[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03105863A - Carbonaceous composite member of fuel cell and its manufacture - Google Patents

Carbonaceous composite member of fuel cell and its manufacture

Info

Publication number
JPH03105863A
JPH03105863A JP1244081A JP24408189A JPH03105863A JP H03105863 A JPH03105863 A JP H03105863A JP 1244081 A JP1244081 A JP 1244081A JP 24408189 A JP24408189 A JP 24408189A JP H03105863 A JPH03105863 A JP H03105863A
Authority
JP
Japan
Prior art keywords
electrode base
base material
fuel cell
porous electrode
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1244081A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
義雄 鈴木
Toshiharu Uei
上井 敏治
Kazuyoshi Haino
灰野 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP1244081A priority Critical patent/JPH03105863A/en
Publication of JPH03105863A publication Critical patent/JPH03105863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To efficiently manufacture a fuel cell carbonaceous composite member equipped with smooth and stable gas circulation performance by using a porous carbon plate molded in advance in a form of groove as a porous electrode base. CONSTITUTION:Porous electrode base material members 1 are integrally joined to each other from above and below a fine separator material 3 with side sealing material members 2 provided at both end portions thereof along the direction of gas circulation to form a phosphate fuel cell, and each porous electrode base material member 1 comprises a corrugated porous carbon plate. The area of gas circulation is therefore extremely large and pressure loss is constantly small and also a uniform gas flow with less fluctuations is secured. Thus the carbonaceous composite member of a phosphate fuel cell whose material structure is excellent in gas circulation performance is efficiently manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、りん酸型の燃料電池セルを構成する炭素質複
合部材とその製造方法に関する.〔従来の技術〕 りん酸型燃料!池の部材となる電極基材、セパレータ板
、サイドシール材などには、材質的に耐熱性、耐薬品性
、良電気伝導性、易加工性等の要求特性を満たす炭素質
材料が有用されている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carbonaceous composite member constituting a phosphoric acid fuel cell and a method for manufacturing the same. [Conventional technology] Phosphoric acid fuel! Carbonaceous materials that meet the required properties such as heat resistance, chemical resistance, good electrical conductivity, and easy workability are useful for the electrode base materials, separator plates, side seal materials, etc. that are the components of the pond. There is.

ところが、炭素質材料は本質的に機械的強度に乏しいた
め、ハンドリングやセルの組立時に破損することがある
。近時、抵抗およびスタック厚さの低減を図るためt極
基材およびセパレータ板の薄肉化が急速に進められてお
り、破損の度合はますます増加の傾向にある。また、電
極基材とセバレータ板を積層して組み立てる方式では、
両部材の面間に十分均等な密着接触状態を得ることが困
難であるため、電池内部抵抗の低減化には限界がある。
However, since carbonaceous materials inherently lack mechanical strength, they may be damaged during handling or cell assembly. Recently, t-electrode base materials and separator plates have been rapidly made thinner in order to reduce resistance and stack thickness, and the degree of breakage tends to increase more and more. In addition, in the method of laminating and assembling the electrode base material and separator plate,
Since it is difficult to obtain a sufficiently uniform close contact state between the surfaces of both members, there is a limit to the reduction in battery internal resistance.

このような不都合を排除し、機械的強度の向上、電気的
・熱的抵抗の低減ならびにセル組立の簡素化を図るため
、電極基材とセバレータ材の両部材を予め一体形威して
複合構造とする試みが盛んに進められている.例えば、
特開昭60 − 20471号公報、実開昭60−15
759号公報、特開昭63 − 265723号公報に
は、電極基材とセパレータ板とを接着材で接合する構造
の複合部材およびその製造方法が開示されている。しか
しながら、これらの従来技術においては、接合前または
接合後に電極基材河に多数の細かなガス流通溝を加工設
置しなければならない工程上の難点がある.そのうえ、
この満幅はt〜3■と細かい関係でガス流通時の圧力損
失が大きく、溝毎の流量が変動する現象が生ずるため、
セルの大型化、簿層化に伴う重要な改善課題となってい
る. 〔発明が解決しようとする課題〕 このような煩雑性のある加工によらずガス流通用の溝あ
るいは孔を形威する手段として、特開昭59 − 68
170号公報、特開昭63−178456号公報のよう
に熱により溶融または揮散する性質の溝・孔形或材を利
用する方法も提案されているが、この方法によって多本
数の溝・孔を形成することは困難であり、またセル厚を
薄くすることができない欠点がある. 本発明は、上記した従来技術の問題点を解消するために
なされたもので、その目的とするところは、予め溝形状
に成形された多孔質カーボン板を多孔質電極基材とする
ことにより円滑で安定なガス流通性能を備える燃料電池
用炭素質複合部材ならびにその効率的な製造方法を提供
することにある. 〔課題を解決するための手段) 上記の目的を達或するための本発明による燃料電池用炭
素質複合部材は、多孔質電極基材がサイドシール材と共
に緻密質セバレータ仮に接合されてなる炭素質のりん酸
型燃料電池セルにおいて、前記多孔質電極基材がコルゲ
ート形状の多孔質カーボン板で構成される形態としたも
のである。
In order to eliminate such inconveniences, improve mechanical strength, reduce electrical and thermal resistance, and simplify cell assembly, a composite structure is created in which both the electrode base material and the separator material are integrated in advance. Attempts to do so are actively underway. for example,
Japanese Unexamined Patent Publication No. 60-20471, Utility Model Application No. 1986-15
No. 759 and Japanese Unexamined Patent Publication No. 63-265723 disclose a composite member having a structure in which an electrode base material and a separator plate are joined with an adhesive, and a method for manufacturing the same. However, these conventional techniques have the disadvantage of having to process and install a large number of fine gas flow grooves in the electrode base material before or after bonding. Moreover,
This full width is closely related to t ~ 3■, and the pressure loss during gas flow is large, causing a phenomenon in which the flow rate fluctuates for each groove.
This has become an important improvement issue as cells become larger and the number of bookkeeping layers increases. [Problems to be Solved by the Invention] As a means for forming grooves or holes for gas circulation without such complicated processing, Japanese Patent Application Laid-Open No. 1983-1988
170 and Japanese Patent Application Laid-open No. 178456/1983, methods have been proposed that utilize grooves/holes or materials that melt or volatilize when heated; It is difficult to form, and it also has the disadvantage that the cell thickness cannot be made thin. The present invention has been made to solve the problems of the prior art described above, and its purpose is to use a porous carbon plate pre-formed in the shape of a groove as a porous electrode base material. The purpose of this invention is to provide a carbonaceous composite member for fuel cells with stable gas flow performance and an efficient manufacturing method thereof. [Means for Solving the Problems] A carbonaceous composite member for fuel cells according to the present invention to achieve the above object is a carbonaceous composite member in which a porous electrode base material is temporarily joined with a side seal material and a dense separator. In the phosphoric acid fuel cell, the porous electrode base material is composed of a corrugated porous carbon plate.

第1図は本発明の燃料電池用炭素質複合部材を例示した
斜視図であり、多孔質電極基材1はガス流通方向に沿う
両端部にサイドシール材2を添えた状態で緻密質セバレ
ータ材3の上下から一体に接合されてりん酸型燃料電池
セルを形威している.本発明はこのセル形態において、
多孔質電極基材lをコルゲート形状の多孔質カーボン板
で構成した点に材質構造的な特徴がある。コルゲート形
状とは、一方向等間隔的に波形が連続する形態を指し、
例えば第2図の円波形、第3図の角波形のほか、三角波
形、台型波形なども含まれる。
FIG. 1 is a perspective view illustrating the carbonaceous composite member for fuel cells of the present invention, in which a porous electrode base material 1 is made of a dense separator material with side sealing materials 2 attached to both ends along the gas flow direction. 3 are joined together from the top and bottom to form a phosphoric acid fuel cell. In this cell form, the present invention provides
A feature of the material structure is that the porous electrode base material 1 is composed of a corrugated porous carbon plate. Corrugated shape refers to a form in which the waveform continues at equal intervals in one direction.
For example, in addition to the circular waveform shown in FIG. 2 and the square waveform shown in FIG. 3, triangular waveforms and trapezoidal waveforms are also included.

上記の構成(第1図)において、コルゲート形状の多孔
質カーボン板で構成された多孔質電極基材1の上面およ
び/または下面に多孔質カーボン平板からなるりん酸貯
蔵層4を介設することもでき、このような構造にするこ
とでりん酸の補給および保持が円滑化される.りん酸貯
蔵層4の厚さは、O.l=lmmの範囲内で可及的に薄
く形或することが望ましい. 本発明による上記燃料電池用炭素質複合部材の製造方法
は、セルロース繊維のシートに炭化性の熱硬化性樹脂液
を含浸させて半硬化し、所望のコルゲート形状に成形・
硬化したのち焼成炭化して多孔質電極基材を形威し、該
多孔質′1t極基材をサイドシール材と共にカーボン系
接着剤を介して緻密賞セバレータ仮に接合し、更に必要
に応じ多孔質電極基材の上面および/または下面に多孔
質カーボン平板からなるりん酸貯蔵層を接合したのち焼
成炭化処理することを構成上の特徴とする.セルロース
繊維としては、製紙用の溶解パルブのようなα−セルロ
ースが好適に使用され、これを水に分散させて抄紙法に
よりシート化する.この際、形威されるシートの気孔率
が70%以上に或るようセルロースの分散液濃度を調整
することが望ましい。セルロースシ一トは、ついで炭化
性の熱硬化性樹脂を含浸させる.炭化性樹脂としてはフ
ェノール樹脂、フラン樹脂、ジビニルベンゼン等を挙げ
ることができ、これら樹脂はアルコール、アセトンなど
常用の有機溶媒に溶解した状態で使用に供される.fl
j液の樹脂濃度は5〜40重量%の範囲に設定すること
が好適で、5重量%未満であると強度特性の減退し、ま
た40重量%を越えると気孔の閉塞を招く. 含浸処理は、セルロースシ一トを熱硬化性樹脂液中に浸
漬するか、熱硬化性樹脂液をセルロースシ一トに塗布ま
たはスプレーすることによっておこなわれる.含浸後の
セルロースシ一トは、風乾および加熱して半硬化したの
ち、所望のコルゲート形金型を用いてプレス成形する. このようにして成形されたコルゲート戒形体は硬化処理
を施したのち、非酸化性雰囲気中1000’C以上の温
度で焼威炭化し、所定寸法に切断して多孔質電極基材を
形或する. 多孔質カーボン平板からなるりん酸貯蔵層を作製する場
合には、上記した多孔質電極基材の製法のうちコルゲー
ト成形の工程を省略したプロセスでおこなうことができ
る. 部材の複合化は、第4図に示すように、中心部の緻密質
セバレータ板3に上下から上記で作製した多孔質電極基
材1とサイドシール材2をカーボン系接着材で接着に、
更に必要に応じ、多孔質電極基材lの上面および/また
は下面にりん酸貯蔵層4を接着し、接着剤を硬化接合し
たのち非酸化性雰囲気下で1000〜2000℃の温度
域により焼威炭化処理をおこなう。
In the above structure (FIG. 1), a phosphoric acid storage layer 4 made of a porous carbon flat plate is interposed on the upper surface and/or the lower surface of the porous electrode base material 1 made of a corrugated porous carbon plate. This structure facilitates the replenishment and retention of phosphoric acid. The thickness of the phosphoric acid storage layer 4 is O. It is desirable that the shape be as thin as possible within the range of l=lmm. The method of manufacturing the carbonaceous composite member for fuel cells according to the present invention involves impregnating a sheet of cellulose fiber with a carbonizable thermosetting resin liquid, semi-curing it, and molding it into a desired corrugated shape.
After hardening, it is fired and carbonized to form a porous electrode base material, and the porous 1t electrode base material is temporarily joined with a side seal material to a dense separator via a carbon adhesive, and if necessary, a porous electrode base material is formed. The structural feature is that a phosphoric acid storage layer made of a porous carbon plate is bonded to the top and/or bottom surface of the electrode base material and then subjected to firing carbonization treatment. As the cellulose fiber, α-cellulose such as dissolving pulp for paper making is preferably used, and this is dispersed in water and made into a sheet by a papermaking method. At this time, it is desirable to adjust the concentration of the cellulose dispersion so that the porosity of the formed sheet is 70% or more. The cellulose sheet is then impregnated with a carbonizable thermosetting resin. Examples of carbonizable resins include phenol resins, furan resins, and divinylbenzene, and these resins are used in a state dissolved in commonly used organic solvents such as alcohol and acetone. fl
It is preferable to set the resin concentration of liquid J in the range of 5 to 40% by weight; if it is less than 5% by weight, the strength properties will deteriorate, and if it exceeds 40% by weight, it will cause clogging of pores. The impregnation treatment is carried out by immersing the cellulose sheet in a thermosetting resin solution, or by applying or spraying the thermosetting resin solution onto the cellulose sheet. The impregnated cellulose sheet is air-dried and heated to semi-cure, and then press-molded using the desired corrugated mold. The corrugated body formed in this way is hardened, then burned and carbonized in a non-oxidizing atmosphere at a temperature of 1000'C or higher, and cut into predetermined dimensions to form a porous electrode base material. .. When producing a phosphoric acid storage layer made of a porous carbon flat plate, it can be carried out using the above-mentioned process for producing a porous electrode base material, in which the corrugate molding step is omitted. As shown in Fig. 4, the composite of the components is achieved by bonding the above-prepared porous electrode base material 1 and side sealing material 2 from above and below to the dense separator plate 3 in the center using a carbon-based adhesive.
Furthermore, if necessary, a phosphoric acid storage layer 4 is adhered to the upper surface and/or lower surface of the porous electrode base material l, and after the adhesive is cured and bonded, it is incinerated in a temperature range of 1000 to 2000°C in a non-oxidizing atmosphere. Carry out carbonization treatment.

得られた炭素質複合部材は、所定の外面加工をおこなっ
てりん酸型燃料電池用セルとする.〔作 用〕 本発明による燃料電池用炭素質複合部材は、多孔質電極
基材がコルゲート形状の多孔譬カーボン板で構成された
材質構造を備えているから、ガス流通面積が極めて大き
くなる.したがって、常に圧力損失が少なく、かつ変動
のない均一なガス流量が確保することが可能となる.ま
た、これに平板のりん酸貯蔵層を介設すると、りん酸貯
蔵量を多くとることができるうえ、補給も容易となる.
一方、本発明の製造方法によれば、予めコルゲート形状
に戒形された多孔質電極基材を用いて他部材と複合化す
るプロセスが採られ、前記成形工程も煩雑な加工作業を
要しないから、加工時間、加工費用などが大幅に低減化
する。
The obtained carbonaceous composite member is made into a cell for a phosphoric acid fuel cell by performing the specified external surface processing. [Function] Since the carbonaceous composite member for fuel cells according to the present invention has a material structure in which the porous electrode base material is composed of a corrugated porous carbon plate, the gas flow area is extremely large. Therefore, it is possible to always ensure a uniform gas flow rate with little pressure loss and no fluctuations. In addition, by interposing a flat phosphoric acid storage layer in this, a large amount of phosphoric acid can be stored and replenishment becomes easy.
On the other hand, according to the manufacturing method of the present invention, a process is adopted in which a porous electrode base material pre-shaped into a corrugated shape is used to combine it with other components, and the forming process does not require complicated processing operations. , machining time, machining costs, etc. are significantly reduced.

〔実施例〕〔Example〕

α−セルロース繊維を抄紙法によってシート化し、セル
ロース含有率61%、気孔率70%、平均気孔径105
μ膳のセルロースシ一ト(縦横1000mm,厚さ0.
 1s■)を作威した.このセルロースシ一トを3枚積
層し、フェノール樹脂〔住友デエレズ■製PR940)
の20重量%エタノール溶液に浸漬して含浸処理をおこ
なったのち、送風乾燥器中で風乾して半硬化した。つい
で、半硬化シートをコルゲート形金型の間に挟んで、温
度150℃、圧力5kg/cm”の熱圧条件でlO分間
プレス加工し、さらに加熱硬化した.戒形体を窒素雰囲
気に保持された電気炉に移し、1300℃で焼成炭化し
て第2図のような円波形が連続するコルゲート形状の多
孔質カ一ボン板ならなる多孔質電極基材を形威した.こ
の多孔質電極基材の性状は、縦710s+m 、横65
0ms ,コルゲート満60本で、見掛比重0.41g
/cc、気孔率65%、平均気孔径は40μ■であった
.これとは別に、上記と同一のセルロースシ一トを5枚
積層して同一条件で樹脂液含浸処理を施し、平板に或形
・硬化したのち、同様に焼成炭化して厚さ0.8−一の
多孔質カーボン平板からなるりん酸貯蔵層を形威した. 上記の多孔質t極基材とりん酸貯蔵層を、力一ボン系接
着剤〈フェノール樹脂液と黒鉛粉末の等量混合ペースト
)を用いて第4図のように緻密質カーボン製のセバレー
タ板および多孔質カーボン製のサイドシール材と接合し
た. 接合体は、送風乾燥器中で180゜Cで1時間加熱して
完全に硬化し、次いで窒素雰囲気に保持された電気炉に
詰めて1300゜Cの温度で焼成炭化した.処理後の炭
素材に所定の外周加工および平面加工を施し、縦横70
0ms 、厚さ2.5mmのりん酸型燃料電池用の炭素
質複合部材を得た。
α-cellulose fiber is made into a sheet by papermaking method, cellulose content 61%, porosity 70%, average pore diameter 105
μ-sized cellulose sheet (length and width 1000 mm, thickness 0.
1s■) was created. Three sheets of this cellulose sheet were laminated and a phenol resin [PR940 manufactured by Sumitomo Deerez ■] was used.
After performing an impregnation treatment by immersing it in a 20% by weight ethanol solution, it was air-dried in a blow drier to semi-cure. Next, the semi-cured sheet was sandwiched between corrugated molds and pressed for 10 minutes at a temperature of 150°C and a pressure of 5 kg/cm'', and then heated and cured.The pre-cured sheet was held in a nitrogen atmosphere. The material was transferred to an electric furnace and fired and carbonized at 1300°C to form a porous electrode base material consisting of a corrugated porous carbon plate with a continuous circular waveform as shown in Figure 2.This porous electrode base material The properties are 710s+m in length and 65m in width.
0ms, full 60 corrugates, apparent specific gravity 0.41g
/cc, porosity was 65%, and average pore diameter was 40μ■. Separately, five sheets of the same cellulose sheet as above were laminated and impregnated with resin liquid under the same conditions, shaped and hardened into a flat plate, and then fired and carbonized in the same way to a thickness of 0.8- A phosphoric acid storage layer consisting of one porous carbon plate was formed. The above porous t-electrode base material and phosphoric acid storage layer are bonded to a separator plate made of dense carbon as shown in Fig. and a porous carbon side seal material. The joined body was completely cured by heating at 180°C for 1 hour in a blow dryer, and then packed into an electric furnace maintained in a nitrogen atmosphere and fired and carbonized at a temperature of 1300°C. After the treatment, the carbon material is subjected to predetermined peripheral processing and planar processing, and the length and width are 70.
A carbonaceous composite member for a phosphoric acid fuel cell having a time of 0 ms and a thickness of 2.5 mm was obtained.

この複合セルにつき、室温から250゜Cの温度上昇・
降下を反復するヒートサイクルテストをおこなったとこ
ろ、1000サイクルでも剥離現象は全く発生しないこ
とがf!認された。
This composite cell has a temperature rise of 250°C from room temperature.
When we conducted a heat cycle test with repeated descents, we found that no peeling phenomenon occurred at all even after 1000 cycles! It has been certified.

比較のために上記のセルロースシ一トを5枚積層して樹
脂含浸し、平板状態で焼成炭化して作威した多孔質カー
ボン板の両面に幅1.5mm 、深さl.Ommのガス
流通溝を各210本切削加工した.このようにして溝加
工によって形威した多孔質電極基材を用い同様にして複
合セルを得た.なお、この場合には、りん酸貯蔵層の介
設はおこなわなかった. 表1に、実施例と比較例との性能比較を比較例を1とし
た場合の指数として示した. 表1 表1の結果から、実施例による部材は比較例に比べてす
べての項目で大幅な改善効果が認められた. 〔発明の効果〕 以上のとおり、本発明によればガス流通性能に優れる材
質構造のりん酸型燃料電池用の炭素質複合部材ならびに
その効率的な製造方法が提供されるから、生産技術面に
資するところ大である.
For comparison, a porous carbon plate with a width of 1.5 mm and a depth of l. 210 gas flow grooves of 0 mm each were cut. A composite cell was obtained in the same manner using the porous electrode base material shaped by groove processing in this way. In this case, no phosphoric acid storage layer was inserted. Table 1 shows a performance comparison between the example and the comparative example as an index when the comparative example is set as 1. Table 1 From the results in Table 1, it was observed that the members according to the example had significant improvement effects in all items compared to the comparative example. [Effects of the Invention] As described above, the present invention provides a carbonaceous composite member for a phosphoric acid fuel cell having a material structure with excellent gas flow performance and an efficient manufacturing method thereof. It contributes a lot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料電池用炭素質複合部材を例示した
斜視図、第2図および第3図は本発明の構戒する多孔質
電極基材のコルゲート形状例を示した斜視図、第4図は
本発明の接合状態を示した斜視説明図である。 l・・・多孔質電極基材   2・・・サイドシール材
3・・・緻密質セパレータFi 4・・・りん酸貯蔵層
第1図
FIG. 1 is a perspective view showing an example of the carbonaceous composite member for fuel cells of the present invention, FIGS. 2 and 3 are perspective views showing examples of the corrugated shape of the porous electrode base material of the present invention, FIG. 4 is a perspective explanatory view showing a joined state of the present invention. l... Porous electrode base material 2... Side seal material 3... Dense separator Fi 4... Phosphoric acid storage layer Fig. 1

Claims (1)

【特許請求の範囲】 1、多孔質電極基材がサイドシール材と共に緻密質セパ
レータ材に接合されてなる炭素質のりん酸型燃料電池セ
ルにおいて、前記多孔質電極基材がコルゲート形状の多
孔質カーボン板で構成される燃料電池用炭素質複合部材
。 2、コルゲート形状の多孔質カーボン板で構成された多
孔質電極基材の上面および/または下面に厚さ0.1〜
1mmの多孔質カーボン平板からなるりん酸貯蔵層を介
設する請求項1記載の燃料電池用炭素質複合部材。 3、セルロース繊維のシートに炭化性の熱硬化性樹脂液
を含浸させて半硬化し、所望のコルゲート形状に成形・
硬化したのち焼成炭化して多孔質電極基材を形成し、該
多孔質電極基材をサイドシール材と共にカーボン系接着
剤を介して緻密質セパレータ板に接合し、更に必要に応
じ多孔質電極基材の上面および/または下面に多孔質カ
ーボン平板からなるりん酸貯蔵層を接合したのち焼成炭
化処理することを特徴とする燃料電池用炭素質複合部材
の製造方法。
[Claims] 1. In a carbonaceous phosphoric acid fuel cell in which a porous electrode base material is joined to a dense separator material together with a side seal material, the porous electrode base material is a corrugated porous material. A carbonaceous composite member for fuel cells composed of carbon plates. 2. Thickness of 0.1 to
2. The carbonaceous composite member for a fuel cell according to claim 1, further comprising a phosphoric acid storage layer made of a 1 mm porous carbon flat plate. 3. A cellulose fiber sheet is impregnated with carbonizable thermosetting resin liquid, semi-cured, and molded into the desired corrugated shape.
After hardening, a porous electrode base material is formed by firing and carbonizing, and the porous electrode base material is bonded to a dense separator plate together with a side seal material via a carbon adhesive, and if necessary, a porous electrode base material is formed. A method for producing a carbonaceous composite member for a fuel cell, which comprises bonding a phosphoric acid storage layer made of a porous carbon flat plate to the upper and/or lower surfaces of the material and then subjecting it to firing carbonization treatment.
JP1244081A 1989-09-19 1989-09-19 Carbonaceous composite member of fuel cell and its manufacture Pending JPH03105863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1244081A JPH03105863A (en) 1989-09-19 1989-09-19 Carbonaceous composite member of fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1244081A JPH03105863A (en) 1989-09-19 1989-09-19 Carbonaceous composite member of fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH03105863A true JPH03105863A (en) 1991-05-02

Family

ID=17113450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1244081A Pending JPH03105863A (en) 1989-09-19 1989-09-19 Carbonaceous composite member of fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH03105863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
WO2008038835A1 (en) * 2006-09-29 2008-04-03 Showa Denko K.K. Separator for fuel cell and production method thereof
CN102544524A (en) * 2012-03-05 2012-07-04 江西师范大学 Three-dimensional layered corrugated carbon anode material of microbial fuel cell and preparation method thereof
US8903724B2 (en) 2011-03-15 2014-12-02 Fujitsu Limited Speech recognition device and method outputting or rejecting derived words

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
WO2008038835A1 (en) * 2006-09-29 2008-04-03 Showa Denko K.K. Separator for fuel cell and production method thereof
US8252483B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Fuel cell separator having a corrugated electrically conducting flow path
US8903724B2 (en) 2011-03-15 2014-12-02 Fujitsu Limited Speech recognition device and method outputting or rejecting derived words
CN102544524A (en) * 2012-03-05 2012-07-04 江西师范大学 Three-dimensional layered corrugated carbon anode material of microbial fuel cell and preparation method thereof

Similar Documents

Publication Publication Date Title
US4064207A (en) Fibrillar carbon fuel cell electrode substrates and method of manufacture
US4759989A (en) Electrode substrate for fuel cell
JPH0544779B2 (en)
JP2008004486A5 (en)
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
CA2632134A1 (en) Method for manufacturing membrane electrode assembly and reinforced electrolyte membrane in polymer electrolyte fuel cell, and membrane electrode assembly and reinforced electrolyte membrane obtained by the manufacturing method
US4794043A (en) Carbon product comprising carbonaceous materials joined together, said carbon product for electrode substrate of fuel cells and process for production thereof
JPH03105863A (en) Carbonaceous composite member of fuel cell and its manufacture
JPH05307967A (en) Manufacture of carbon compact for phosphoric acid type fuel battery
JPH01266223A (en) Production of anisotropic porous carbon formed product
JPH06101341B2 (en) Manufacturing method of ribbed separator for fuel cell
JPH034508B2 (en)
JP3342707B2 (en) Gas diffusion electrode
JPH0677461B2 (en) Method for producing carbon composite member for fuel cell
JPH0360478A (en) Production of porous carbon sheet
JPH0450709B2 (en)
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPH02112161A (en) Manufacture of carbon component for fuel cell
JPH0221569A (en) Manufacture of carbon composite member for fuel cell
JP2524820B2 (en) Method for producing carbonaceous composite base material for fuel cell
JPS60230366A (en) Stacked unit of fuel cell and its manufacture
JPS5946762A (en) Plate for fuel cell
JP2603138B2 (en) Method for manufacturing carbonaceous composite member for fuel cell
JPS6178065A (en) Fuel cell
JPS63308874A (en) Manufacture of separator for fuel cell