[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0298057A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0298057A
JPH0298057A JP25019088A JP25019088A JPH0298057A JP H0298057 A JPH0298057 A JP H0298057A JP 25019088 A JP25019088 A JP 25019088A JP 25019088 A JP25019088 A JP 25019088A JP H0298057 A JPH0298057 A JP H0298057A
Authority
JP
Japan
Prior art keywords
organic electrolyte
battery
lithium
mixture
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25019088A
Other languages
Japanese (ja)
Inventor
Masahiko Yoshida
正彦 吉田
Toyoji Sugimoto
杉本 豊次
Takashi Matsuoka
隆 松岡
Fumio Oo
大尾 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25019088A priority Critical patent/JPH0298057A/en
Publication of JPH0298057A publication Critical patent/JPH0298057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent the increase of internal resistance by using an organic electrolyte prepared through dissolving sodium salt or potassium slat of trifluoromethane sulfonic acid, or mixture of both of them, into an organic solvent. CONSTITUTION:An organic electrolyte, prepared through dissolving sodium salt or potassium salt of trifluoromethane sulfonic acid, or mixture of both of them, into an organic solvent, is used. As a result, fluorine ions do not react on the lithium negative electrode due to sodium or potassium ions existing in the electrolyte, so that fluorine ions are never be detected form the surface of the lithium negative electrode, hence, a lithium fluoride film is never be formed so that the increase of internal resistance can be prevented. Herein, the concentration of the sodium salt or the potassium salt of trifluoromethane sulfonic acid, or the mixture of both of them, is caused to be 0.5-1.5mol/l.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、トリフルオロメタンスルホン酸のナトリウム
塩、カリウム塩もしくは両者の混合物(MCF3S03
:ただしMはナトリウム、カリウム)を溶質とする有機
電解質を用いて構成される有機電解質電池に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to trifluoromethanesulfonic acid sodium salt, potassium salt or a mixture of both (MCF3S03
: However, M relates to an organic electrolyte battery constructed using an organic electrolyte containing (sodium, potassium) as a solute.

従来の技術 従来の有機電解質電池では、負極としてリチウム等のア
ルカリ金属やアルカリ土類金属を、正極として二酸化マ
ンガンやフッ化黒鉛などを用い、電解液としては、プロ
ピレンカーボネート、r−ブチロラクトンなどの有機溶
媒に、過塩素酸リチウムやヘキサフルオロリン酸リチウ
ム、トリフルオロメタンスルホン酸リチウムなトラ溶質
トシテ溶解した有機電解質を使用している。上記の有機
電解質に使用される溶質のうち、トリフルオロメタンス
ルホン酸リチウムには、過塩素酸リチウムと比較して充
電時や過放電時などの場合に爆発等の危険が無く安全性
において優れている特徴があり、有機電解質電池用の電
解液の溶質として知られている。
Conventional technology Conventional organic electrolyte batteries use alkali metals such as lithium or alkaline earth metals as negative electrodes, manganese dioxide or graphite fluoride as positive electrodes, and organic electrolytes such as propylene carbonate or r-butyrolactone as electrolytes. The solvent used is an organic electrolyte in which solutes such as lithium perchlorate, lithium hexafluorophosphate, and lithium trifluoromethanesulfonate are dissolved. Among the solutes used in the above organic electrolytes, lithium trifluoromethanesulfonate has superior safety compared to lithium perchlorate because it does not pose the risk of explosion during charging or overdischarging. It is known as a solute in electrolytes for organic electrolyte batteries.

発明が解決しようとする課題 シカシ、トリフルオロメタンスルホン酸リチウムを溶質
とした有機電解質電池は内部抵抗が高く、電池保存時の
内部抵抗の上昇率も速いという欠点がある。これはトリ
フルオロメタンスルホン酸リチウム中の不純物が、電池
の保存中にリチウム負極と反応し、リチウム負極表面に
不活性な被膜を作ることが原因であると思われる。一般
にトリフルオロメタンスルホン酸リチウム中の不純物の
除去はトリフルオロメタンスルホン酸リチウムの製造工
程1殆んど不可能であると言われている。
Problems to be Solved by the Invention Organic electrolyte batteries using lithium trifluoromethanesulfonate as a solute have a drawback of high internal resistance and a rapid rate of increase in internal resistance during battery storage. This is thought to be because impurities in lithium trifluoromethanesulfonate react with the lithium negative electrode during storage of the battery, forming an inert film on the surface of the lithium negative electrode. It is generally said that removal of impurities from lithium trifluoromethanesulfonate is almost impossible in lithium trifluoromethanesulfonate production process 1.

課題を解決するだめの手段 本発明の有機電解質電池は、有機溶媒にトリフルオロメ
タンヌルホン酸のナトリウム4.力!Jウム塩もしくは
両者の混合物を溶解した有機電解質を用いるものである
Means for Solving the Problems The organic electrolyte battery of the present invention contains 4. sodium trifluoromethane sulfonic acid in an organic solvent. Power! This method uses an organic electrolyte in which Jium salt or a mixture of both is dissolved.

作  用 上記の有機電解液を用いることにより、本発明電池は内
部抵抗の上昇を抑えることができる。溶質としてトリフ
ルオロメタンスルホン酸リチウムを用いた電池の場合に
は、リチウム負極表面にフッ化リチウムが存在すること
が確認されたが、このフッ化リチウムが非導電性被膜を
形成し、内部抵抗が上昇すると思われる。従って、トリ
フルオロメタンスルホン酸リチウム中のフッ素不純物が
電池の内部抵抗上昇の原因と推定される。これに対して
トリフルオロメタン7/L/ホン酸リチウムとほぼ同量
のフッ素不純物を含むトリフルオロメタンスルホン酸の
ナトリウム塩、カリウム塩もしくは両者の混合物を用い
た本発明電池では、電解液中に存在するナトリウムイオ
ンやカリウムイオンのためにフッ素イオンが何らかの理
由によりリチウム負極と反応せず、リチウム負極表面か
ら検出もされず、従ってフッ化リチウム被膜を形成しな
くなるため内部抵抗の上昇が抑えられると思われる。
Function: By using the above organic electrolyte, the battery of the present invention can suppress an increase in internal resistance. In the case of batteries using lithium trifluoromethanesulfonate as a solute, it was confirmed that lithium fluoride was present on the surface of the lithium negative electrode, but this lithium fluoride formed a non-conductive film, increasing the internal resistance. It seems that it will. Therefore, it is presumed that fluorine impurities in lithium trifluoromethanesulfonate are the cause of the increase in internal resistance of the battery. On the other hand, in the battery of the present invention using trifluoromethanesulfonic acid sodium salt, potassium salt, or a mixture of both, which contains approximately the same amount of fluorine impurities as trifluoromethane 7/L/lithium phonate, the Due to sodium ions and potassium ions, fluorine ions do not react with the lithium negative electrode for some reason and are not detected from the lithium negative electrode surface, and therefore do not form a lithium fluoride film, which seems to suppress the increase in internal resistance. .

実施例 以下本発明の実施例について述べる。Example Examples of the present invention will be described below.

(電池構成) 正極は90 wt %の熱処理二酸化マンガン、導電剤
としてのグラファイト5 wt % 、結着剤としての
フッ素樹脂5 wt %から成シ、負極はリチウムの圧
延板を所定寸法に切断したものを用いた。
(Battery configuration) The positive electrode is made of 90 wt % heat-treated manganese dioxide, 5 wt % graphite as a conductive agent, and 5 wt % fluororesin as a binder. The negative electrode is a rolled lithium plate cut into specified dimensions. was used.

また、セパレータはマイクロ多孔ポリプロピレンフィル
ムとし、電解質は下記の実施例および比較例に示すもの
を用いて直径17.On、高さ34.。
In addition, the separator was a microporous polypropylene film, and the electrolyte was one shown in the Examples and Comparative Examples below. On, height 34. .

朋の円筒型電池を作成した。I made my friend's cylindrical battery.

(実施例1) プロピレンカーボネートとジメトキシエタンとの容量比
1:1の混合溶媒に、トリフルオロメタンヌルホン酸カ
リウムを0.5 mo l / lの割合で溶解して有
機電解質を作り、前記電池構成の電池中に注入して本発
明電池1とした。
(Example 1) Potassium trifluoromethane sulfonate was dissolved at a ratio of 0.5 mol/l in a mixed solvent of propylene carbonate and dimethoxyethane at a volume ratio of 1:1 to prepare an organic electrolyte, and the above battery configuration was prepared. This was injected into a battery to obtain Battery 1 of the present invention.

(実施例2) プロピレンカーボネートとジメトキシエタンとの容量比
1:1の混合溶媒に、トリフルオロメタンスルホン酸ナ
トリウムを0.5 mo l / lの割合で溶解して
有機電解質を作り、前記構成の電池中に注入して本発明
電池2としだ。
(Example 2) An organic electrolyte was prepared by dissolving sodium trifluoromethanesulfonate at a ratio of 0.5 mol/l in a mixed solvent of propylene carbonate and dimethoxyethane at a volume ratio of 1:1, and a battery with the above configuration was prepared. The battery 2 of the present invention is prepared by injecting it into the battery.

(比較例) プロピレンカーボネートとジメトキシエタンとの容量比
1:1の混合溶媒にトリフルオロメタンスルホン酸リチ
ウム0.5 mo l / lの割合で溶解して有機電
解質を作り、前記電池構成の電池中に注入して比較用電
池とした。
(Comparative example) An organic electrolyte was prepared by dissolving lithium trifluoromethanesulfonate at a ratio of 0.5 mol/l in a mixed solvent of propylene carbonate and dimethoxyethane with a volume ratio of 1:1, and the organic electrolyte was dissolved in a battery having the above battery configuration. This was used as a comparison battery.

これらの本発明電池1.2と比較用電池を60℃の温度
中に保存し、その内部抵抗の経時変化を調査した。その
結果を第1図に示す。第1図から明らかなように、本発
明電池1,2は比較用電池と比較して、内部抵抗の上昇
が抑えられている。
These invention batteries 1.2 and comparative batteries were stored at a temperature of 60° C., and changes in internal resistance over time were investigated. The results are shown in FIG. As is clear from FIG. 1, the increase in internal resistance of the batteries 1 and 2 of the present invention is suppressed compared to the comparison battery.

これは比較用電池で起きたフッ素イオンとリチウム負極
との反応で生成される表面の不活性な被膜の発生が、本
発明電池1,2では何らかの理由により抑えられるため
に保存特性が優れているものも同様であった。
This is because the generation of an inert film on the surface generated by the reaction between fluorine ions and the lithium negative electrode, which occurred in the comparative batteries, is suppressed for some reason in the batteries 1 and 2 of the present invention, and therefore the storage characteristics are excellent. Things were the same.

また、トリフルオロメタンヌルホン酸リチウムを用いる
場合の長所である安全性につ−ても本発明電池1,2.
比較用電池各々10ケづつについて1Aの定電流放電を
4時間行い、放電容量の約3倍迄過放電を行ったが、双
方共破裂9発火したものは無く、このことから本発明電
池1,2は比較用電池と比較しても同等の安全性を持つ
と言える。溶質濃度は1.0 mol / l 、 1
.5 mol / lの電池についても同様であった。
In addition, regarding safety, which is an advantage of using lithium trifluoromethane sulfonate, batteries 1 and 2 of the present invention.
10 comparative batteries each were discharged at a constant current of 1A for 4 hours and over-discharged to approximately 3 times the discharge capacity, but none of them burst or caught fire. From this, the batteries of the present invention 1, It can be said that battery No. 2 has the same level of safety as the comparative battery. Solute concentration is 1.0 mol/l, 1
.. The same was true for the 5 mol/l battery.

さらにトリフルオロメタンスルホン酸のナトリウム塩、
カリウム塩の電解液中の溶質濃度0.3mol/d 、
 0.5mol/l、 1.0mol/l、 1.5m
o 1 / l、1.8mol/lの各々について電池
製造直後の内部抵抗を測定し第2図に示した。
Furthermore, the sodium salt of trifluoromethanesulfonic acid,
The solute concentration in the electrolyte of potassium salt is 0.3 mol/d,
0.5mol/l, 1.0mol/l, 1.5m
The internal resistances of the batteries of o 1/l and 1.8 mol/l were measured immediately after battery manufacture and are shown in FIG.

第2図よシ、溶質濃度が○、smol/#以上。As shown in Figure 2, the solute concentration is ○, smol/# or more.

1.5mol/l以下の範囲で内部抵抗が最小となる。The internal resistance becomes minimum in the range of 1.5 mol/l or less.

したがって溶質濃度は0.5 mo l / 1以上、
1.6mo l / l以下が最良である。また、トリ
フルオロメタンスルホン酸のナトリウム塩、カリウム塩
の混合物を溶質として使用した場合にも、保存後の内部
抵抗、安全性、溶質濃度と内部抵抗の関係の全てにおい
て同様の結果が得られた。
Therefore, the solute concentration is 0.5 mol/1 or more,
The best value is 1.6 mol/l or less. Furthermore, when a mixture of sodium salt and potassium salt of trifluoromethanesulfonic acid was used as a solute, similar results were obtained in terms of internal resistance after storage, safety, and the relationship between solute concentration and internal resistance.

発明の効果 以上のように、本発明による有機電解液を用いることに
より、安全性をそこなうことなく有機電解質電池の内部
抵抗上昇を抑えることができる。
Effects of the Invention As described above, by using the organic electrolyte according to the present invention, it is possible to suppress an increase in internal resistance of an organic electrolyte battery without impairing safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池と比較用電池の保存特性を示した図
、第2図は電解液中の溶質濃度と電池製造直後の内部抵
抗を示した図である。
FIG. 1 is a diagram showing the storage characteristics of the battery of the present invention and a comparative battery, and FIG. 2 is a diagram showing the solute concentration in the electrolyte and the internal resistance immediately after battery manufacture.

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムなどの軽金属を用いた負極と、正極及び
有機電解質より成る電池で、有機溶媒に溶質としてトリ
フルオロメタンスルホン酸のナトリウム塩、カリウム塩
もしくは両者の混合物を溶解した有機電解液を用いたこ
とを特徴とする有機電解質電池。
(1) A battery consisting of a negative electrode using a light metal such as lithium, a positive electrode, and an organic electrolyte, using an organic electrolyte in which sodium salt, potassium salt of trifluoromethanesulfonic acid, or a mixture of the two is dissolved as a solute in an organic solvent. An organic electrolyte battery characterized by:
(2)トリフルオロメタンスルホン酸のナトリウム塩、
カリウム塩もしくは両者の混合物の濃度が0.5mol
/l以上1.5mol/l以下であることを特徴とする
特許請求の範囲第1項記載の有機電解質電池。
(2) sodium salt of trifluoromethanesulfonic acid,
Concentration of potassium salt or mixture of both is 0.5 mol
2. The organic electrolyte battery according to claim 1, wherein the organic electrolyte battery has a concentration of mol/l or more and 1.5 mol/l or less.
JP25019088A 1988-10-04 1988-10-04 Organic electrolyte battery Pending JPH0298057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25019088A JPH0298057A (en) 1988-10-04 1988-10-04 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25019088A JPH0298057A (en) 1988-10-04 1988-10-04 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH0298057A true JPH0298057A (en) 1990-04-10

Family

ID=17204153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25019088A Pending JPH0298057A (en) 1988-10-04 1988-10-04 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0298057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832500A1 (en) * 1995-06-07 1998-04-01 Eveready Battery Company, Inc. Potassium ion additives for voltage control and performance improvement in nonaqueous cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144663A (en) * 1979-04-27 1980-11-11 Sanyo Electric Co Ltd Battery with non-aqueous electrolyte
JPS5776763A (en) * 1980-09-02 1982-05-13 Duracell Int Method of improving safety of nonaqueous chemical battery
JPS6086770A (en) * 1983-09-19 1985-05-16 デユラセル・インターナシヨナル・インコーポレーテツド Nonaqueous chemical battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144663A (en) * 1979-04-27 1980-11-11 Sanyo Electric Co Ltd Battery with non-aqueous electrolyte
JPS5776763A (en) * 1980-09-02 1982-05-13 Duracell Int Method of improving safety of nonaqueous chemical battery
JPS6086770A (en) * 1983-09-19 1985-05-16 デユラセル・インターナシヨナル・インコーポレーテツド Nonaqueous chemical battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832500A1 (en) * 1995-06-07 1998-04-01 Eveready Battery Company, Inc. Potassium ion additives for voltage control and performance improvement in nonaqueous cells
EP0832500A4 (en) * 1995-06-07 2000-12-20 Eveready Battery Inc Potassium ion additives for voltage control and performance improvement in nonaqueous cells

Similar Documents

Publication Publication Date Title
JPH0318309B2 (en)
JPH0864238A (en) Nonaqueous electrolyte battery
JPH04349365A (en) Lithium battery
USH723H (en) Lithium electrochemical cell containing diethylcarbonate as an electrolyte solvent additive
CN106207261B (en) Electrolyte and battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH03152879A (en) Nonaqueous electrolyte secondary battery
JPH0298057A (en) Organic electrolyte battery
JPS6151387B2 (en)
JP3223035B2 (en) Non-aqueous electrolyte secondary battery
JPS58163188A (en) Organic electrolyte secondary cell
JPH0527231B2 (en)
JPH0574908B2 (en)
JP2594036B2 (en) Non-aqueous electrolyte battery
JP4538866B2 (en) Non-aqueous electrolyte electrochemical device
US6200356B1 (en) Lithium ion secondary electrochemical cell and a method of preventing the electrochemical dissolution of a copper current collector therein
JPH05190208A (en) Lithium secondary battery
JPH0462764A (en) Nonaqueous electrolyte cell
JPH0359963A (en) Lithium secondary battery
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery
JPH0355770A (en) Lithium secondary battery
JPH0711967B2 (en) Non-aqueous electrolyte battery
JPS6191868A (en) Nonaqueous electrolyte secondary battery
JPS62160671A (en) Nonaqueous solvent secondary battery
JP2647909B2 (en) Non-aqueous electrolyte secondary battery