s,5s,6r)-2-[(2r,3s,4r,5r,6s)-6-[(2r,3s,4r,5s,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5s,6r)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](OC3[C@H](O[C@@H](O)[C@@H](O)[C@H]3O)CO)[C@@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-FSKGGBMCSA-N 0.000 abstract description 18
- 238000000926 separation method Methods 0.000 abstract description 16
- 230000007717 exclusion Effects 0.000 abstract description 13
- 238000002347 injection Methods 0.000 abstract description 6
- 239000007924 injection Substances 0.000 abstract description 6
- 150000003839 salts Chemical class 0.000 abstract description 2
- 238000004132 cross linking Methods 0.000 abstract 2
- 238000007670 refining Methods 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 33
- 239000000243 solution Substances 0.000 description 28
- 108020004414 DNA Proteins 0.000 description 22
- 238000001179 sorption measurement Methods 0.000 description 13
- 239000003480 eluent Substances 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- -1 dextran ion Chemical class 0.000 description 11
- 239000011148 porous material Substances 0.000 description 10
- 238000004811 liquid chromatography Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 5
- 229920001222 biopolymer Polymers 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 101100476210 Caenorhabditis elegans rnt-1 gene Proteins 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000002523 gelfiltration Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000013076 target substance Substances 0.000 description 3
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical group CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- RAGSWDIQBBZLLL-UHFFFAOYSA-N 2-chloroethyl(diethyl)azanium;chloride Chemical compound Cl.CCN(CC)CCCl RAGSWDIQBBZLLL-UHFFFAOYSA-N 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- HMPHJJBZKIZRHG-UHFFFAOYSA-M chloromethanesulfonate Chemical compound [O-]S(=O)(=O)CCl HMPHJJBZKIZRHG-UHFFFAOYSA-M 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000001696 ion exchange chromatographie Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- External Artificial Organs (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は核酸関連物質の分離方法に係り、特にλ−DN
A等の分子量100万以上の巨大DNA等の核酸関連物
質を含有する液から、イオン交換処理により核酸関連物
質を容易かつ効率的に吸着、分離、精製する方法に関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for separating nucleic acid-related substances, particularly
The present invention relates to a method for easily and efficiently adsorbing, separating, and purifying nucleic acid-related substances by ion exchange treatment from a solution containing nucleic acid-related substances such as giant DNA with a molecular weight of 1 million or more, such as A.
[従来の技術]
核酸塩基、ヌクレオシド、ヌクレオチド等の分子量の小
さな核酸関連物質は、従来、スチレン系のイオン交換体
で分離・精製がなされている。また、ヌクレオチドより
分子量の大きいオリゴヌクレオチドは、スチレン系イオ
ン交換体よりも網目構造の疎な架橋デキストランイオン
交換体等で分離・精製が行なわれている。これらの分離
・精製の機構は、いずれも、核酸塩基やヌクレオチドの
リン酸エステル基がもつ電荷に基づくイオン交換モード
によるものである。[Prior Art] Nucleic acid-related substances with small molecular weights, such as nucleic acid bases, nucleosides, and nucleotides, have conventionally been separated and purified using styrene-based ion exchangers. Furthermore, oligonucleotides having a larger molecular weight than nucleotides are separated and purified using cross-linked dextran ion exchangers, etc., which have a looser network structure than styrene-based ion exchangers. All of these separation and purification mechanisms are based on the ion exchange mode based on the electric charge of the phosphate groups of nucleic acid bases and nucleotides.
一方、オリゴヌクレオチドよりも分子量の大きな核酸関
連物質については、アガロース系或いは合成高分子系の
ゲル濾過剤若しくはイオン交換体により、ゲル濾過モー
ドやイオン交換モードによる分離がなされている。これ
らのうちイオン交換モードは、分離・絹製の目的物質で
あるヌクレオチド、DNA、RNAの吸着条件や溶離条
件を適正に調整することにより、ゲル濾過モードでは達
し得ない分離度と処理量を得ることができることから、
この分野では欠かせない分離手段として有望視されてい
る。On the other hand, nucleic acid-related substances having a larger molecular weight than oligonucleotides are separated by gel filtration mode or ion exchange mode using agarose-based or synthetic polymer-based gel filtration agents or ion exchangers. Among these, the ion exchange mode achieves a degree of separation and throughput that cannot be achieved with the gel filtration mode by appropriately adjusting the adsorption and elution conditions for the target substances nucleotides, DNA, and RNA. Because it is possible to
It is seen as promising as an indispensable separation method in this field.
[発明が解決しようとする課題]
しかしながら、上記のイオン交換モードでは、分子量が
100万以上の巨大なりNA等を処理対象物質とした場
合には、実用上十分な処理がで台ない、即ち、現在市販
されているイオン交換体では、上記対象物質に対して細
孔径が小さすぎ、細孔内部のイオン交換基が有効に使わ
れず、極端に吸着容量が小さくなってしまう。細孔外の
イオン交換基は巨大なりNA等に対しても有効に作用し
得るが、細孔外のイオン交換基だけの実効イオン交換容
量即ち巨大DNA等の吸着容量では、実質上分離・精製
は困難である。しかも巨大DNA等に対する非特異吸着
が起こりやすく、回収率が悪くなるという不具合も生じ
る。[Problems to be Solved by the Invention] However, in the above-mentioned ion exchange mode, when the target substance to be treated is a huge NA with a molecular weight of 1 million or more, sufficient treatment cannot be achieved for practical purposes. In the ion exchangers currently available on the market, the pore diameter is too small for the target substance, and the ion exchange groups inside the pores are not used effectively, resulting in extremely low adsorption capacity. Ion exchange groups outside the pores can effectively act on large DNAs, etc., but the effective ion exchange capacity of only the ion exchange groups outside the pores, that is, the adsorption capacity of giant DNAs, etc., is practically insufficient for separation and purification. It is difficult. Moreover, non-specific adsorption to giant DNA etc. tends to occur, resulting in problems such as a poor recovery rate.
このような問題を解決するための一手段として、イオン
交換体の細孔をなくし外部表面積を増やすことで巨大D
NA等の分子量の大きな生体高分子を分離・精製する方
法が考え出されている。One way to solve these problems is to eliminate the pores of the ion exchanger and increase the external surface area, thereby increasing the size of the giant D.
Methods have been devised to separate and purify biopolymers with large molecular weights such as NA.
この方法によれば、巨大DNA等に苅する吸着容量が従
来のイオン交換体に比べ改善され、分離・精製が可能と
されるが、反面、次のような欠点がある。即ち、この方
法は、細孔を使わずに比表面積のみを増加させるもので
あるために、イオン交換体の粒径は3μ以下と非常に細
かなものが必要とされている。このような微粒子状イオ
ン交換体を用いて実用的な流速を得るためには、イオン
交換体の粒径を非常に均一なものとすること、また、通
液時に高圧をかけることが必須要件となる。しかしなが
ら、現在市販されているイオン交換体のうち、均一粒径
の微粒子状のものは非常に高価なものとなっている。こ
のため、このようなイオン交換体を用いることは経済的
に不利である。また、不安定な生体高分子を含有する液
を、このようなイオン交換体が充填されたカラムに高圧
をかけて通液することは、当該生体高分子の変質ないし
破壊を招くこととなり、これをもとの状態を保ったまま
で回収することが困難であるという問題もある。加えて
、粒径の小さな粒子を使用する場合には通常用いられる
よりも更に目開きの細かなフィルターを用いる必要が生
じ、実質的には巨大DNA等の核酸関連物質を含有する
液は、微粒子状イオン交換体を充填したカラムに通液す
ること自体が困難となる。このため、微粒子状イオン交
換体を用いる技術は専ら蛋白の分析用に適用されている
のが現状である。According to this method, the adsorption capacity for large DNA etc. is improved compared to conventional ion exchangers, and separation and purification is possible, but on the other hand, it has the following drawbacks. That is, since this method increases only the specific surface area without using pores, the ion exchanger needs to have a very small particle size of 3 μm or less. In order to obtain a practical flow rate using such a particulate ion exchanger, it is essential that the particle size of the ion exchanger be extremely uniform and that high pressure be applied during liquid passage. Become. However, among the ion exchangers currently on the market, those in the form of fine particles with a uniform particle size are extremely expensive. Therefore, it is economically disadvantageous to use such an ion exchanger. Furthermore, passing a liquid containing unstable biopolymers through a column packed with such an ion exchanger under high pressure may lead to deterioration or destruction of the biopolymers. Another problem is that it is difficult to recover the waste while preserving its original condition. In addition, when using particles with a small particle size, it becomes necessary to use a filter with even finer openings than is normally used, and in reality, liquids containing nucleic acid-related substances such as giant DNA are treated with fine particles. It becomes difficult to pass liquid through a column packed with a ion exchanger. For this reason, techniques using particulate ion exchangers are currently applied exclusively to protein analysis.
なお、液体クロマトグラフィー(液クロ)以外の方法と
しては、アガロースゲル等を用いた電気泳動性がDNA
等の核酸関連物質の分子量に基づく分離手段として活用
されている。この方法は分離度は良いが、液クロに比べ
て操作が煩雑であること、処理量を大きくすることが困
1Effで分取には適さないことなどの難点がある。In addition, methods other than liquid chromatography (liquid chromatography) include electrophoresis using agarose gel, etc.
It is used as a means of separating nucleic acid-related substances based on their molecular weight. Although this method has a good degree of separation, it has disadvantages such as being more complicated to operate than liquid chromatography, and having difficulty increasing the throughput and being unsuitable for preparative separation.
これらの理由のため、巨大DNA等の分取は、従来から
の超遠心分離法により長時間をかけて行なわれているの
が現状である。For these reasons, at present, the separation of giant DNA and the like is carried out using the conventional ultracentrifugation method over a long period of time.
本発明は上記従来の問題点を解決し、巨大DNA等の分
子量が100万以上の核酸関連物質を含む液から、当該
核酸関連物質をイオン交Ig1幻埋により容易かつ効率
的に分離・精製することができる核酸関連物質の分離方
法を提供することを目的とする。The present invention solves the above-mentioned conventional problems, and easily and efficiently separates and purifies nucleic acid-related substances such as giant DNA from a solution containing nucleic acid-related substances with a molecular weight of 1 million or more by ion exchange Ig1 phantom immersion. The purpose of the present invention is to provide a method for separating nucleic acid-related substances.
ciiを解決するための手段]
請求項(1)の核酸関連物質の分葱方法は、分子量が1
00万以上の核酸rJA速物質を含む液を架橋グルコマ
ンアンイオン交換体を充填したカラムに通液して、核酸
関連物質を分離することを特徴とする請
求項(2)の核酸関連物質の分離方法は、請求項(1)
の方法において、核酸関連物質を含む液が更に蛋白質を
含むことを特徴とする。Means for Solving Problem cii] The method for dividing nucleic acid-related substances according to claim (1) is characterized in that the molecular weight is 1
The nucleic acid-related substance according to claim (2), characterized in that the nucleic acid-related substance is separated by passing a solution containing 1,000,000 or more nucleic acid rJA fast substances through a column packed with a cross-linked glucomane ion exchanger. The separation method is defined in claim (1)
The method is characterized in that the liquid containing the nucleic acid-related substance further contains protein.
即ち、本発明者らけ、分子量100万以上の巨大DNA
等の高分子量の核酸関連物質を手軽な液クロ装置及び手
法にて、高圧通液を要することなく、高い処理効率にて
、かつ高い分離効率にて低コストで容易に吸着・分離す
る方法について鋭意検討を重ねた結果、特開平1−94
949号に開示される架橋グルコマンアンイオン交換体
が、特に分子量100万以上の巨大核酸関連物質の分離
、とりわけ複数のDNAの分離・精製に効果を発揮する
ことを見出し、本発明を完成させた。That is, the present inventors discovered that a giant DNA with a molecular weight of 1 million or more
A method for easily adsorbing and separating high-molecular-weight nucleic acid-related substances, such as substances, using a simple liquid chromatography device and method, without the need for high-pressure liquid passage, with high processing efficiency, and at low cost with high separation efficiency. As a result of intensive study, Unexamined Japanese Patent Publication No. 1-94
It was discovered that the cross-linked glucomane ion exchanger disclosed in No. 949 is particularly effective in separating large nucleic acid-related substances with a molecular weight of 1 million or more, and in particular in separating and purifying multiple DNAs, and completed the present invention. Ta.
以下に本発明の詳細な説明する。The present invention will be explained in detail below.
本発明に係る架橋グルコマンアンイオン交換体は、架橋
グルコマンナン球状粒子に、常法に従って、ジエチルア
ミノエチル基(以下rDEAE基」と略す、) カルボ
キシメチル基(以下rCM基」と略す、)、スルホプロ
ピル基(以下r−sp基」と略す、)、クオーターナリ
ーボリアミノエチル基(以下rQAE基」と略す、)等
のイオン交換基を導入することにより調製することがで
きる。なお、イオン交換基としては、上記のものの他、
スルホメチル基、第1〜4級アミノエチル基、リン酸基
等の公知のイオン交換基をいずれも適用することができ
る。The crosslinked glucomannan ion exchanger according to the present invention is produced by adding diethylaminoethyl groups (hereinafter referred to as rDEAE groups), carboxymethyl groups (hereinafter referred to as rCM groups), sulfonate groups to crosslinked glucomannan spherical particles according to a conventional method. It can be prepared by introducing an ion exchange group such as a propyl group (hereinafter abbreviated as "r-sp group") or a quarternary polyaminoethyl group (hereinafter abbreviated as "rQAE group"). In addition to the above-mentioned ion exchange groups,
Any known ion exchange group such as a sulfomethyl group, a primary to quaternary aminoethyl group, a phosphoric acid group, etc. can be applied.
イオン交換基を導入するには、例えば、架橋グルコマン
ナン球状粒子をアルカリ液に予め浸漬させた後、ハロゲ
ン末端基を有しかつ導入するイオン交換基を供出する試
薬と反応させる。これらの試薬としては、例えば、2−
クロロトリエチルアミン塩酸塩、クロロ酢酸1、クロロ
メタンスルホン酸塩、塩化ホスホリル等を用いることが
でき、また、アルカリとしては、水酸化ナトリウム、水
酸化カリウム等を用いることができる。To introduce an ion exchange group, for example, crosslinked glucomannan spherical particles are immersed in an alkaline solution in advance, and then reacted with a reagent that has a halogen end group and provides the ion exchange group to be introduced. These reagents include, for example, 2-
Chlorotriethylamine hydrochloride, chloroacetic acid 1, chloromethane sulfonate, phosphoryl chloride, etc. can be used, and as the alkali, sodium hydroxide, potassium hydroxide, etc. can be used.
なお、架橋グルコマンナン球状粒子は、例えば特開平1
−94949号に開示される方法に従って、次のように
して製造することができる。即ち、績製されたグルコマ
ンナンをアセチル化し、次いで、アセチル化により得ら
れたグルコマンナンエステルを有機溶媒に溶解させて希
釈剤(多孔化剤)を添加してグルコマンナンエステル溶
液を調製する。このグルコマンナンエステル溶液を水性
媒体中に添加して攪拌、懸濁することにより球状化した
後、有機溶媒を蒸発除去して固化(粒子化)させる、得
られたグルコマンナンエステル粒子をアルカリにより不
均一系にてケン化し、更に架橋剤により架橋して、架橋
グルコマンナン粒子を得る。Note that the crosslinked glucomannan spherical particles are disclosed in, for example, Japanese Patent Application Laid-Open No.
It can be manufactured as follows according to the method disclosed in Japanese Patent Application No.-94949. That is, the prepared glucomannan is acetylated, and then the glucomannan ester obtained by the acetylation is dissolved in an organic solvent, and a diluent (porosity forming agent) is added to prepare a glucomannan ester solution. This glucomannan ester solution is added to an aqueous medium, stirred and suspended to form spheroids, and then the organic solvent is removed by evaporation to solidify (particles). The mixture is saponified in a homogeneous system and further crosslinked with a crosslinking agent to obtain crosslinked glucomannan particles.
本発明においては、このような架橋グルコマンナン粒子
の調製にあたり、粒子化前の希釈剤添加量や粒子化攪拌
速度等を適正に調製することにより、粒径10〜500
μm若しくはそれ以上、膨潤度1,5以上、排除限界分
子量がポリエチレングリコール(PEG)換算で10力
万以上の架橋グルコマンナン球状粒子を得、このものに
イオン交換基を導入して得られる架橋グルコマンアンイ
オン交換体を用いるのが好ましい。即ち、このような架
橋グルコマンナン球状粒子は、耐圧強度が高く、膨潤収
縮率が小さく、また、耐酸・アルカリ性や耐熱性に優れ
、従って、このような架橋グルコマンナン球状粒子から
得られたイオン交換体もほぼ同等の優れた特性を有する
ものとなり、本発明で使用されるイオン交換体として非
常に好適である。In the present invention, in preparing such crosslinked glucomannan particles, by appropriately adjusting the amount of diluent added before particleization, the particleization stirring speed, etc., the particle size is 10 to 500.
Cross-linked glucomannan particles are obtained by obtaining cross-linked glucomannan spherical particles with a swelling degree of 1.5 μm or more, an exclusion limit molecular weight of 100,000 or more in terms of polyethylene glycol (PEG), and introducing an ion exchange group into these particles. Preferably, a mananium ion exchanger is used. That is, such cross-linked glucomannan spherical particles have high pressure resistance, low swelling/shrinkage rate, and excellent acid/alkali resistance and heat resistance. The ion exchanger has almost the same excellent properties and is very suitable as an ion exchanger for use in the present invention.
本発明においては特に用いる架橋グルコマンアンイオン
交換体は粒径10〜1000μmの球状粒子であって、
イオン交換容量が0.01〜5 meq/g−gell
%排除限界分子量が100万以上(PEG換算)であ
ることが好ましい。In the present invention, the crosslinked glucomane ion exchanger used in particular is a spherical particle with a particle size of 10 to 1000 μm,
Ion exchange capacity is 0.01-5 meq/g-gel
It is preferable that the % exclusion limit molecular weight is 1 million or more (in terms of PEG).
このような本発明に係る架橋グルコマンナン粒子にイオ
ン交換基を導入した架橋グルコマンアンイオン交換体は
、水や酸性又はアルカリ性水溶液にも不溶であり、また
、物理的にも高強度で物理特性に優れる。更に、他の親
水性ゲルに比べて著しく排除限界分子量の範囲が広く、
しかも排除限界分子量が100万以上の高排除限界分子
量の球状粒子でも他の種類のゲルに比べて著しく高耐圧
性を示す。The crosslinked glucomannan ion exchanger according to the present invention, which is obtained by introducing ion exchange groups into the crosslinked glucomannan particles, is insoluble in water and acidic or alkaline aqueous solutions, and has high physical strength and physical properties. Excellent in Furthermore, compared to other hydrophilic gels, the exclusion limit molecular weight range is significantly wider.
Furthermore, even spherical particles with a high exclusion limit molecular weight of 1 million or more exhibit significantly higher pressure resistance than other types of gels.
なお、ここに言う排除限界分子量とは充填剤粒子の微細
孔に入り込めない限界の分子量を指すが、充填剤をカラ
ムに充填し、種々の既知分子量の物質(ここではPEG
)の水溶液を注入し、溶離液で押し出し、示差屈折計、
分光光度計等を用いて溶出液量を測定し、溶出試料の分
子量に対して、各々の溶出液量をプロットし、得られる
綴線の屈曲点における分子量によって示される。The exclusion limit molecular weight referred to here refers to the limit molecular weight that cannot enter the micropores of the filler particles.
) was injected, extruded with an eluent, and measured using a differential refractometer.
The amount of eluate is measured using a spectrophotometer or the like, and the amount of each eluate is plotted against the molecular weight of the eluate sample, and the molecular weight is indicated by the molecular weight at the bending point of the obtained spelling line.
本発明の方法の実施に当っては、まず架橋グルコマンア
ンイオン交換体を適当なカラムに充填し、得られたイオ
ン交換カラムに試料を注入する。試料の注入には、分離
する核酸関連物質を含む試料を適当な溶離液で0.5〜
1000μg/m1に希釈して注入してイオン交換体に
吸着させる0次いで、溶離液をLVI O〜1000c
m/Hの流速で流す、この際、溶離液の塩濃度やpH等
を変え、液中成分に濃度勾配をつける。これにより、イ
オン交換体に吸着された試料中の核酸関連物質は分子量
の小さい順に順次溶出されるので、流出液を各フラクシ
ョン毎に分取することにより、試料中の核酸関連物質を
分離・精製するこ蒼
とが可能とされる。In carrying out the method of the present invention, a cross-linked glucomanone ion exchanger is first packed into a suitable column, and a sample is injected into the resulting ion exchange column. For sample injection, the sample containing the nucleic acid-related substance to be separated is diluted with an appropriate eluent at 0.5~
The eluent was diluted to 1000 μg/ml, injected, and adsorbed onto an ion exchanger.
Flow at a flow rate of m/H. At this time, the salt concentration, pH, etc. of the eluent are changed to create a concentration gradient of the components in the solution. As a result, the nucleic acid-related substances in the sample that have been adsorbed to the ion exchanger are eluted in order of decreasing molecular weight, so by separating the effluent into each fraction, the nucleic acid-related substances in the sample are separated and purified. Suko Aoto is said to be possible.
なお、溶離液としては、例えば、pH6〜9のトリス塩
酸緩衝液、リン酸lt街液等を用いることができ、また
、このような溶離液に濃度勾配をつける成分としては、
NaCIA%KCl1等を用いることができる。As the eluent, for example, a Tris-HCl buffer with a pH of 6 to 9, a phosphoric acid solution, etc. can be used, and as a component to create a concentration gradient in such an eluent,
NaCIA%KCl1 etc. can be used.
本発明において分離対象とする分子量100万以上の核
酸関連物質を含む液は、分子量100万以上の核酸関連
物質のみを2種以上含むものであフても、また、分子量
100万以上の核酸関連物質と他の低分子量核酸関連物
質とを含むものであっても良い、特に、本発明において
は、分子量ioo万以上の核酸関連物質と共に蛋白質を
含む液に対して、除蛋白の前処理を施すことなく、連の
クロマト処理により分離・精製することかでか、非常に
有利である。In the present invention, a liquid containing nucleic acid-related substances with a molecular weight of 1 million or more to be separated may contain only two or more types of nucleic acid-related substances with a molecular weight of 1 million or more; In particular, in the present invention, a solution containing protein together with a nucleic acid-related substance having a molecular weight of 100,000 or more is subjected to pre-treatment for protein removal. It is very advantageous to be able to separate and purify it by continuous chromatography without having to worry about it.
[作用]
イオン交換処理において、非孔質微粒子を充填したカラ
ムのような高圧を要することもなく、十分な処理量を持
たせるには、粒径10μm以上程度で、かつ巨大DNA
等に対しても有効に作用するイオン交換基を保持するよ
う、巨大DNA等が十分に入り込める巨大孔を有するイ
オン交換体を用いる必要がある。そして、このような巨
大孔を有することに加えて、従来の液クロ並の流速で通
液できるだけの耐圧強度を有し、かつ、生体高分子に対
して不都合な非特異的吸着性を殆ど持たず、その上、実
用に耐える膨潤収縮率の小ささと耐酸・アルカリ性、耐
熱性の大きさとをすべて満たす真球状のイオン交換体で
あることが必要とされる。しかして、特開平1−949
49号に開示された架橋グルコマンアンイオン交換体は
これらの要求特性をすべて満足する、高分子量核酸関連
物質の処理のためのイオン交換体として非常に有効なイ
オン交換体である。[Function] In ion exchange treatment, in order to have a sufficient throughput without requiring high pressure as in columns packed with non-porous fine particles, it is necessary to use particles with a particle size of about 10 μm or more and large DNA.
It is necessary to use an ion exchanger that has large pores that can sufficiently accommodate large DNA and the like in order to retain ion exchange groups that can effectively act on DNA and the like. In addition to having such huge pores, it also has a pressure-resistant strength that allows liquid to pass through at a flow rate similar to that of conventional liquid black, and it has almost no non-specific adsorption properties that are disadvantageous to biopolymers. In addition, it is required that the ion exchanger be a truly spherical ion exchanger that satisfies all of the requirements of a practically practical low swelling/shrinkage ratio, acid/alkali resistance, and heat resistance. However, JP-A-1-949
The crosslinked glucomane ion exchanger disclosed in No. 49 satisfies all of these required properties and is a very effective ion exchanger for treating high molecular weight nucleic acid-related substances.
即ち、本発明に係る架橋グルコマンアンイオン交換体は
、架橋グルコマンナン球状粒子に常法に従ってイオン交
換基を導入することにより調製することができるが、こ
の架橋グルコマンナン球状粒子、特に、粒径が10〜1
000μm或いはそれ以上であって、膨潤度1.5以上
、排除限界分子量がPEG換算で200〜100,00
0,000の架橋グルコマンナン球状粒子は、排除限界
分子量が100万以上の巨大孔を持つものであっても、
排除限界分子量が100万未満のデキストラン系やアガ
ロース系のような従来の天然高分子素材の充填剤と比べ
ても遥かに上回る耐圧強度を有し、従って、これを充填
したカラムは高流速を容易に得ることができ、かつ、液
クロ用充填剤として十分に実用に耐える膨11ftl収
縮率の小ささと耐酸・アルカリ性、耐熱性の大きさとを
兼備するという優れた特徴を有する。しかして、このよ
うな架橋グルコマンナン球状粒子に、適正な方法でイオ
ン交換基を導入した架橋グルコマンアンイオン交換体も
、イオン交換基を持たないものとほぼ同等の優れた物理
的、化学的性質を有している。That is, the crosslinked glucomannan ion exchanger according to the present invention can be prepared by introducing an ion exchange group into crosslinked glucomannan spherical particles according to a conventional method. is 10-1
000 μm or more, swelling degree 1.5 or more, exclusion limit molecular weight 200 to 100,00 in terms of PEG.
0,000 crosslinked glucomannan spherical particles have giant pores with an exclusion limit molecular weight of 1 million or more,
It has a pressure resistance that far exceeds that of conventional natural polymer packing materials such as dextran and agarose, which have an exclusion limit molecular weight of less than 1 million, and therefore columns packed with this material can easily handle high flow rates. It has the excellent characteristics of having a small expansion/shrinkage ratio of 11 ftl, which is sufficiently practical as a filler for liquid chromatography, and high acid/alkali resistance and heat resistance. Therefore, cross-linked glucomannan ion exchangers, which are made by introducing ion-exchange groups into cross-linked glucomannan spherical particles using an appropriate method, have excellent physical and chemical properties that are almost equivalent to those without ion-exchange groups. It has properties.
本発明に係る架橋グルコマンアンイオン交換体は、蛋白
質等の生体高分子の高速分離等において、他には類のな
い高性能を示すが、特に巨大DNA等を対象としたとき
にその真価を発揮する。即ち、排除限界分子量が100
万以上の架橋グルコマンナン球状粒子にDEAE基等の
イオン交換基を導入した架橋グルコマンアンイオン交換
体は、他に比類のない大きな細孔を有するため、巨大D
NA等も容易にイオン交換モードで吸着することができ
る。そして、常法に従って溶離液のバッファー条件等を
変動させることにより、脱着させることができる。また
、架橋グルコマンアンイオン交換体はその母体、即ち天
然高分子であるグルコマンナンの特性に由来する豊かな
親水性により、対象が分子量100万以上の巨大DNA
等であっても不要な非特異的吸着性を殆ど示さない、こ
のため、分離対象物質はオリゴヌクレオチドなどの場合
と同様に、通常のイオン交換クロマトゲラフイーと同様
の機能で低分子のものほど溶離し易い性質を示し、バッ
ファー条件を適正に変動させることにより、分子量の小
さい方から順に溶出させることができる。また、回収率
も極めて高い値を示す。The cross-linked glucomane ion exchanger according to the present invention exhibits unparalleled high performance in high-speed separation of biopolymers such as proteins, but its true value is particularly apparent when targeting large DNA etc. Demonstrate. That is, the exclusion limit molecular weight is 100
The cross-linked glucomannan ion exchanger, which is made by introducing ion exchange groups such as DEAE groups into more than 10,000 cross-linked glucomannan spherical particles, has large pores that are unparalleled in other products.
NA and the like can also be easily adsorbed in ion exchange mode. Desorption can then be carried out by varying the buffer conditions of the eluent and the like according to a conventional method. In addition, the cross-linked glucomanion exchanger has rich hydrophilic properties derived from the properties of its parent substance, glucomannan, which is a natural polymer.
Therefore, the substances to be separated have the same function as ordinary ion-exchange chromatographies, and the lower the molecular weight, the lower the molecular weight. They exhibit the property of being easily eluted, and by appropriately varying the buffer conditions, they can be eluted in descending order of molecular weight. Moreover, the recovery rate also shows an extremely high value.
なお、架橋グルコマンアンイオン交換体を用いる本発明
の方法によれば、巨大DNA等を含む核酸関連物質間の
相互分離のみならず、除蛋白の分離も容易に行なえる。In addition, according to the method of the present invention using a cross-linked glucomane ion exchanger, not only the mutual separation of nucleic acid-related substances including giant DNA etc., but also the separation of protein removal can be easily performed.
即ち、従来、液中に蛋白質があると、直接イオン交I^
処理を行なうことができず、まず、別のカラムで除蛋白
した後、液中の有用物質を分離回収していたが、本発明
ではこれを一つのカラムで実施することが可能とされる
。That is, conventionally, when there is protein in a solution, direct ion exchange I^
However, the present invention makes it possible to carry out this process using a single column.
そして、条件を適宜設定することにより、核酸関連物質
及び蛋白質を含む液から、一連の液クロ処理により核酸
関連物質各成分及び蛋白質各成分の各々にまで分離する
ことも可能である。By appropriately setting conditions, it is also possible to separate each component of a nucleic acid-related substance and each component of a protein from a liquid containing a nucleic acid-related substance and a protein through a series of liquid chromatography processes.
[実施例〕 以下に実施例を挙げて本発明をより具体的に説明する。[Example〕 EXAMPLES The present invention will be explained in more detail with reference to Examples below.
実施例1
[λ−DNAの吸着容量及び回収率の測定]内径1.2
mmφ、長さ50mmL (内容積56.5μi)のス
テンレスカラムに、排除限界分子Htooo万以上(P
E G IM算)の架橋グルコマンナン球状粒子(粒
径20〜44μm)にDEAE基を導入したイオン交換
容量1.2ieq/g−ge J2のDEAE−グルコ
マンナン球状粒子を充填した。このカラムを10mMト
リス塩酸緩衝液(pH7,8)(以下rA液」という、
)で安定化させた6次に、100μg / m fLに
なるようA液で希釈した市販のλ−DNA (48,5
02bp=分子量約3,200万)を上記カラムに0.
1mf/win (LV−531am/H)の流速で
流し続けた。流出液を直接液クロ用UV検出器に導入し
、260nmの吸収を連続モニタリングした。流出液の
吸光度が原液にほぼ等しくなった時点でλ−DNAの通
液をやめ、A液に切り換え、同流速でカラムを洗浄した
。Example 1 [Measurement of adsorption capacity and recovery rate of λ-DNA] Inner diameter 1.2
mmφ, length 50 mmL (inner volume 56.5μi) stainless steel column with exclusion limit of more than 10,000 molecules (P
DEAE-glucomannan spherical particles having an ion exchange capacity of 1.2 ieq/g-ge J2 into which DEAE groups were introduced were packed into cross-linked glucomannan spherical particles (particle size 20 to 44 μm) of EGIM calculation). This column was prepared using a 10mM Tris-HCl buffer (pH 7,8) (hereinafter referred to as rA solution).
) was then stabilized with commercially available λ-DNA (48,5
0.02bp=molecular weight approximately 32 million) was added to the above column.
The flow continued at a flow rate of 1 mf/win (LV-531 am/H). The effluent was directly introduced into a liquid chromatography UV detector, and the absorption at 260 nm was continuously monitored. At the time when the absorbance of the effluent became almost equal to that of the stock solution, the passage of λ-DNA was stopped, the solution was switched to solution A, and the column was washed at the same flow rate.
洗浄流出液の吸光度がほぼゼロに戻った時点で、A液に
NaCJlをIMになるよう溶解した液(以下rB液」
という、)に切り換えてDEAE−グルコマンナン球状
粒子にイオン交換によりて吸着していたλ−DNAの溶
離を行なった。溶離液の吸光度が一旦上昇した後、下降
し、はぼゼロに戻った時点で通液を止めた。When the absorbance of the washing effluent returned to almost zero, a solution containing NaCJl dissolved in IM in solution A (hereinafter referred to as rB solution) was added.
), and the λ-DNA adsorbed on DEAE-glucomannan spherical particles was eluted by ion exchange. After the absorbance of the eluent increased once, it decreased, and when the absorbance returned to zero, the flow of the eluent was stopped.
カラムからの流出液は吸着・洗浄工程と溶離工程とに分
けて回収し、その液量とUV吸光度を測定した。原液に
ついては、カラムへの流入量を実測した。そして、各フ
ラクションの液量と260nmのUV吸光度から算出し
た濃度から、λ−DNAの吸着容量と回収率を求めた。The effluent from the column was collected separately in the adsorption/washing process and the elution process, and the volume and UV absorbance of the liquid were measured. Regarding the stock solution, the amount flowing into the column was actually measured. Then, the adsorption capacity and recovery rate of λ-DNA were determined from the liquid volume of each fraction and the concentration calculated from the UV absorbance at 260 nm.
その結果、λ−DNAの平衡吸着容量は446μg/r
Jl −gejl、回収率は98%であった。As a result, the equilibrium adsorption capacity of λ-DNA was 446 μg/r.
Jl-gejl, the recovery rate was 98%.
全く同様の手法で市販のイオン交換体rDEAE−トヨ
パール650S (粒径20〜40μm)を用いて実験
を行なった。その結果、このDEAE−ゲルのλ−DN
A平衡吸着容景は66 p g/1.−geJZであり
、上記DEAE−グルコマンナン球状粒子の約7分の1
と著しく低いことが確認された。また、λ−DNAの回
収率は88%とDEAE−グルコマンナン球状粒子に比
べて低かった。Experiments were conducted in exactly the same manner using a commercially available ion exchanger rDEAE-Toyopearl 650S (particle size 20 to 40 μm). As a result, the λ-DN of this DEAE-gel
A equilibrium adsorption capacity is 66 p g/1. -geJZ, about one-seventh of the DEAE-glucomannan spherical particles
It was confirmed that this was significantly lower. Furthermore, the recovery rate of λ-DNA was 88%, which was lower than that of DEAE-glucomannan spherical particles.
即ち、本発明に係るDEAE−グルコマンナン球状粒子
は、DNAに対して非特異吸着を殆ど起こさないため高
回収率で回収できるのに対し、市販品では非特異吸着に
よる回収不能な吸着DNAが多く、多量のDNAがカラ
ム内に残留するものとなる。That is, the DEAE-glucomannan spherical particles according to the present invention hardly cause non-specific adsorption to DNA and can be recovered with a high recovery rate, whereas commercially available products have a large amount of adsorbed DNA that cannot be recovered due to non-specific adsorption. , a large amount of DNA will remain in the column.
実力ζ例2
[λ−DNAとCo I E 1−DNAとの分Ill
以下の条件で実験を行なった。Ability ζ Example 2 [The difference between λ-DNA and Co I E 1-DNA
The experiment was conducted under the following conditions.
充填11:DEAE−グルコマンナン球状粒子粒径=1
2〜20μm
イオン交換容量±1.3 meq/g−geu排除限界
分子量= 1,000万以上
(PEG換算)
カラムサイズ:4.6mmφX100mmL(内容積1
.66mft)
溶離液:A液
1mM EDTAを含む10mM
トリス塩酸緩衝液(pH8,0)
B液
A液にNa(、Qを0.5Mになる
よう溶解させた液
負荷: 100Mg−DNA/mj2−A液の液を18
.3μm
流速: 0. 2mIL/m i n
(LV=72.2cm/H)
試料注入:
A fFiで安定化させたカラムに上記負荷にて下記試
料を注入した。Filling 11: DEAE-glucomannan spherical particles particle size = 1
2 to 20 μm Ion exchange capacity ±1.3 meq/g-geu exclusion limit molecular weight = 10 million or more (PEG equivalent) Column size: 4.6 mmφ x 100 mmL (inner volume 1
.. 66mft) Eluent: Solution A: 10mM Tris-HCl buffer containing 1mM EDTA (pH 8,0) Solution B: Solution containing Na (, Q) dissolved in Solution A to a concentration of 0.5M Load: 100Mg-DNA/mj2-A liquid liquid 18
.. 3μm Flow rate: 0. 2 mIL/min (LV=72.2 cm/H) Sample injection: The following sample was injected into the column stabilized with AfFi at the above load.
Run−1−λ−D N A (48,502bp−分
子量約3.200万)を単独で注入
Run−2= Co1E 1− D N A (6,6
46bp=分子量約440万)を単独で注入
Run−3=λ−DNAとCo1E 1− D N A
とをl!量比1:1の割合で混合
して注入
溶離条件:
試料注入後0〜60分の間に溶[液中のB液含有率を0
から100%に上げ、
NaCl1濃度にOMから0.5Mの直線勾配をつけた
。Run-1-λ-D N A (48,502 bp - molecular weight approximately 32,000,000) was injected alone Run-2 = Co1E 1- D N A (6,6
46 bp = molecular weight approximately 4.4 million) was injected alone Run-3 = λ-DNA and Co1E 1- DNA
Towo l! Mix at a ratio of 1:1 and inject. Elution conditions: 0 to 60 minutes after sample injection.
The NaCl1 concentration was increased from OM to 100% with a linear gradient from OM to 0.5M.
各Run−1〜3における結果を下記に示す。The results for each Run-1 to Run-3 are shown below.
Run−1:第1図に示す如く、44.8分にピークを
示す単一ピークが検
出された。Run-1: As shown in FIG. 1, a single peak was detected at 44.8 minutes.
Run−2:第1図に示す如く、42.9分にピークを
示す単一ピークが検
出された。Run-2: As shown in FIG. 1, a single peak was detected at 42.9 minutes.
Run−3: 42.9分及び44,8分にピークを示
す2つのピークが
検出された。 Run−1、2の結
果からこのピークはそれぞれ
Co1E1−DNA、λ−DNA
のものであることは自明であ
り、λ−DNAと Co1E 1−
DNAとが良好に分ユされたこ
とが明らかである。Run-3: Two peaks were detected at 42.9 minutes and 44.8 minutes. From the results of Run-1 and Run-2, it is obvious that these peaks belong to Co1E1-DNA and λ-DNA, respectively, and it is clear that λ-DNA and Co1E1-DNA were well separated. .
実施例3 [DNA分離及び除蛋白] 以下の条件で実験を行なった。Example 3 [DNA separation and protein removal] The experiment was conducted under the following conditions.
充填剤:DEAE−グルコマンナン球状粒子粒径=12
〜20μm
イオン交換容量= t 、 3 meq/g−geλ排
除限界分子量= 1,000万以上
(PEG換算)
カラムサイズ:6mmφX100mmL(内容積2.8
3mλ)
溶離液:A液
0.1mM EDTA及び
0.05M NaCJ2を含む10
mMリン酸紐街液(PH6,5)
B液
A液にNaCfを0.3Mになる
よう溶解させた液
流速: 1mJZ/mi n (LV=212cm/H
)試料注入:
A液で安定化させたカラムに
ヒト血清アルブミン(分子量約7万)
ColEl−DNA(分子量約440万)λ−DNA
(分子量約3200万)
を各々lOμgずつ、計30μgを100μ℃のA液で
溶解して注入した。Filler: DEAE-glucomannan spherical particles particle size = 12
~20μm Ion exchange capacity = t, 3meq/g-geλ exclusion limit molecular weight = 10 million or more (PEG equivalent) Column size: 6mmφX100mmL (inner volume 2.8
3mλ) Eluent: Solution A 10mM phosphoric acid solution containing 0.1mM EDTA and 0.05M NaCJ2 (PH6,5) Solution B Solution in which NaCf was dissolved in solution A to a concentration of 0.3M Flow rate: 1mJZ /min (LV=212cm/H
) Sample injection: human serum albumin (molecular weight approximately 70,000), ColEl-DNA (molecular weight approximately 4.4 million) λ-DNA into a column stabilized with liquid A.
(molecular weight approximately 32 million) was dissolved in solution A at 100 μC and injected, 10 μg each, a total of 30 μg.
溶離及び結果:
試料注入後上記流速で2ベツド容量分のA液を通液した
ところ、ヒト血清アルブミンは全てカラムから流出した
。次に2時間をかけて溶離液中のB液含有率を0から1
00%に上げ、NaCj2濃度に0.3MからIMの直
線勾配をつけた。Elution and Results: After sample injection, 2 bed volumes of solution A were passed through the column at the above flow rate, and all human serum albumin flowed out of the column. Next, the content of B solution in the eluent was increased from 0 to 1 over 2 hours.
00% and a linear gradient of NaCj2 concentration from 0.3M to IM was applied.
その結果2種類のDNAが分子量の小さい順に分離溶出
し、これらを完全に分取することができた。As a result, two types of DNA were separated and eluted in descending order of molecular weight, and these were able to be completely fractionated.
[発明の効果]
以上詳述した通り、本発明の核酸関連物質の分離方法に
よれば、架橋グルコマンアンイオン交換体を用いて、従
来のイオン交換クロマトグラフィー用充填剤では吸着、
分離が困難なえ−DNA等の分子量100万以上の巨大
DNA等の核酸関連物質を、その特性、即ち活性等を損
なうことなく、イオン交換モードで吸着、分離、精製す
ることができる。しかも、本発明の方法によれば、イオ
ン交換体が均−微粒子状である必要がないことから、充
填剤コストの高騰が防止され、また、高圧通液の必要も
なく、カラムのスケールアップ、大量分取も容易に行な
える。[Effects of the Invention] As detailed above, according to the method for separating nucleic acid-related substances of the present invention, a crosslinked glucomane ion exchanger is used, and conventional packing materials for ion exchange chromatography do not adsorb,
Nucleic acid-related substances such as giant DNA with a molecular weight of 1 million or more, which are difficult to separate, can be adsorbed, separated, and purified in ion exchange mode without impairing their properties, ie, their activities. Moreover, according to the method of the present invention, the ion exchanger does not need to be in the form of homogeneous or fine particles, so an increase in packing material costs can be prevented, and there is no need for high-pressure liquid passage, leading to column scale-up and Large-scale fractionation can be easily performed.
従って、本発明の方法によれば、分子4i100万以上
の核酸関連物質を高い処理効率及び分離効率にて容易か
つ効率的に分離、精製、回収することが可能とされる。Therefore, according to the method of the present invention, it is possible to easily and efficiently separate, purify, and recover nucleic acid-related substances of 1 million or more molecules with high processing efficiency and separation efficiency.
特に、本発明の方法は、核酸関連物質と共に蛋白質を含
む液に対して、予め除蛋白等の前処理を行なうことなく
、一連のクロマト操作により、各核酸関連物質成分及び
各蛋白質成分に分離、精製することができ、その工業的
有用性は極めて高い。In particular, the method of the present invention separates a solution containing nucleic acid-related substances and proteins into each nucleic acid-related substance component and each protein component by a series of chromatographic operations without performing pretreatment such as protein removal in advance. It can be purified and has extremely high industrial utility.
第1図は実施例2で得られたクロマトグラムを示す図で
ある。FIG. 1 is a diagram showing a chromatogram obtained in Example 2.
Claims (2)
架橋グルコマンアンイオン交換体を充填したカラムに通
液して、核酸関連物質を分離することを特徴とする核酸
関連物質の分離方法。(1) A method for separating nucleic acid-related substances, characterized in that the nucleic acid-related substances are separated by passing a liquid containing a nucleic acid-related substance with a molecular weight of 1 million or more through a column packed with a cross-linked glucomanone ion exchanger. .
求の範囲第1項に記載の方法。(2) The method according to claim 1, wherein the solution containing the nucleic acid-related substance further contains protein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1247015A JPH03108661A (en) | 1989-09-22 | 1989-09-22 | Separating method of substance relevant to nucleic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1247015A JPH03108661A (en) | 1989-09-22 | 1989-09-22 | Separating method of substance relevant to nucleic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03108661A true JPH03108661A (en) | 1991-05-08 |
Family
ID=17157129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1247015A Pending JPH03108661A (en) | 1989-09-22 | 1989-09-22 | Separating method of substance relevant to nucleic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03108661A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2785811A1 (en) * | 1998-11-18 | 2000-05-19 | Procytech | COMPOSITION COMPRISING POROUS MICROPARTICLES AND A SUSPENSION AGENT AND ITS USE AS AN IMPLANT |
JP2014521076A (en) * | 2011-07-15 | 2014-08-25 | イーテーエム イゾトーペン テクノロジエン ミュンヘン アーゲー | Production method of carrier-free high purity (177) Lu compound and carrier-free (177) Lu compound |
-
1989
- 1989-09-22 JP JP1247015A patent/JPH03108661A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2785811A1 (en) * | 1998-11-18 | 2000-05-19 | Procytech | COMPOSITION COMPRISING POROUS MICROPARTICLES AND A SUSPENSION AGENT AND ITS USE AS AN IMPLANT |
WO2000029042A1 (en) * | 1998-11-18 | 2000-05-25 | Procytech | Injection implant comprising porous microparticles |
JP2014521076A (en) * | 2011-07-15 | 2014-08-25 | イーテーエム イゾトーペン テクノロジエン ミュンヘン アーゲー | Production method of carrier-free high purity (177) Lu compound and carrier-free (177) Lu compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zeng et al. | Cross-linked macroporous chitosan anion-exchange membranes for protein separations | |
SU867284A3 (en) | Anion exchange material for separating biological macromolecules | |
EP2598223B1 (en) | Chromatography media and method | |
US7132049B2 (en) | Negatively charged membrane | |
JP5148484B2 (en) | Chromatographic matrix regeneration | |
US4756834A (en) | Phase supports for the partition chromatography of macromolecules, a process for their preparation and their use | |
JP4831697B2 (en) | Purification method | |
JPS646201B2 (en) | ||
Bueno et al. | Experimental kinetic aspects of hollow fiber membrane-based pseudobioaffinity filtration: process for IgG separation from human plasma | |
US5986085A (en) | Matched ion polynucleotide chromatography (MIPC) process for separation of polynucleotide fragments | |
US6642374B2 (en) | Process for separation of polynucleotide fragments | |
CN103230784B (en) | Composite continuous bed cryogel and preparation thereof, and application in separating IgG and albumin | |
CA2392374A1 (en) | A method for selective removal of a substance from samples containing compounds having nucleic acid structure | |
JPH03108661A (en) | Separating method of substance relevant to nucleic acid | |
JP5614936B2 (en) | Method for purifying nucleic acid using porous membrane with immobilized anion exchange group | |
WO2007114762A1 (en) | Method of separation of deoxyribonucleic acids | |
US20110152510A1 (en) | Simple load and elute process for purification of genomic dna | |
Galaev et al. | Protein displacement in dye–ligand chromatography using neutral and charged polymers | |
Zhixin et al. | Purification of human serum albumin by dye-ligand affinity chromatography | |
WO2023174965A1 (en) | Methods and compositions for purifying small extracellular vesicles | |
KR20240160216A (en) | Method and composition for purifying small extracellular vesicles | |
JPH043988B2 (en) | ||
Müller | New phase supports for partition chromatography of biopolymers | |
Boardman | Molecular sieving other than dialysis | |
Li et al. | Purification of lysozyme by intrinsically shielded hydrogel beads |