[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0295224A - Laser frequency meter - Google Patents

Laser frequency meter

Info

Publication number
JPH0295224A
JPH0295224A JP24788488A JP24788488A JPH0295224A JP H0295224 A JPH0295224 A JP H0295224A JP 24788488 A JP24788488 A JP 24788488A JP 24788488 A JP24788488 A JP 24788488A JP H0295224 A JPH0295224 A JP H0295224A
Authority
JP
Japan
Prior art keywords
frequency
output
phase
light
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24788488A
Other languages
Japanese (ja)
Other versions
JPH0774762B2 (en
Inventor
Akira Ote
明 大手
Koji Akiyama
浩二 秋山
Satoru Yoshitake
哲 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP24788488A priority Critical patent/JPH0774762B2/en
Publication of JPH0295224A publication Critical patent/JPH0295224A/en
Publication of JPH0774762B2 publication Critical patent/JPH0774762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To measure a laser frequency with high accuracy and fast response by providing a phase modulator, an optical means, a Fabri-Perot etalon, a photodetector, 1st and 2nd amplifying means, 1st and 2nd memory circuits, a sweeping means, and a frequency arithmetic circuit. CONSTITUTION:The phase modulator 2 imposes phase modulation upon laser light to be measured with a frequency f1 and the optical means 4 multiplexes the output light of the modulator 2 and reference laser light which is phase- modulated with a frequency f2 and has a known oscillation frequency. The photodetector 8 detects light which is transmitted through the Fabri-Perot etalon 7. The 1st amplifying means 9 detects the phase of the output of the detector 8 with the frequency f1 and its output is stored in the 1st memory circuit 11. The 2nd amplifying means 10 detects the phase of the output of the detector 8 with the frequency f2 and its output is stored in the 2nd memory circuit 12. A frequency arithmetic circuit 14 computes the frequency of the laser light to be measured from the outputs of the circuits 11 and 12 corresponding to variation in the mirror interval of the Fabri-Perot etalon by a switching means 73.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザの光周波数を」1定するレーザ周波数
計の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a laser frequency meter that determines the optical frequency of a laser.

(従来の技術) 従来レーザ光の光周波数を測定する場合は、般にレーザ
の波長を測定して、演算により周波数を求めている。
(Prior Art) Conventionally, when measuring the optical frequency of a laser beam, the wavelength of the laser is generally measured and the frequency is determined by calculation.

第4図はレーザの波長を測定する波長計の第1の従来例
で、回折格子を利用したものを示す原理構成図である。
FIG. 4 is a first conventional example of a wavelength meter for measuring the wavelength of a laser, and is a diagram illustrating the basic configuration of one that utilizes a diffraction grating.

被測定光を回折格子に入射すると、回折格子31を回転
中心32の回りに回転することによって光の入射角θが
変化する。光検出器33に入射する光、の波長は入射角
θに依存するので、θを測ることで被測定光の波長値λ
8を一定することができる。
When the light to be measured is incident on the diffraction grating, the incident angle θ of the light is changed by rotating the diffraction grating 31 around the rotation center 32. The wavelength of the light incident on the photodetector 33 depends on the angle of incidence θ, so by measuring θ, the wavelength value λ of the light to be measured can be determined.
8 can be kept constant.

第5図は波長計の第2の従来例で、マイケルソン干渉計
を利用するものを示す原理構成図である。
FIG. 5 is a second conventional example of a wavelength meter, which is a diagram illustrating the basic configuration of one that utilizes a Michelson interferometer.

ハーフミラ−41で未知の波長λ8の被測定光ビームと
既知の波長λ、。fの参照光ビーム(例えばHe−Ne
レーV 633nn等)を合波しマイゲルソン干渉計に
入射する0合波された光はハーフミラ−42で2方向に
分離され、一方は可動ミラー43で反射され他方は固定
ミラー44で反射されて光検出器45に入射する(被測
定光と参照光の分離手段は図では省略)。可動ミラー4
3がΔを動くと光検出器45に干渉縞が明暗の変化とな
って現れる。このとき被測定光の干渉縞変化数をM 、
参照光の干渉縞変化数をM、。、とすると、次式が成立
つ。
Half mirror 41 detects a measured light beam of unknown wavelength λ8 and a known wavelength λ. f reference light beam (e.g. He-Ne
The zero-combined light that enters the Meigelson interferometer is separated into two directions by a half mirror 42, one of which is reflected by a movable mirror 43 and the other by a fixed mirror 44. The light is incident on the photodetector 45 (separation means for separating the light to be measured and the reference light is omitted in the figure). Movable mirror 4
3 moves by Δ, interference fringes appear on the photodetector 45 as changes in brightness and darkness. At this time, the number of interference fringe changes of the light to be measured is M,
The number of interference fringe changes of the reference light is M. , then the following formula holds.

Δft−M  −λ /2中M   −λref/2x
     x        ref・・・ (1) したがって、 λ = (M、ef/M  )・λref   ’・・
(2)×× より被測定光の波長λ8を測定することができる。
Δft-M-λ/2 in M-λref/2x
x ref... (1) Therefore, λ = (M, ef/M)・λref'...
(2) XX The wavelength λ8 of the light to be measured can be measured.

(発明が解決しようとする課題) しかしながら、上記の各従来方式は共に機械的な可動部
分があるため、高速応答性が悪い。また第4図の方式の
場合は機械精度が測定精度に影響するので、高精度化が
困難で経時変化にも弱い。
(Problems to be Solved by the Invention) However, each of the above-mentioned conventional methods has mechanically movable parts, so high-speed response is poor. In addition, in the case of the method shown in FIG. 4, mechanical precision affects measurement precision, so it is difficult to achieve high precision and is susceptible to changes over time.

また第5図の方式も可動距離が大きいので高精度化が困
難である。精度を上げるには第4図の場合には回折格子
と光検出器の距離を大きくし、第5図の場合は可動距離
へ2を大きくしなければならないが、いずれも光学系が
大きくなるという問題を生じる。また大型のファブリ・
ベロー干渉計を用いて圧力掃引により波長を精密に測定
する方式もあるが、大型で真空ポンプが必要等測定時間
が長くなり、実用的でない。
Furthermore, since the method shown in FIG. 5 also has a long movable distance, it is difficult to achieve high accuracy. In order to improve accuracy, the distance between the diffraction grating and the photodetector must be increased in the case of Figure 4, and the movable distance must be increased by 2 in the case of Figure 5, but in both cases the optical system becomes larger. cause problems. Also large fabri
There is also a method of precisely measuring wavelengths by pressure sweep using a bellows interferometer, but this is not practical because it is large and requires a vacuum pump, which takes a long time to measure.

本発明はこのような課題を解決するためになされたもの
で、簡単な構成で高精度かつ高速応答でレーザ周波数を
測定できるレーザ周波数計を実現することを目的とする
The present invention has been made to solve these problems, and an object of the present invention is to realize a laser frequency meter that can measure laser frequency with high precision and high speed response with a simple configuration.

(課題を解決するための手段) 本発明に係るレーザ周波数計は被測定レーザ光を第1の
周波数で位相変調する位相変調器と、この位相変調器の
出力光と第2の周波数で位相変調され発振周波数が既知
の参照レーザ光とを合波する光学手段と、この光学手段
の出力光を入射するファブリ・ペロー・エタロンと、こ
のファブリ・ペロー・エタロンを透過する光を検出する
光検出器と、この光検出器の出力を前記第1の周波数で
位相検波する第1の増幅手段と、この第1の増幅手段の
出力を記憶する第1のメモリ回路と、前記光検出器の出
力を前記第2の周波数で位相検波する第2の増幅手段と
、この第2の増幅手段の出力を記憶する第2のメモリ回
路と、前記ファブリ・ペロー・エタロンのミラー間隔を
微小変化させる掃引手段と、この掃引手段によるミラー
間隔の変化に対応する第1のメモリ回路出力と第2のメ
モリ回路出力に基づいて被測定レーザ光の周波数を演算
する周波数演算回路とを備えたことを特徴とする。
(Means for Solving the Problems) A laser frequency meter according to the present invention includes a phase modulator that phase modulates a laser beam to be measured at a first frequency, and a phase modulator that modulates the phase of the output light of the phase modulator and a second frequency. an optical means for combining the reference laser beam with a known oscillation frequency, a Fabry-Perot etalon into which the output light of the optical means is incident, and a photodetector for detecting the light transmitted through the Fabry-Perot etalon. a first amplification means for phase-detecting the output of the photodetector at the first frequency; a first memory circuit for storing the output of the first amplification means; a second amplification means for phase detection at the second frequency; a second memory circuit for storing the output of the second amplification means; and a sweep means for minutely changing the mirror spacing of the Fabry-Perot etalon. The present invention is characterized by comprising a frequency calculation circuit that calculates the frequency of the laser beam to be measured based on the first memory circuit output and the second memory circuit output corresponding to the change in mirror spacing caused by the sweeping means.

(作用) ファブリ・ペロー・エタロンの透過光は光検出器で検出
され、それぞれの増幅手段でそれぞれ被測定レーザ光お
よび参照レーザ光の干渉信号の1次微分信号が検出され
、メモリ回路を介して被測定レーザ光の周波数が演算さ
れる。
(Function) The transmitted light of the Fabry-Perot etalon is detected by a photodetector, and the first differential signal of the interference signal of the measured laser beam and the reference laser beam is detected by each amplification means, and is transmitted through a memory circuit. The frequency of the laser beam to be measured is calculated.

(実施例) 以下本発明を図面を用いて詳しく説明する。(Example) The present invention will be explained in detail below using the drawings.

第1図は本発明に係るレーザ周波数計の一実施例を示す
構成ブロック図である。1は参照し〜ザで、発振周波数
が安定な既知の周波数で、例えばRb吸収線に出力周波
数を制御した半導体レーザ(λ= 780.244nl
)を使用する。2.3はそれぞれ被測定レーザ光、参照
レーザ光を入射して位相変調するLiNbO3等の電気
光学結晶からなる第1.第2の位相変調器で、15は第
1の位相変調器2を第1の周波数f、で励振する第1の
発振器、16は第2の位相変調器3を第2の周波数f2
で励振する第2の発振器、4は第1の位相変調器2の出
力光をその一方の面に入射し他方の面に第2の位相変調
器3の出力光を入射して両方の光を合波する光学手段を
構成するハーフミラ−15,6はハーフミラ−4の出力
光を入射するピンホール、7はピンホール5.6の通過
光を入射するファブリ・ペロー・エタロンである。ファ
ブリ・ペロー・エタロン7は互いの焦点が他方の鏡面上
に来るように配置された2枚の半透性の凹面鏡71.7
2およびそのミラー間隔を微小に掃引する挿引手段を構
成するPZT等の圧電アクチュエータ73からなり、真
空チャンバ76内に構成されている。13は圧電アクチ
ュエータ73を駆動する例えば0.511zの三角波発
振器、8はファブリ・ペロー・エタロン7を透過する光
を入射する光検出器、9は発振器15の出力を参照信号
として光検出器8の出力信号を位相検波する第1の増幅
手段を構成するロックインアンプ、10は発振器16の
出力を参照信号として光検出器8の出力信号を位相検波
する第2の増幅手段を構成するロックインアンプ、11
はロックインアンプ9の出力信号を記憶する第1のメモ
リ回路、12はロックインアンプ10の出力信号を記憶
する第2のメモリ回路、14はメモリ回路9.10の出
力および発振器13の出力を入力して被測定光の周波数
値を演算する周波数演算回路である。
FIG. 1 is a block diagram showing an embodiment of a laser frequency meter according to the present invention. 1 refers to a semiconductor laser whose oscillation frequency is a stable and known frequency, for example, a semiconductor laser whose output frequency is controlled to the Rb absorption line (λ = 780.244nl).
). 2.3 is made of an electro-optic crystal such as LiNbO3, which modulates the phase of the laser beam to be measured and the reference laser beam, respectively. In the second phase modulator, 15 is a first oscillator that excites the first phase modulator 2 at a first frequency f, and 16 is a first oscillator that excites the second phase modulator 3 at a second frequency f2.
A second oscillator 4, which is excited by The half mirrors 15 and 6 constituting the optical means for combining are pinholes into which the output light of the half mirror 4 is incident, and 7 is a Fabry-Perot etalon into which the light passing through the pinhole 5.6 is incident. The Fabry-Perot etalon 7 consists of two semi-transparent concave mirrors 71.7 arranged so that the focal point of each is on the mirror surface of the other.
2 and a piezoelectric actuator 73 made of PZT or the like that constitutes an insertion means for minutely sweeping the mirror interval, and is configured in a vacuum chamber 76. 13 is a triangular wave oscillator of 0.511z, for example, which drives the piezoelectric actuator 73; 8 is a photodetector into which the light transmitted through the Fabry-Perot etalon 7 is incident; 9 is a photodetector 8 that uses the output of the oscillator 15 as a reference signal; A lock-in amplifier 10 constitutes a first amplification means for phase-detecting the output signal, and a lock-in amplifier 10 constitutes a second amplification means for phase-detecting the output signal of the photodetector 8 using the output of the oscillator 16 as a reference signal. , 11
12 is a second memory circuit that stores the output signal of the lock-in amplifier 10; 14 stores the output of the memory circuits 9 and 10 and the output of the oscillator 13; This is a frequency calculation circuit that receives input and calculates the frequency value of the light to be measured.

上記のような構成のレーザ周波数計の動作を次に説明す
る。被測定レーザ光は位相変調器2により周波数f、で
位相変調を受け、参照レーザ光は位相変調器3により周
波数f2で位相変調を受ける0位相変調された被測定レ
ーザ光および参照レーザ光はハーフミラ−4で合波され
る。被測定レーザ光および参照レーザ光は、それぞれピ
ンホール5.6の両方を通過するように光軸が調整され
ている。その結果、ハーフミラ−4において被測定レー
ザ光が透過し参照レーザ光が反射して合波されると、ピ
ンホール5.6を通過し同一光路を通ってファブリ・ペ
ロー・エタロン7に入射する。
The operation of the laser frequency meter configured as described above will be explained next. The laser beam to be measured undergoes phase modulation by the phase modulator 2 at a frequency f, and the reference laser beam undergoes phase modulation by the phase modulator 3 at a frequency f2.The phase modulated laser beam to be measured and the reference laser beam are half mirrored. -4 is combined. The optical axes of the measured laser beam and the reference laser beam are adjusted so that they each pass through both pinholes 5.6. As a result, when the measured laser beam is transmitted through the half mirror 4 and the reference laser beam is reflected and combined, it passes through the pinhole 5.6 and enters the Fabry-Perot etalon 7 through the same optical path.

ファブリ・ペロー・エタロン7に入射した光は凹面鏡7
1と72の間を3往復して入射光と干渉して凹面鏡72
を通過する。すなわち凹面鏡71と72の焦点は互いの
鏡面上にあるので、入射光は凹面鏡72で反射して焦点
74に至ってそこで反射し、凹面鏡72で反射して入射
光と平行光となりさらに凹面鏡71で反射して焦点75
に至って反射し、凹面1A71で反射して入射光と同一
経路に戻り、干渉する。ファブリ・ペロー・エタロン7
を透過した光は光検出器8で検出される。光検出器8の
出力はロックインアンプ9,10においてそれぞれ周波
数f、 、 f2で同期検波され、ロックインアンプ9
からは被測定レーザ光のファブリ・ペロー・エタロン7
の透過信号の1次微分波形が出力され、ロックインアン
プ10からは参照レーザ光のファブリ・ペロー・エタロ
ン7の透過信号の1次微分波形が得られる。ファブリ・
ペロー・エタロン7のミラー間隔は発振器13により三
角波で掃引されているので、ミラー掃引長とロックイン
アンプ9.10の出力信号との関係は第2図のようにな
る。ただし参照レーザ光の光周波数が0.78μm1、
被測定レーザ光の光周波数が1.55μm、三角波の掃
引周波数か0.511zの場合を一例として示している
。この1次微分波形がそれぞれメモリ回路11.12に
記憶され、メモリ回路11.12の出力と発振器13出
力から被測定レーザ周波数が周波数演算回路14で演算
される。
The light incident on the Fabry-Perot etalon 7 is the concave mirror 7
It goes back and forth between 1 and 72 three times, interferes with the incident light, and forms a concave mirror 72.
pass through. That is, since the focal points of the concave mirrors 71 and 72 are on each other's mirror surfaces, the incident light is reflected by the concave mirror 72, reaches the focal point 74, is reflected there, is reflected by the concave mirror 72, becomes parallel to the incident light, and is further reflected by the concave mirror 71. focus 75
It is reflected by the concave surface 1A71, returns to the same path as the incident light, and interferes with the incident light. Fabry Perrault Etalon 7
The transmitted light is detected by a photodetector 8. The output of the photodetector 8 is synchronously detected in lock-in amplifiers 9 and 10 at frequencies f, , f2, respectively, and the lock-in amplifier 9
From here is the Fabry-Perot etalon 7 of the laser beam to be measured.
A first-order differential waveform of a transmitted signal of the reference laser beam is outputted, and a first-order differential waveform of a transmitted signal of the reference laser beam of the Fabry-Perot etalon 7 is obtained from the lock-in amplifier 10. Fabbri
Since the mirror spacing of the Perot etalon 7 is swept with a triangular wave by the oscillator 13, the relationship between the mirror sweep length and the output signal of the lock-in amplifier 9.10 is as shown in FIG. However, the optical frequency of the reference laser beam is 0.78 μm1,
An example is shown in which the optical frequency of the laser beam to be measured is 1.55 μm and the sweep frequency of the triangular wave is 0.511z. These first-order differential waveforms are stored in memory circuits 11 and 12, respectively, and the frequency calculation circuit 14 calculates the laser frequency to be measured from the outputs of the memory circuits 11 and 12 and the output of the oscillator 13.

次に第2図に示す1次微分波形から周波数演算回路14
において被測定レーザ光波長λ8を演算する方法を説明
する。ただしファブリ・ペロー・エタロン7を通過した
2つの光ビームの干渉ピーク位置は第2図の1次微分波
形のセロクロス点と一致する。ファブリ・ペロー・エタ
ロン7は前述のような構成であるため、干渉ピークの間
隔はλ8/6.λ、。、/6となり、被測定光の干渉ピ
ーク数M に対応する掃引距離を△2、掃引距離△eに
対応する参照光の干渉ピーク数をM  、参照ef 光のミラー掃引距離の端数をα、βとすると、次式が成
立つ。
Next, from the first-order differential waveform shown in FIG.
A method of calculating the laser beam wavelength λ8 to be measured will be explained below. However, the interference peak position of the two light beams that have passed through the Fabry-Perot etalon 7 coincides with the cello-crossing point of the first-order differential waveform in FIG. Since the Fabry-Perot etalon 7 has the configuration described above, the interval between the interference peaks is λ8/6. λ,. , /6, the sweep distance corresponding to the number of interference peaks M of the measured light is △2, the number of interference peaks of the reference light corresponding to the sweep distance △e is M , the fraction of the mirror sweep distance of the reference ef light is α, When β is assumed, the following formula holds true.

ΔQ=(λ /6)−(M  −1>=(λref /
x 6) −(M、。、 −t >十α十β・・・ (3) したがって、 λ =λ  −(Mr8.−1 )/ (Mx−1) 
+x     ref 6(α十β)/(Mx 1)   (nm)・・・ (
4) となり、被測定光周波数fxは次式で求められる。
ΔQ=(λ/6)−(M−1>=(λref/
x 6) −(M,., −t > 10 α 1 β... (3) Therefore, λ = λ − (Mr8.-1)/ (Mx-1)
+x ref 6 (α + β) / (Mx 1) (nm)... (
4) The optical frequency fx to be measured is obtained by the following formula.

f  =c/λ8       ・・・(5)次にα、
βの求め方を示す。被測定レーザ光のエタロン透過光が
干渉ピークa、bとなったときの圧電アクチュエータ7
3の印加電圧をそれぞれ■8、■bとし、参照レーザ光
のエタロン透過光が干渉ピークc、dとなったときの圧
電アクチュエタ73の印加電圧をそれぞれV、Vdとす
る。
f = c/λ8...(5) Next, α,
We will show how to find β. Piezoelectric actuator 7 when the etalon transmitted light of the laser beam to be measured reaches interference peaks a and b
The voltages applied to the piezoelectric actuator 73 when the etalon transmitted light of the reference laser beam reaches the interference peaks c and d are respectively V and Vd.

参照レーザ光の干渉ピーク間隔はλref/6で一定で
あるので、ミラー掃引長ΔXは圧電アクチュエータ73
の印加電圧■の関数となり、Δx=G (V)    
    ・・・(6)と表すことができる。したがって
、α、βはそれぞれ次式で演算できる。
Since the interference peak interval of the reference laser beam is constant at λref/6, the mirror sweep length ΔX is determined by the piezoelectric actuator 73.
It is a function of the applied voltage ■, and Δx=G (V)
...(6) can be expressed. Therefore, α and β can be calculated using the following equations.

α=G (V  ) −G (V  )   ・・・(
7)b      d β−G(V  )−G(V  )   ・・・(8)a 上記の実施例における数値例として例えば、λref 
=780,244nnとしてλ =1.55μ11を測
定することができる。
α=G (V) −G (V) ...(
7)b d β-G(V)-G(V)...(8)a As a numerical example in the above embodiment, for example, λref
=780,244nn and λ =1.55μ11 can be measured.

このような構成のレーザ周波数計によれば、ファブリ・
ペロー・エタロンを使用しているのでマイケルソンの干
渉計を用いる場合よりも干渉縞のフィネス(fines
se:干渉ピークの鋭さ)が高い。
According to a laser frequency meter with such a configuration, Fabry
Since the Perot etalon is used, the finesse of the interference fringes is better than when using a Michelson interferometer.
se: sharpness of interference peak) is high.

このため干渉ピークの印加電圧Va〜Vdを精度良く検
出でき、ミラー掃引距離の端数α、βも精度良く測定す
ることができる。したがってミラー掃引が微小量でも高
精度の測定ができる。
Therefore, the applied voltages Va to Vd at the interference peaks can be detected with high precision, and the fractions α and β of the mirror sweep distance can also be measured with high precision. Therefore, even if the mirror sweep is minute, highly accurate measurements can be made.

また参照レーザ光と被測定レーザ光のエタロン透過信号
を異なる変調周波数により分離するので、光検出器が1
つですみ、2つの光ビームを分離する光学手段も必要な
い。また参照レーザ光と被測定レーザ光が同一波長でも
信号を分離することができるので、測定可能である。
In addition, since the etalon transmission signals of the reference laser beam and the measured laser beam are separated by different modulation frequencies, the photodetector is
There is no need for optical means to separate the two light beams. Further, even if the reference laser beam and the measured laser beam have the same wavelength, the signals can be separated, so measurement is possible.

また被測定レーザ光の偏波面がいかなる場合でも、2つ
の光ビームの透過信号を分離することかできる0例えば
、円面波のレーザ光でも発振周波数を測定することがで
きる。
Further, regardless of the polarization plane of the laser beam to be measured, the transmitted signals of the two light beams can be separated. For example, the oscillation frequency can be measured even with a circular wave laser beam.

また平面ミラーのファブリ・ペロー・エタロンに比べて
同じ掃引長に対して3倍の干渉縞が観測できる。したが
って(4)式からも明らかなように、波長測定精度が3
倍向上する。
Furthermore, three times as many interference fringes can be observed for the same sweep length compared to a Fabry-Perot etalon made of a plane mirror. Therefore, as is clear from equation (4), the wavelength measurement accuracy is 3
Improve twice.

またPZTでミラー間隔を掃引するので高速掃引ができ
、測定時間の短縮を測ることができる。
Furthermore, since the mirror spacing is swept using PZT, high-speed sweeping is possible, and measurement time can be shortened.

また回折格子やマイケルソン干渉計を用いた波長針と比
べて小型で簡単な構成とすることができる。
Furthermore, compared to a wavelength needle using a diffraction grating or a Michelson interferometer, the configuration can be smaller and simpler.

また参照レーザ光の波長に絶対精度かでているため、被
測定レーザ光の波長値にも絶対精度がでる。したがって
回折格子の波長計のように校正する必要がない。
Furthermore, since the wavelength of the reference laser beam has absolute accuracy, the wavelength value of the laser beam to be measured also has absolute accuracy. Therefore, unlike a diffraction grating wavelength meter, there is no need for calibration.

なお上記の実施例では焦点が互いの鏡面上にある2つの
凹面鏡を用いて掃引長に対する精度を高めているか、こ
れに限らす平面鏡を用いたファブリ・ペロー・エタロン
を使用することもできる。
In the above embodiment, two concave mirrors whose focal points are on each other's mirror surfaces are used to improve the accuracy of the sweep length, but it is also possible to use a Fabry-Perot etalon using a plane mirror.

また上記の実施例において、参照レーザ1として変調出
力のものを使用すれば、位相変調器3を省略することが
できる。
Furthermore, in the above embodiment, if a modulated output laser is used as the reference laser 1, the phase modulator 3 can be omitted.

第3図は第1図のレーザ周波数計の変形例で、ファブリ
・ペロー・エタロンの凹面鏡の1つを半透性の平面鏡で
置換えたものを示す要部構成ブロック図である0図にお
いて、71は第1図と同じ四■1鏡、77はこの凹面鏡
71に平行に配置された半透性の平面鏡である。この平
面鏡77は、疑似的に平面鏡77の鏡面79に関して凹
面鏡71と対称な反対側の位置に点線で示した凹面鏡7
8があるのと同じ効果を生じる。すなわち凹面鏡71と
平面g77の間隔および平面鏡77と疑似的な凹面′I
J:A78との間隔は等しい、この疑似的な凹面鏡78
の焦点74か凹面MA71の鏡面上に来るように平面鏡
77の位置を定める。
FIG. 3 is a modification of the laser frequency meter shown in FIG. 1. In FIG. 1 is the same mirror as in FIG. 1, and 77 is a semi-transparent plane mirror arranged parallel to this concave mirror 71. This plane mirror 77 is pseudo-concave mirror 7 shown by a dotted line at a position symmetrical to the concave mirror 71 with respect to the mirror surface 79 of the plane mirror 77.
It produces the same effect as having 8. That is, the distance between the concave mirror 71 and the plane g77, and the distance between the plane mirror 77 and the pseudo concave surface 'I
J: This pseudo concave mirror 78 is the same distance from A78.
The plane mirror 77 is positioned so that the focal point 74 of the plane is on the mirror surface of the concave surface MA71.

凹面鏡71と疑似的な凹面IA78の特性は同じなので
、このようにすると凹面a71の焦点は疑似的な凹面鏡
78の鏡面上に来るようになる。動作は第1図の場合と
同様であるので、説明を省略する。このような構成のフ
ァブリ・ペロー・エタロンによれば、第1図の場合と比
べて鏡の間隔をさらに半分にすることができる。
Since the characteristics of the concave mirror 71 and the pseudo concave surface IA78 are the same, by doing this, the focal point of the concave surface a71 will be on the mirror surface of the pseudo concave mirror 78. Since the operation is the same as that in FIG. 1, the explanation will be omitted. According to the Fabry-Perot etalon having such a configuration, the distance between the mirrors can be further halved compared to the case shown in FIG.

(発明の効果) 以上述べたように本発明によれば、高精度かつ高速応答
でレーザ周波数を測定できるレーザ周波数計を簡単な構
成で実現することができる。
(Effects of the Invention) As described above, according to the present invention, a laser frequency meter capable of measuring laser frequency with high precision and high speed response can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るレーザ周波数計の一実施例を示ず
構成ブロック図、第2図は第1図装置の動作を示す説明
図、第3図は第1図装置の−変形例を示す要部構成ブロ
ック図、第4図および第5図は従来のレーザ周波数計を
示す原理図である。 2・・・位相変調器、4・・・光学手段、7・・・ファ
ブリ・ペロー・エタロン、8・・・光検出器、9・・・
第1の増幅手段、10・・・第2の増幅手段、11・・
・第1のメモリ回路、12・・・第2のメモリ回路、1
4・・・周波数演算回路、73・・・掃引手段、f、・
・・第1の周波数、f2・・・第2の周波数。 第 図 ?9 役則来シロ 4反唄ツffiりC5
FIG. 1 is a block diagram of the configuration of a laser frequency meter according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the operation of the device shown in FIG. 1, and FIG. 3 is a modification of the device shown in FIG. 1. The main part configuration block diagram shown in FIGS. 4 and 5 are principle diagrams showing a conventional laser frequency meter. 2... Phase modulator, 4... Optical means, 7... Fabry-Perot etalon, 8... Photodetector, 9...
First amplification means, 10...Second amplification means, 11...
・First memory circuit, 12...Second memory circuit, 1
4... Frequency calculation circuit, 73... Sweeping means, f, .
...first frequency, f2...second frequency. Diagram? 9 Yaku Nori Shiro 4 anti-utatu ffiri C5

Claims (1)

【特許請求の範囲】[Claims]  被測定レーザ光を第1の周波数で位相変調する位相変
調器と、この位相変調器の出力光と第2の周波数で位相
変調され発振周波数が既知の参照レーザ光とを合波する
光学手段と、この光学手段の出力光を入射するファブリ
・ペロー・エタロンと、このファブリ・ペロー・エタロ
ンを透過する光を検出する光検出器と、この光検出器の
出力を前記第1の周波数で位相検波する第1の増幅手段
と、この第1の増幅手段の出力を記憶する第1のメモリ
回路と、前記光検出器の出力を前記第2の周波数で位相
検波する第2の増幅手段と、この第2の増幅手段の出力
を記憶する第2のメモリ回路と、前記ファブリ・ペロー
・エタロンのミラー間隔を微小変化させる掃引手段と、
この掃引手段によるミラー間隔の変化に対応する第1の
メモリ回路出力と第2のメモリ回路出力に基づいて被測
定レーザ光の周波数を演算する周波数演算回路とを備え
たことを特徴とするレーザ周波数計。
a phase modulator that phase-modulates a laser beam to be measured at a first frequency; and an optical means that multiplexes the output light of the phase modulator with a reference laser beam that is phase-modulated at a second frequency and whose oscillation frequency is known. , a Fabry-Perot etalon into which the output light of the optical means is incident, a photodetector that detects the light transmitted through the Fabry-Perot etalon, and a phase detection of the output of the photodetector at the first frequency. a first amplification means for detecting the output of the first amplification means; a first memory circuit for storing the output of the first amplification means; a second amplification means for phase-detecting the output of the photodetector at the second frequency; a second memory circuit for storing the output of the second amplification means; a sweeping means for minutely changing the mirror spacing of the Fabry-Perot etalon;
A laser frequency calculator characterized by comprising a frequency calculation circuit that calculates the frequency of the laser beam to be measured based on the first memory circuit output corresponding to the change in mirror spacing caused by the sweeping means and the second memory circuit output. Total.
JP24788488A 1988-09-30 1988-09-30 Laser frequency meter Expired - Fee Related JPH0774762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24788488A JPH0774762B2 (en) 1988-09-30 1988-09-30 Laser frequency meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24788488A JPH0774762B2 (en) 1988-09-30 1988-09-30 Laser frequency meter

Publications (2)

Publication Number Publication Date
JPH0295224A true JPH0295224A (en) 1990-04-06
JPH0774762B2 JPH0774762B2 (en) 1995-08-09

Family

ID=17170031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24788488A Expired - Fee Related JPH0774762B2 (en) 1988-09-30 1988-09-30 Laser frequency meter

Country Status (1)

Country Link
JP (1) JPH0774762B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101875590B1 (en) * 2012-10-30 2018-08-02 에스케이 텔레콤주식회사 Method and Apparatus for Measuring Frequency

Also Published As

Publication number Publication date
JPH0774762B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US5153669A (en) Three wavelength optical measurement apparatus and method
US4682025A (en) Active mirror wavefront sensor
US7259862B2 (en) Low-coherence interferometry optical sensor using a single wedge polarization readout interferometer
EP0646767B1 (en) Interferometric distance measuring apparatus
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
US5159408A (en) Optical thickness profiler using synthetic wavelengths
Thiel et al. Interferometric measurement of absolute distances of up to 40 m
JPH0830651B2 (en) Interferometer Laser surface roughness meter
JPH1090175A (en) Apparatus and method for measuring fluctuation in gas refractive index in measurement path
Downs et al. Bi-directional fringe counting interference refractometer
US3708229A (en) System for measuring optical path length across layers of small thickness
EP0158505B1 (en) Active mirror wavefront sensor
Tomic et al. Low-coherence interferometric method for measurement of displacement based on a 3× 3 fibre-optic directional coupler
JPH06174844A (en) Laser distance measuring apparatus
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
JPH0295224A (en) Laser frequency meter
EP0920599B1 (en) Measuring the effects of the refractive index of a gas using different multiple path interferometry ( superhetrodyne )
JPH0648366Y2 (en) Laser frequency meter
JPH0648365Y2 (en) Laser frequency meter
Dandliker et al. Two-wavelength laser interferometry using super-heterodyne detection
JPH0648364Y2 (en) Laser frequency meter
JPH0283422A (en) Laser frequency meter
JPH0723708Y2 (en) Laser frequency meter
JPH0714836Y2 (en) Laser frequency meter
JP3344637B2 (en) Optical interference type position measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees