[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH029414A - Apparatus for treating combustion gas - Google Patents

Apparatus for treating combustion gas

Info

Publication number
JPH029414A
JPH029414A JP63159222A JP15922288A JPH029414A JP H029414 A JPH029414 A JP H029414A JP 63159222 A JP63159222 A JP 63159222A JP 15922288 A JP15922288 A JP 15922288A JP H029414 A JPH029414 A JP H029414A
Authority
JP
Japan
Prior art keywords
moisture
gas
combustion gas
carbon dioxide
recovery device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63159222A
Other languages
Japanese (ja)
Inventor
Masatoshi Kudome
正敏 久留
Kazuaki Oshima
大嶋 一晃
Jun Izumi
順 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63159222A priority Critical patent/JPH029414A/en
Publication of JPH029414A publication Critical patent/JPH029414A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Drying Of Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To treat a combustion gas efficiently by leading the combustion gas through a waste heat recovery feed-water heater, pressure-swing adsorption type water and CO2 recovery equipments, by processing regenerated gas from every recovery equipment and by sending obtained water to the feed-water heater. CONSTITUTION:A combustion gas 7 has its moisture removed by a pressure- swing type water recovery equipment 12 after passing through a waste heat recovery equipment 11 and then has its CO2 removed by a pressure-swing type CO2 recovery equipment 13. A regenerated gas from the water recovery equipment 12 is introduced into a condenser 12 to have its water removed. The condensed water is sent to the waste heat recovery feed-water heater 11 and taken out from a line 36 as a warm water. On the other hand, noncondensable gas is circulated to the combustion gas in the water recovery equipment 12. A regenerated gas from the CO2 recovery equipment 13 is sent to a CO2 condensing equipment 40 and taken out as liquefied CO2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼ガス、殊にクリーン燃料といわれている
IJGやメタノール等を燃焼させて得られる燃焼ガスを
処理する装置に関する。更に詳細には、本発明は、この
ような燃焼ガスに含有されている水分(湿分)、炭酸ガ
ス及び最適にはこれらに加えて窒素ガスを回収するとと
もに、排熱回収を図るようにした装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for processing combustion gas, particularly combustion gas obtained by burning IJG, methanol, etc., which are said to be clean fuels. More specifically, the present invention aims to recover moisture (moisture), carbon dioxide gas, and optimally nitrogen gas in addition to these contained in such combustion gas, as well as to recover exhaust heat. Regarding equipment.

従来の技術 従来技術によれば、LNG燃焼ボイラ等から排出される
燃焼ガスは冷却水(海水)で冷却され、その含有する湿
分が凝縮回収されている。
Prior Art According to the prior art, combustion gas discharged from an LNG combustion boiler or the like is cooled with cooling water (seawater), and the moisture contained therein is condensed and recovered.

発明が解決しようとする課題 このような従来技術は、しかし、次のような問題を有し
、これらの問題が燃焼ガス中の湿分回収技術の実用化へ
の妨げとなっていた。
Problems to be Solved by the Invention These conventional techniques, however, have the following problems, and these problems have hindered the practical application of moisture recovery technology in combustion gas.

(1)一般に、燃焼ガスの温度は100℃〜150℃程
度であり、その含有する湿分的20%VOI・に相当す
る飽和温度約60℃以下にして水分を凝傭させるには、
凝縮器伝熱面の伝熱特性が低く、したがって設備が大型
化し、建設費が高く、所要スペースも大きかった。
(1) Generally, the temperature of the combustion gas is about 100°C to 150°C, and in order to condense the moisture at a saturation temperature of about 60°C or less, which corresponds to the moisture content of 20% VOI,
The heat transfer characteristics of the condenser heat transfer surface were poor, and therefore the equipment was large, the construction cost was high, and the space required was large.

(2)また、燃焼ガスの保有熱は、冷却水に廃棄され、
温排水の増加の原因となるとともに、多量の冷却水量を
必要とした。
(2) Also, the heat retained in the combustion gas is disposed of in the cooling water,
This caused an increase in heated waste water and required a large amount of cooling water.

(3)排ガス保有熱の有効利用がなされていなかった。(3) The heat retained in the exhaust gas was not utilized effectively.

(4)排ガス中に含まれている炭酸ガスが凝縮水中に混
入するので、凝縮水系の炭酸腐食等の対策のため、大型
の気曝装置やイオン交換樹脂塔を用いて、炭酸ガスや炭
酸イオンを除く必要があった。
(4) Since the carbon dioxide contained in the exhaust gas mixes into the condensed water, in order to prevent carbonic acid corrosion in the condensed water system, large aeration equipment and ion exchange resin towers are used to prevent carbon dioxide gas and carbonate ions. had to be removed.

課題を解決するための手段 本発明は、このような従来技術の課題を解決するために
、燃焼ガスの流れの上流側から順次、排熱回収給水加熱
装置、圧力スイング吸着式水分回収装置及び圧力スイン
グ吸着式炭酸ガス回収装置を配置し、前記水分回収装置
から取出される再生ガス中の湿分を凝縮をする湿分凝縮
装置を設けるとともに、前記炭酸ガス回収装置から取出
される再生ガス中の炭酸ガスを液化炭酸ガス又は高圧ガ
ースとする炭酸ガス処理装置を設け、かつ前記湿分凝縮
装置で生成される水を前記排熱回収給水加熱装置へ送っ
て燃焼ガスにより加熱させる給水ラインを設けるととも
に、同湿分凝縮装置から排出されるガスを再循環させて
前記水分回収装置の入口燃焼ガスに混合させるガス再循
環ラインを設けたものである。
Means for Solving the Problems In order to solve the problems of the prior art, the present invention sequentially installs an exhaust heat recovery feed water heating device, a pressure swing adsorption type water recovery device, and a pressure swing adsorption water recovery device from the upstream side of the flow of combustion gas. A swing adsorption type carbon dioxide recovery device is installed, and a moisture condensation device is provided to condense moisture in the regeneration gas taken out from the moisture recovery device. A carbon dioxide treatment device for converting carbon dioxide into liquefied carbon dioxide or high-pressure girth is provided, and a water supply line is provided for sending the water produced by the moisture condensing device to the exhaust heat recovery water supply heating device and heating it with combustion gas. , a gas recirculation line is provided for recirculating the gas discharged from the moisture condensing device and mixing it with the combustion gas at the inlet of the moisture recovery device.

作用 このような手段によれば、したがって、燃焼ガスは、そ
の中に含有されている水分がまず水分回収装置で吸着除
去され、それから炭酸ガスが炭酸ガス回収装置で吸着除
去された後大気中へ排出される。一方、給水加熱装置で
排熱が回収されて温水(給水)が製造されるとともに、
炭酸ガス処理装置で液化炭酸ガス又は高圧ガスが製造さ
れる。
According to this method, the moisture contained in the combustion gas is first adsorbed and removed by a moisture recovery device, and then the carbon dioxide gas is adsorbed and removed by a carbon dioxide recovery device, and then released into the atmosphere. It is discharged. On the other hand, waste heat is recovered in the feed water heating device to produce hot water (feed water),
Liquefied carbon dioxide or high pressure gas is produced in the carbon dioxide treatment device.

また、湿分凝縮装置から排出されるガスが再循環されて
、水分回収装置の入口燃焼ガスに混合され、その湿分濃
度を高めるので、水分回収装置の除湿性能が高められる
Additionally, the gas discharged from the moisture condensing device is recirculated and mixed with the inlet combustion gas of the moisture recovery device to increase its moisture concentration, thereby increasing the dehumidification performance of the moisture recovery device.

実施例 以下図面を参照して、本発明の最適な実施例について詳
述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, preferred embodiments of the present invention will be described in detail with reference to the drawings.

単一の図において、lは燃焼ガス発生源の一例としてL
NG燃焼ボイラを示し、その炉内にバーナより供給され
たLNG 2が、ダンパ等の流量制御装置3、押込ファ
ン4、空気予熱装置5及びバーナ風箱6を経て導入され
た空気中の酸素を得て燃焼し、燃焼ガス7が発生する。
In a single figure, l is L as an example of a combustion gas source
This shows an NG combustion boiler in which LNG 2 supplied from a burner into the furnace absorbs oxygen from the air introduced through a flow rate control device 3 such as a damper, a forced fan 4, an air preheating device 5, and a burner wind box 6. It is burned and combustion gas 7 is generated.

しかして、LIIG Z中には通常80%〜95%のメ
タンガス(CH,)が含有されており、その燃焼ガス7
vol。
However, LIIG Z usually contains 80% to 95% methane gas (CH,), and the combustion gas 7
vol.

中には約15〜20%  の水分、約工0%vo1.程
度の炭酸ガス及び約70〜75%vo1.の窒素ガスが
含有されている。
It contains about 15-20% moisture and about 0% vol. of carbon dioxide gas and about 70-75% vol. Contains nitrogen gas.

このように水分、炭酸ガス及び窒素ガスを含有する燃焼
ガス7は、ボイラlで熱交換を行なった後、ダンパ等の
流量制御装置8を経て、前述した空気予熱装置5に導か
れ、ここで燃焼用空気と熱交換を行ない、その結果通常
100’C〜150 ’CN 度ノガス温度となる。
The combustion gas 7 containing moisture, carbon dioxide gas, and nitrogen gas undergoes heat exchange in the boiler 1, and then is guided to the air preheating device 5 described above through a flow rate control device 8 such as a damper, where it is heated. Heat exchange occurs with the combustion air, resulting in gas temperatures typically between 100'C and 150'CN degrees.

この燃焼ガスは、それから、ダンパ等の流量制御装置9
、昇圧ファン1o及び排熱回収給水加熱装置IIを経て
、圧力スイング吸着式の水分回収装置12に導かれる。
This combustion gas is then transferred to a flow rate control device 9 such as a damper.
, a pressure swing adsorption type water recovery device 12 via a pressure boosting fan 1o and an exhaust heat recovery feed water heating device II.

この場合、燃焼ガスは、昇圧ファンIOにより水分回収
装置12に必要な圧力である約1.5気圧迄昇圧され、
また給水加熱装置11で給水を加熱した後約80℃〜1
30℃の温度となる。
In this case, the pressure of the combustion gas is increased to approximately 1.5 atmospheres, which is the pressure required for the moisture recovery device 12, by the booster fan IO.
In addition, after heating the feed water with the feed water heating device 11, approximately 80℃~1
The temperature will be 30°C.

圧力スイング吸着式水分回収装置12は、それ自体よく
知られているように、γ−アルミナ系水分吸着剤を充填
した吸着塔を包含し、燃焼ガスをこの吸着塔に導き、大
気圧近傍からより低圧の真空圧側を用いた圧力スイング
吸着法により、燃焼ガスに含有されている水分を選択的
に吸着回収する。
As is well known per se, the pressure swing adsorption type moisture recovery device 12 includes an adsorption tower filled with a γ-alumina moisture adsorbent, guides combustion gas to the adsorption tower, and collects the combustion gas from near atmospheric pressure to a higher level. Moisture contained in the combustion gas is selectively adsorbed and recovered by a pressure swing adsorption method using a low-pressure vacuum side.

この水分回収袋[12で水分を吸着除去された乾燥燃焼
ガスは、それから、同様に圧力スイング吸着式の炭酸ガ
ス回収装置13に導かれる。
The dry combustion gas from which moisture has been adsorbed and removed in the moisture recovery bag [12] is then led to the carbon dioxide recovery device 13, which is also of the pressure swing adsorption type.

この炭酸ガス回収装置13も、それ自体よく知られてい
るように、Fig−X型ゼオライトあるいはIlaの一
部又は全てをCa等の金属に置換したMa−X型ゼオラ
イトを充填した吸着塔を包含し、乾燥燃焼ガスをこの吸
着塔に導き、大気圧近接からより低圧の真空圧側を用い
た圧力スイング吸着法により、燃焼ガス中に含有されて
いる炭酸ガスを選択的に吸着回収する。
This carbon dioxide recovery device 13 also includes an adsorption tower filled with Fig-X type zeolite or Ma-X type zeolite in which part or all of Ila is replaced with a metal such as Ca, as is well known per se. Then, the dry combustion gas is introduced into this adsorption tower, and carbon dioxide contained in the combustion gas is selectively adsorbed and recovered by a pressure swing adsorption method using a vacuum pressure side from near atmospheric pressure to a lower pressure.

この炭酸ガス回収装置13で炭酸ガスを吸着除去された
燃焼ガス(乾燥窒素ガス−濃度的98%vol・)は、
それから、同様に圧力スイング式の窒素ガス回収装置1
4に導かれる。
The combustion gas (dry nitrogen gas - 98% vol. in concentration) from which carbon dioxide has been adsorbed and removed by the carbon dioxide recovery device 13 is
Then, similarly pressure swing type nitrogen gas recovery equipment 1
4.

この窒素ガス回収装置14も、それ自体よく知られてい
るように、Na  X型ゼオライトを充填した吸着塔を
包含し、燃焼ガスをこの吸着塔に導き、大気圧近傍から
より低圧の真空圧側を用いた圧力スイング吸着法により
、燃焼ガス中に含有されている窒素ガスを選択的に吸着
回収する。
As is well known per se, this nitrogen gas recovery device 14 also includes an adsorption tower filled with Na The pressure swing adsorption method used selectively adsorbs and recovers nitrogen gas contained in the combustion gas.

この室木ガス回収装置114で窒素ガスを吸着除去され
た燃焼ガスは、最終的に約1%vol°程度の酸素であ
り、煙突ライン15を通して大気中に排出される。この
煙突ライン15には、また、空気予熱装置5をバイパス
するライン16、及び/又は排熱回収給水加熱装置11
、水分回収装置12、炭酸ガス回収装置13、窒素ガス
回収装置14をバイパスするライン17を通して、空気
予熱装置5の上流側及び/又は下流側の燃焼ガスを導く
ことができるようになっている。
The combustion gas from which nitrogen gas has been adsorbed and removed by the Muroki gas recovery device 114 finally contains about 1% vol° of oxygen, and is discharged into the atmosphere through the chimney line 15. This chimney line 15 also includes a line 16 that bypasses the air preheating device 5 and/or an exhaust heat recovery feed water heating device 11.
, the combustion gas upstream and/or downstream of the air preheating device 5 can be guided through a line 17 that bypasses the moisture recovery device 12, the carbon dioxide recovery device 13, and the nitrogen gas recovery device 14.

そして、これらのバイパスライン18.17の途中には
、それぞれ、ダンパ等のバイパス流量制御装置18.1
9が設けられている。
In the middle of these bypass lines 18.17, there are bypass flow control devices 18.1 such as dampers, respectively.
9 is provided.

後者の流量制御装置19は、給水加熱装置11を通過す
る燃焼ガス量を**するために作動される。
The latter flow control device 19 is activated to control the amount of combustion gas passing through the feed water heating device 11.

すなわち、以上述べたシステムにおいて、回収水量は燃
焼ガス中の湿分量により一義的に決定されるため、その
流量制御は給水加熱装置ullをi!1過する燃焼ガス
量を制御して行なわれるが、この燃焼ガス量の制御は、
給水加熱装W111の出口給水流量を検出し、所要流量
となる様に、流量制御装置19を作動させて行なう。
That is, in the system described above, the amount of recovered water is uniquely determined by the amount of moisture in the combustion gas, so the flow rate control is performed by controlling the feed water heating device ULL. This is done by controlling the amount of combustion gas passing through the air.
The outlet water supply flow rate of the water supply heating device W111 is detected, and the flow rate control device 19 is operated to achieve the required flow rate.

さて、水分回収装置12で吸着された燃焼ガス中の水分
は、炭酸ガス回収装置13より排出される窒素富化ガス
の一部分例えば水分回収装置112の入口燃焼ガスの約
10〜15%vol・程度が水分回収装置12の再生ガ
ス用としてう゛イン20.21を通して分流供給され、
水分回収装置12で吸着された燃焼ガス中の水分が、こ
の再生ガスと共に、真空ポンプ22によって約0.5気
圧〜0.2気圧迄減圧して回収され、その後昇圧@23
によって大気圧近傍(1,7気圧程度)まで昇圧されて
、湿分凝縮装[24に導かれる。
Now, the moisture in the combustion gas adsorbed by the moisture recovery device 12 is a portion of the nitrogen-enriched gas discharged from the carbon dioxide recovery device 13, for example, about 10 to 15% vol. of the combustion gas at the inlet of the moisture recovery device 112. is supplied as a regeneration gas to the water recovery device 12 in a branched manner through the inlets 20 and 21,
Moisture in the combustion gas adsorbed by the moisture recovery device 12 is recovered by reducing the pressure to about 0.5 atm to 0.2 atm by the vacuum pump 22 together with the regeneration gas, and then increasing the pressure @23
The pressure is increased to near atmospheric pressure (approximately 1.7 atmospheres), and then introduced to the moisture condenser [24].

この湿分凝縮装置24には、冷却水供給管25により冷
却水が供給される。冷却水はLNG冷熱を利用し、15
℃〜20℃以下となっていることが好ましく、その流量
は、真空ポンプ22によって回収された湿分が湿分凝縮
装置24の器内圧力(はぼ大気圧)及び温度(室温付近
)における飽和湿分を除いて、全て凝縮され、かつ排熱
回収給水加熱器11の出口給水温度が所定の温度となる
様に、制御される。
Cooling water is supplied to the moisture condensing device 24 through a cooling water supply pipe 25 . Cooling water uses LNG cold energy, 15
℃~20℃ or less, and the flow rate is such that the moisture recovered by the vacuum pump 22 is saturated at the internal pressure (atmospheric pressure) and temperature (near room temperature) of the moisture condensing device 24. The water is controlled so that all except moisture is condensed and the temperature of the water supply at the outlet of the exhaust heat recovery water heater 11 is a predetermined temperature.

また、湿分凝縮装!!24の器内圧力は、前述したバイ
パスライン17の途中部分に接続したライン26に設け
たバイパス弁27により大気圧近傍に制御されており、
過渡応答時等に過剰な湿分が真空ポンプ22により回収
され、昇圧機23によって導入された場合には、このバ
イパス弁27によって系外に放出され、水分回収装置1
2が過負荷により破過するのを防止している。
Also, moisture condensation equipment! ! The pressure inside the chamber 24 is controlled to near atmospheric pressure by a bypass valve 27 provided in a line 26 connected to a midway portion of the bypass line 17 mentioned above.
When excess moisture is recovered by the vacuum pump 22 and introduced by the booster 23 during a transient response, etc., it is discharged outside the system by the bypass valve 27 and the moisture recovery device 1
2 is prevented from breaking down due to overload.

一方、定常状態においては、湿分凝縮装置124に昇圧
機23により導入された再生ガスが、湿分凝縮装置24
の器内圧力及び温度における飽和湿分を含有したまま、
ライン28及びダンパ等の流量制御袋置29を通して水
分回収装置12へ再循環されて、その入口燃焼ガスに混
合され、これにより循環系及び湿分再生回収系の湿分濃
度を上げて、水分回収装置12の除湿性能を向上せしめ
る。
On the other hand, in a steady state, the regeneration gas introduced into the moisture condensing device 124 by the booster 23 is
While containing saturated moisture at the internal pressure and temperature of
It is recirculated to the moisture recovery device 12 through the line 28 and a flow control bag 29 such as a damper, and mixed with the inlet combustion gas, thereby increasing the moisture concentration in the circulation system and the moisture regeneration recovery system, and recovering moisture. The dehumidification performance of the device 12 is improved.

湿分凝縮装置24において、凝縮水は、凝縮水冷却管3
0により室温(約30℃)迄過冷却され、その後、給水
ポンプ31及び水位制御弁32を経て、ライン33を通
して排熱回収給水加熱装置11へ導かれ、燃焼ガスによ
り所定の温度(約50℃〜80℃)迄加熱された後、温
水として取り出される。制御弁32は、湿分凝縮装置2
4の凝縮水レベルを制御している。
In the moisture condensing device 24, the condensed water flows through the condensed water cooling pipe 3.
0 to room temperature (approximately 30 degrees Celsius), and then passed through a water supply pump 31 and a water level control valve 32, and then led to the exhaust heat recovery feed water heating device 11 through a line 33, where it was heated to a predetermined temperature (approximately 50 degrees Celsius) by combustion gas. ~80°C) and then taken out as hot water. The control valve 32 is connected to the moisture condensing device 2
4 condensate level is controlled.

そして、排熱回収給水加熱装置11の入口給水量、ある
いは入口の燃焼ガス温度の変化に応じて、給水加熱装置
11の入口給水温度を、冷却水量を変えることにより変
化せしめ、最終的には、取り出される温水温度を所定の
値に制御する。
Then, the inlet water supply temperature of the feedwater heating device 11 is changed by changing the amount of cooling water in accordance with the change in the inlet water supply amount of the exhaust heat recovery feedwater heating device 11 or the combustion gas temperature at the inlet, and finally, The temperature of the hot water taken out is controlled to a predetermined value.

また、過渡応答時、あるいは炭酸ガス回収量を優先する
場合において、排熱回収給水加熱装置11を通過する燃
焼ガス流量と給水流量のバランスが異なった運転をする
ときには、排熱回収給水加熱装置11をバイパスするラ
イン34に設けた給水バイパス弁35を、冷却水量制御
に先行させて作動させ、取り出される温水の温度を制御
する。この場合、温水量は所定量とは一致せず、過剰な
場合には、給水(温水)供給ライン36から分岐したラ
イン37に設けた弁38を開けて、系外に廃棄する。
In addition, when operating with a different balance between the combustion gas flow rate passing through the exhaust heat recovery feed water heating device 11 and the feed water flow rate during a transient response or when giving priority to the amount of carbon dioxide gas recovery, the exhaust heat recovery feed water heating device 11 A water supply bypass valve 35 provided in a bypass line 34 is operated prior to controlling the amount of cooling water to control the temperature of the hot water taken out. In this case, the amount of hot water does not match the predetermined amount, and if it is excessive, a valve 38 provided in a line 37 branched from the water (hot water) supply line 36 is opened and the hot water is disposed of outside the system.

一方、炭酸ガス回収装置13で吸着された燃焼ガス中の
炭酸ガスは、真空ポンプ39によって約0.5〜0.2
気圧迄減圧して回収され、炭酸ガス凝縮装置40に導か
れる。この炭酸ガス凝縮装置40には、LNG冷熱を利
用して一80℃〜−100℃以下に冷却された窒素ガス
等のキャリアガスが供給される冷却管41が設けてあり
、炭酸ガスは大気圧近傍で凝縮液化される。このように
して得られた液化炭酸ガスは、それから移送ポンプ42
及び液レベル制御弁43を経て、移送される。
On the other hand, the carbon dioxide in the combustion gas adsorbed by the carbon dioxide recovery device 13 is removed by the vacuum pump 39 to approximately
It is depressurized to atmospheric pressure and recovered, and introduced to the carbon dioxide condensing device 40. This carbon dioxide gas condensing device 40 is provided with a cooling pipe 41 to which a carrier gas such as nitrogen gas cooled to below -80°C to -100°C using LNG cold energy is supplied. It is condensed and liquefied nearby. The liquefied carbon dioxide gas thus obtained is then transferred to a transfer pump 42.
and the liquid level control valve 43.

また、窒素ガス回収装置14で吸着された燃焼ガス中の
窒素ガスは、真空ポンプ44によって、約0.5〜0.
2気圧迄減圧して、回収される。
Further, the nitrogen gas in the combustion gas adsorbed by the nitrogen gas recovery device 14 is removed by a vacuum pump 44 of about 0.5 to 0.
The pressure is reduced to 2 atmospheres and recovered.

窒素ガスを回収する必要が無い場合、あるいは煙突から
の燃焼ガスの拡散及びバイパスガス中に含有する湿分の
煙突出口での凝縮による白煙の発生防止の観点から、煙
突人口ガス温度の調整が必要な場合には、窒素ガス回収
装置14を全く省くか、又は小容量の装置とし、炭酸ガ
ス回収装置13より排出される燃焼ガスの流量をダンパ
等の流量制御装置45.46により制御し、またバイパ
スライン16゜17を通過する燃焼ガスの流量をそれぞ
れ流量制御装置18.19により制御することによって
、煙突入口ガス温度を調節するようにする。
When there is no need to recover nitrogen gas, or from the viewpoint of preventing the generation of white smoke due to the diffusion of combustion gas from the chimney and the condensation of moisture contained in the bypass gas at the chimney outlet, it is necessary to adjust the temperature of the chimney artificial gas. If necessary, the nitrogen gas recovery device 14 may be omitted altogether or a small-capacity device may be used, and the flow rate of the combustion gas discharged from the carbon dioxide recovery device 13 may be controlled by a flow rate control device 45, 46 such as a damper. Further, the smoke inlet gas temperature is adjusted by controlling the flow rate of combustion gas passing through the bypass lines 16 and 17 by flow rate controllers 18 and 19, respectively.

なお、図中、47〜62は、それぞれ、水分回収装置1
2、炭酸ガス回収装置13及び窒素ガス回収装置14に
関連して設けられたダンパ等のガス切替装置を示す。
In addition, in the figure, 47 to 62 respectively indicate the moisture recovery device 1.
2 shows a gas switching device such as a damper provided in connection with the carbon dioxide recovery device 13 and the nitrogen gas recovery device 14.

以上添付図面を参照して本発明の最適な実施例について
説明してきたが、本発明は、この特定の実施例に決して
限定されるものではなく本発明の要旨を逸脱することな
く種々の変形がなし得ることは勿論である。
Although the best embodiment of the present invention has been described above with reference to the accompanying drawings, the present invention is by no means limited to this specific embodiment, and various modifications may be made without departing from the gist of the present invention. Of course it can be done.

例えば、炭酸ガス凝縮装置40に代えて、炭酸ガス圧縮
機及び膨張弁等からなる炭酸ガス液化装置を設けたり、
又は高圧ガスとするための昇圧装置を設けたりすること
もできる。
For example, instead of the carbon dioxide condensing device 40, a carbon dioxide gas liquefying device consisting of a carbon dioxide compressor, an expansion valve, etc. may be provided,
Alternatively, a pressure boosting device for producing high pressure gas may be provided.

また、水分回収装置12及び湿分凝縮装置24に代えて
、熱交換器方式の湿分凝縮回収装置を設けることもでき
る。
Further, instead of the moisture recovery device 12 and the moisture condensation device 24, a heat exchanger type moisture condensation recovery device may be provided.

発明の効果 本発明によれば、次のような効果を有する。Effect of the invention According to the present invention, the following effects are achieved.

(1)排熱回収給水加熱装置の設置により、排ガス保有
熱を回収して温水を製造することができるとともに、排
ガス保有熱の有効利用ができる。
(1) By installing the exhaust heat recovery feed water heating device, the heat retained in the exhaust gas can be recovered to produce hot water, and the heat retained in the exhaust gas can be used effectively.

(2)圧力スイング吸着式水分回収装置により排ガス中
の水分が選択的に吸着回収されるため、湿分凝縮装置を
通過するガス量が低減し凝縮装置が大幅にコンパクト化
される。
(2) Since moisture in the exhaust gas is selectively adsorbed and recovered by the pressure swing adsorption type moisture recovery device, the amount of gas passing through the moisture condensation device is reduced and the condensation device can be made significantly more compact.

(3)湿分凝縮装置から排出されるガスが再循環されて
、水分回収装置の入口燃焼ガスに混合され、その湿分濃
度を高めるので、水分回収装置の除湿性能が高められる
(3) The gas discharged from the moisture condensing device is recirculated and mixed with the inlet combustion gas of the moisture recovery device to increase its moisture concentration, thereby increasing the dehumidification performance of the moisture recovery device.

(4)回収された水分中に含まれる炭酸成分は、はとん
ど存在しない。
(4) There is almost no carbonic acid component contained in the recovered moisture.

(5)圧力スイング吸着式炭酸ガス回収装置により、炭
酸ガスを併産できる。
(5) Carbon dioxide can be co-produced using a pressure swing adsorption type carbon dioxide recovery device.

また、上述した実施例によれば、次のような効果らある
Further, according to the above-described embodiment, the following effects can be obtained.

(1)圧力スイング吸着式窒素ガス回収装置により、窒
素ガスを併産できる。
(1) Nitrogen gas can be co-produced using a pressure swing adsorption type nitrogen gas recovery device.

(2)空気予熱装置及び排熱回収給水加熱装置にそれぞ
れバイパスラインを設けて、そのバイパス流量を制御す
ることにより、煙突入口ガス温度を制御できる。
(2) By providing a bypass line in each of the air preheating device and the exhaust heat recovery feed water heating device and controlling the bypass flow rate, the smoke inlet gas temperature can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

単一の図は、本発明による燃焼ガス処理装置の一例を示
す系統図である。 ■・・LNG燃焼ボイラ、5・・空気予熱装置、7・・
燃焼ガス、11・・排熱回収給水加熱装置、12・・水
分回収装置、13・・炭酸ガス回収装置、14・・窒素
ガス回収装置、15・・煙突ライン、20゜21・・再
生ガス供給ライン、24・・湿分凝縮装置、・ガス再循
環ライン、 ・炭酸ガス凝縮装 (ほか1名)
A single figure is a system diagram showing an example of a combustion gas treatment device according to the invention. ■...LNG combustion boiler, 5...Air preheating device, 7...
Combustion gas, 11. Exhaust heat recovery water supply heating device, 12. Moisture recovery device, 13. Carbon dioxide recovery device, 14. Nitrogen gas recovery device, 15. Chimney line, 20° 21. Regeneration gas supply. Line, 24... Moisture condensation device, - Gas recirculation line, - Carbon dioxide condensation device (1 other person)

Claims (1)

【特許請求の範囲】 1 燃焼ガスの流れの上流側から順次、排熱回収給水加
熱装置、圧力スイング吸着式水分回収装置及び圧力スイ
ング吸着式炭酸ガス回収装置を配置し、前記水分回収装
置から取出される再生ガス中の湿分を凝縮をする湿分凝
縮装置を設けるとともに、前記炭酸ガス回収装置から取
出される再生ガス中の炭酸ガスを液化炭酸ガス又は高圧
ガスとする炭酸ガス処理装置を設け、かつ前記湿分凝縮
装置で生成される水を前記排熱回収給水加熱装置へ送っ
て燃焼ガスにより加熱させる給水ラインを設けるととも
に、同湿分凝縮装置から排出されるガスを再循環させて
前記水分回収装置の入口燃焼ガスに混合させるガス再循
環ラインを設けたことを特徴とする燃焼ガス処理装置。 2 炭酸ガス回収装置の燃焼ガス流れ下流に圧力スィン
グ吸着式窒素ガス回収装置を設けたことを特徴とする請
求項1記載の燃焼ガス処理装置。 3 炭酸ガス回収装置から排出される乾燥窒素ガスの一
部分を水分回収装置の再生ガスとして供給する再生ガス
供給ラインを設けたことを特徴とする請求項1又は2記
載の燃焼ガス処理装置。 4 水分回収装置及び湿分凝縮装置に代えて、熱交換器
方式の湿分凝縮回収装置を設けたことを特徴とする請求
項1〜4のうちいずれか一項記載の燃焼ガス処理装置。
[Scope of Claims] 1. An exhaust heat recovery feed water heating device, a pressure swing adsorption type moisture recovery device, and a pressure swing adsorption type carbon dioxide recovery device are arranged sequentially from the upstream side of the flow of combustion gas, and the combustion gas is removed from the moisture recovery device. A moisture condensing device is provided to condense moisture in the recycled gas, and a carbon dioxide processing device is provided to convert carbon dioxide in the regeneration gas extracted from the carbon dioxide recovery device into liquefied carbon dioxide or high-pressure gas. , and a water supply line is provided for sending the water produced in the moisture condensing device to the waste heat recovery feed water heating device and heating it with combustion gas, and recirculating the gas discharged from the moisture condensing device to A combustion gas processing device characterized in that a gas recirculation line is provided to mix the combustion gas at the inlet of a moisture recovery device. 2. The combustion gas processing device according to claim 1, further comprising a pressure swing adsorption type nitrogen gas recovery device provided downstream of the combustion gas flow of the carbon dioxide recovery device. 3. The combustion gas processing device according to claim 1 or 2, further comprising a regeneration gas supply line that supplies a portion of the dry nitrogen gas discharged from the carbon dioxide recovery device as regeneration gas to the moisture recovery device. 4. The combustion gas processing device according to any one of claims 1 to 4, characterized in that a heat exchanger type moisture condensation recovery device is provided in place of the moisture recovery device and the moisture condensation device.
JP63159222A 1988-06-29 1988-06-29 Apparatus for treating combustion gas Pending JPH029414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63159222A JPH029414A (en) 1988-06-29 1988-06-29 Apparatus for treating combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63159222A JPH029414A (en) 1988-06-29 1988-06-29 Apparatus for treating combustion gas

Publications (1)

Publication Number Publication Date
JPH029414A true JPH029414A (en) 1990-01-12

Family

ID=15689004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63159222A Pending JPH029414A (en) 1988-06-29 1988-06-29 Apparatus for treating combustion gas

Country Status (1)

Country Link
JP (1) JPH029414A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171019A (en) * 1990-11-02 1992-06-18 Sumitomo Seika Chem Co Ltd Process for removing water content in mixed gas
JPH07204462A (en) * 1994-01-28 1995-08-08 Iwatani Internatl Corp Method and apparatus for recovering and liquefying carbon dioxide from industrial exhaust gas
JP2013045535A (en) * 2011-08-23 2013-03-04 Tokyo Gas Co Ltd Carbonic acid gas recovery type fuel cell system
KR20200045683A (en) * 2018-10-23 2020-05-06 한국조선해양 주식회사 gas treatment system and offshore plant having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171019A (en) * 1990-11-02 1992-06-18 Sumitomo Seika Chem Co Ltd Process for removing water content in mixed gas
JPH07204462A (en) * 1994-01-28 1995-08-08 Iwatani Internatl Corp Method and apparatus for recovering and liquefying carbon dioxide from industrial exhaust gas
JP2013045535A (en) * 2011-08-23 2013-03-04 Tokyo Gas Co Ltd Carbonic acid gas recovery type fuel cell system
KR20200045683A (en) * 2018-10-23 2020-05-06 한국조선해양 주식회사 gas treatment system and offshore plant having the same

Similar Documents

Publication Publication Date Title
JP4727949B2 (en) Method for generating energy in an energy generation facility having a gas turbine and energy generation facility for implementing the method
CA2542610C (en) Purification works for thermal power plant
US8142555B2 (en) Method of treating volatile organic compound and system for treating volatile organic compound using gas turbine
CN106321242B (en) From the processing method of the recycle-water of the steam power plant and steam power plant of waste gas recovery hygroscopic moisture
KR100860868B1 (en) Method of processing volatile organic compound and system for processing volatile organic compound
KR20000035438A (en) Apparatus and method for increasing the power output of a gas turbine system
JPS6235031A (en) Gas-steam turbine composite power plant
CN107008102A (en) The system and method that integrated form separates carbon dioxide from burning gases
KR20130012125A (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil-fired power generating plant
CA1222940A (en) Process and apparatus for a recovery of heat comprising a heat-recovering absorption of water vapor from gases
WO2012072362A1 (en) Combined cycle power plant with co2 capture
JPS61254221A (en) Apparatus for removing co2
JPH029414A (en) Apparatus for treating combustion gas
KR20110114189A (en) Carbon capture and storage system, and heat pump
JP4929227B2 (en) Gas turbine system using high humidity air
JP3922830B2 (en) Thermal power plant
JP2000054854A (en) Method and device for recovering water in stem injection type gas turbine
EP1313992B1 (en) Method and apparatus for utilization of waste heat in desiccation and heat treatment of wood
JPH07169498A (en) Exhaust device for fuel cell power plant
AU2001282204A1 (en) Method and apparatus for utilization of waste heat in desiccation and heat treatment of wood
AU2001282204A2 (en) Method and apparatus for utilization of waste heat in desiccation and heat treatment of wood
JPS6257366B2 (en)
JPS61240009A (en) Method for decreasing nox content and increasing heat recovery efficiency in exhaust gas
GB2214835A (en) Method and apparatus for desalination
JPH02241912A (en) Ammonia processing device for power plant