[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH029499B2 - - Google Patents

Info

Publication number
JPH029499B2
JPH029499B2 JP58035608A JP3560883A JPH029499B2 JP H029499 B2 JPH029499 B2 JP H029499B2 JP 58035608 A JP58035608 A JP 58035608A JP 3560883 A JP3560883 A JP 3560883A JP H029499 B2 JPH029499 B2 JP H029499B2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
sensor
photoconductive layer
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58035608A
Other languages
Japanese (ja)
Other versions
JPS59161176A (en
Inventor
Masataka Ito
Shoshichi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58035608A priority Critical patent/JPS59161176A/en
Priority to EP84300990A priority patent/EP0119742B2/en
Priority to DE8484300990T priority patent/DE3478779D1/en
Priority to US06/580,386 priority patent/US4541015A/en
Publication of JPS59161176A publication Critical patent/JPS59161176A/en
Publication of JPH029499B2 publication Critical patent/JPH029499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は画像読取装置に係り、特に2次元にセ
ンサエレメントを配置し、光学的及び電気的にセ
ンサ面を走査する2次元画像読取装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to an image reading device, and more particularly to a two-dimensional image reading device in which sensor elements are arranged two-dimensionally and a sensor surface is scanned optically and electrically.

<従来技術> 従来フアクシミリ等の装置に於いて、画像を読
出す装置としてMOS型イメージセンサ、CCDセ
ンサ、密着型イメージセンサ等が提案されてい
る。MOS型イメージセンサは入射光像を光電変
換素子で電気信号に変換し、MOS ICで切り換え
走査する装置で、またCCDセンサは光によつて
光電変換部に生じた電荷を電荷結合素子(CCD)
を用いて転送する装置である。
<Prior Art> Conventionally, in devices such as facsimiles, MOS type image sensors, CCD sensors, contact type image sensors, etc. have been proposed as devices for reading out images. A MOS image sensor is a device that converts an incident light image into an electrical signal using a photoelectric conversion element, and switches and scans it using a MOS IC.A CCD sensor converts the electric charge generated in the photoelectric conversion unit by light into a charge-coupled device (CCD).
This is a device that uses .

このMOS型イメージセンサ或いはCCDセンサ
は、単結晶基板をベースにしてこの基板にICの
技術を用いて作成する為、広い面積のセンサを製
造することは性能的にもコスト的にも不利にな
る。従つて、一般には光学レンズを用い、原稿を
センサ上に縮小結像させ使用している。しかしこ
の方法では、光学レンズを用いるため光路長が長
くなり、装置の小型化が困難になる。
This MOS type image sensor or CCD sensor is based on a single crystal substrate and is created using IC technology on this substrate, so manufacturing a sensor with a large area is disadvantageous in terms of performance and cost. . Therefore, an optical lens is generally used to form a reduced image of the document on the sensor. However, since this method uses an optical lens, the optical path length becomes long, making it difficult to miniaturize the device.

上記のような縮小結像型のイメージセンサに対
し、装置を小型化する目的で原稿と同じ大きさの
センサを用い、オプテイカルフアイバーで原稿と
等倍の像を結像させる密着型イメージセンサが考
案されている。密着型イメージセンサは原稿と同
じ大きさの光電変換部が必要で、広い面積にわた
つて均一な膜の形成が要求される。
In contrast to the reduction image sensor described above, a contact image sensor uses a sensor the same size as the original and uses optical fibers to form an image of the same size as the original in order to miniaturize the device. It has been devised. A contact image sensor requires a photoelectric conversion unit that is the same size as the original, and requires the formation of a uniform film over a wide area.

現在密着型イメージセンサとしてはCdS光導電
層を島状に分割した1次元密着型イメージセンサ
が提案されているが、光導電層を分割して作製し
なければならず、また各光導電層に夫々電極を設
けねばならず、構造が複雑であり、更に読取り速
度は光導電層の光応答速度によつて制限される。
特にCdS等の光導電層は光応答速度に問題があ
り、1次元イメージセンサとしてかなり制限を受
ける。
Currently, a one-dimensional contact image sensor in which a CdS photoconductive layer is divided into islands has been proposed as a contact image sensor. Each electrode must be provided, the structure is complicated, and the reading speed is limited by the photoresponse speed of the photoconductive layer.
In particular, photoconductive layers such as CdS have a problem with photoresponse speed, and are severely limited as one-dimensional image sensors.

更にアモルフアスシリコン等を利用して連続し
た帯状の光導電体を用いた密着型センサも提案さ
れているが、このような1次元センサを用いて2
次元画像を読取ろうとすれば、センサを繰返して
使用しなければならず、そのために同じセンサ部
分をある周期で電圧印加し、信号の読取りを行な
うため、“明”“暗”の照度変化に対する電流
の変化、即ち立ち上がり立ち下がり特性が直接信
号に影響を及ぼす。そのために上記1次元センサ
では1ラインを走査する時間を応答速度より大き
くとる必要があり、2次元原稿の読取時間が長く
なつてイメージセンサとして実用化するには問題
があつた。
Furthermore, a close-contact sensor using a continuous band-shaped photoconductor made of amorphous silicon or the like has been proposed, but it is possible to use such a one-dimensional sensor to
If you want to read a dimensional image, you have to use the sensor repeatedly, and for that purpose, voltage is applied to the same sensor part at a certain period and the signal is read, so the current changes as the illuminance changes between "bright" and "dark". The change in the rising and falling characteristics directly affects the signal. Therefore, in the one-dimensional sensor described above, it is necessary to take a time longer than the response speed to scan one line, and the time required to read a two-dimensional original becomes long, which poses a problem for practical use as an image sensor.

<発明の目的> 本発明は上記従来のイメージセンサがもつ問題
点に鑑みてなされたもので、新規な構造からなる
イメージセンサを用いて、光学的及び電気的にセ
ンサ面を走査して電極からの引き出し端子数の軽
減をはかつた2次元画像読取装置を提供するもの
で、密着型イメージセンサとしてだけではなく通
常の光学系を用いた2次元イメージセンサとして
も利用することができる読取装置である。
<Object of the Invention> The present invention has been made in view of the above-mentioned problems with conventional image sensors, and uses an image sensor with a novel structure to scan the sensor surface optically and electrically to detect This is a two-dimensional image reading device that reduces the number of lead-out terminals, and is a reading device that can be used not only as a contact type image sensor but also as a two-dimensional image sensor using a normal optical system. be.

<実施例> 第1図は本発明による一実施例の画像読取装置
におけるセンサ1の構造を示す斜視図である。セ
ンサ1は、少なくとも読取るべき2次元画像面と
同程度の面積をもつたガラス等の絶縁板を基板2
とし、該基板2の一方の表面にAl等を蒸着して
形成したストライプ状X電極3が一定のピツチで
平行に設けられている。各X電極3の幅及びピツ
チはセンサ1の解像度に影響するが、後述する所
望膜厚の光導電層が示す光出力特性が許す範囲で
細かいことが望ましい。X電極3が形成された基
板2上には重ねて光導電層4が形成されている。
該光導電層4は樹脂中に主としてCdSからなる光
導電体粉末を混合分散させてなり、基板2上を被
つて2次元読取り平面全域に均質な膜厚に形成さ
れている。光導電層4上に更にY電極5が、上記
X電極3と直交する方向にほぼ同程度のピツチで
形成されている。該Y電極5は画像の読取りを可
能にするため透明電極材料によつて作成されてい
る。尚、基板2を透明絶縁材料で形成し、X電極
3を透明電極材料とする場合には基板2側を画像
入力側とし、Y電極5はAl等の金属膜や多結晶
シリコン等が作成することもできる。
<Embodiment> FIG. 1 is a perspective view showing the structure of a sensor 1 in an image reading device according to an embodiment of the present invention. The sensor 1 includes an insulating plate made of glass or the like having at least the same area as the two-dimensional image plane to be read on a substrate 2.
On one surface of the substrate 2, striped X electrodes 3 formed by vapor-depositing Al or the like are provided in parallel at a constant pitch. Although the width and pitch of each X electrode 3 affect the resolution of the sensor 1, it is desirable that the width and pitch be as fine as possible within the range allowed by the light output characteristics exhibited by a photoconductive layer having a desired thickness, which will be described later. A photoconductive layer 4 is formed over the substrate 2 on which the X electrode 3 is formed.
The photoconductive layer 4 is made by mixing and dispersing photoconductive powder mainly composed of CdS in a resin, and is formed to cover the substrate 2 and have a uniform thickness over the entire two-dimensional reading plane. Further, Y electrodes 5 are formed on the photoconductive layer 4 in a direction perpendicular to the X electrodes 3 at approximately the same pitch. The Y electrode 5 is made of a transparent electrode material to enable image reading. In addition, when the substrate 2 is made of a transparent insulating material and the X electrode 3 is made of a transparent electrode material, the substrate 2 side is the image input side, and the Y electrode 5 is made of a metal film such as Al, polycrystalline silicon, etc. You can also do that.

本実施例の場合Al膜からなるX電極3側は単
にストライプ状の導体が形成されているだけで、
相互の間には特別には配線されない。
In this example, a striped conductor is simply formed on the side of the X electrode 3 made of an Al film.
There is no special wiring between them.

一方透明電極のY電極5側は、n本からなるY
電極群の内少なく共1本、例えば第1番目のY1
電極を、画像読取り動作時にX電極群から1本の
Xi電極を選択するための電極とし、残りのY2
Yo電極を、マトリツク状にセンサエレメントを
配置したイメージセンサを構成するための電極と
する。従つてX電極を選択するためのY1電極に
は、1本のX電極の幅に相当する領域を点灯する
スイツチング用光源6(発光ダイオード等)が相
対向させて配置され、Y1電極自身は負荷抵抗7
を介して電源8の一端に接続されている。またセ
ンサエレメントを形成する残りのY2〜Yo電極は
夫々走査のためのスイツチング素子92〜9oを介
して共通に上記電源8の他方の端子に接続されて
いる。Y2〜Yo電極面に画像情報を導くために、
Y2〜Yo電極に相対向させてオプテイカルフアイ
バアレイ10が設けられている。該オプテイカル
フアイバアレイ10は上記スイツチング用光源6
と一体に同一X電極に対向するように一直線状に
形成されている。上記スイツチング素子92〜9o
は走査回路11から与えられる信号によつて順次
切換えられ、オプテイカルフアイバアレイ10が
一つのX電極に対向している期間にスイツチング
素子92〜9oが一巡する速さで切換えられる。こ
の時Y電極のうち電源に接続されていない端子は
スイツチング素子を介してアースに接続される。
図中OUT端子はY電極から読取り出力出号を導
出する端子である。
On the other hand, the Y electrode 5 side of the transparent electrode is composed of n Y electrodes.
At least one electrode in the electrode group, for example, the first Y 1
One electrode from the X electrode group during image reading operation.
Let the X i electrode be the electrode for selection, and the remaining Y 2 ~
The Y o electrode is used to configure an image sensor in which sensor elements are arranged in a matrix. Therefore, a switching light source 6 (such as a light emitting diode) that lights up an area corresponding to the width of one X electrode is placed opposite to the Y1 electrode for selecting the X electrode, and the Y1 electrode itself is the load resistance 7
It is connected to one end of the power supply 8 via. The remaining Y 2 -Y o electrodes forming the sensor element are commonly connected to the other terminal of the power source 8 via scanning switching elements 9 2 -9 o , respectively. Y 2 ~ Y o To guide the image information to the electrode surface,
An optical fiber array 10 is provided opposite to the Y 2 -Y o electrodes. The optical fiber array 10 is connected to the switching light source 6.
The X electrodes are formed integrally with each other in a straight line so as to face the same X electrode. The switching elements 9 2 to 9 o
are sequentially switched by a signal applied from the scanning circuit 11, and the switching elements 92 to 9o are switched at the speed of one cycle while the optical fiber array 10 is facing one X electrode. At this time, the terminals of the Y electrodes that are not connected to the power source are connected to the ground via the switching element.
The OUT terminal in the figure is a terminal for deriving a read output signal from the Y electrode.

第2図は上記イメージセンサ1と光学系との関
係を示す配置図で、センサ1に対向するスイツチ
ング用光源6と一体になつたオプテイカルフアイ
バアレイ10には、原稿12からの反射光が画像
情報として入射され、原稿12面を照明するため
の光源13が設けられている。上記イメージセン
サ1はほぼ原稿12を読取り得る2次元の領域を
備えているため、原稿12とセンサ1に対して光
学系10が読取り領域を走査すべく所定速度で駆
動機構14により送り動作される。尚光学系10
を固定してイメージセンサ1側を移動させてもよ
い。
FIG. 2 is a layout diagram showing the relationship between the image sensor 1 and the optical system. The optical fiber array 10, which is integrated with the switching light source 6 facing the sensor 1, receives the reflected light from the original 12 to form an image. A light source 13 is provided for inputting light as information and illuminating the surface of the document 12. Since the image sensor 1 has a two-dimensional area in which the original 12 can be read, the optical system 10 is fed by the drive mechanism 14 at a predetermined speed to scan the reading area with respect to the original 12 and the sensor 1. . Furthermore, optical system 10
The image sensor 1 side may be moved while being fixed.

次に上記構造の2次元画像読取装置の動作を説
明する。駆動機構14の送りによつてオプテイカ
ルフアイバアレイ10がX電極群のXi電極に対向
する状態で、スイツチング用光源6が点灯するこ
とにより、Xi電極とY1電極に挾まれた光導電層
の部分5i-1が導通状態になる。同時にオプテイ
カルフアイバアレイ10には原稿12からの反射
光が入射されており、Xi電極に対向するY2〜Yo
電極部分に画像情報に対応する光信号が入力され
ている。この時Y1電極とY2電極の間の光導電層
に光が照射して、Y1とY2電極間が導通状態とな
らない用にY1電極とY2電極間を光遮断するか又
は、Y1電極とY2電極間の光導電層を除去する。
その状態でY2〜Yo電極に接続されたスイツチン
グ素子92〜9oが走査回路11からの信号により
順次一定期間オンになるため、オプテイカルフア
イバアレイ10から光信号が入力されているYl
極については、Yl電極下の光導電層部分5i-lが導
通状態になる。該光導電層部分5i-lは、スイツチ
ング用光源6によつて導通状態になつている上記
光導電層部分5i-1との間がXi電極によつて電気
的に結合され、電源8が印加されることから出力
端子OUTから電気回路が形成されて画像読取り
信号が出力される。スイツチング素子92〜9o
切換えることによりi番目のX電極上の画像を読
取ることができ、光学系の移動と共にX電極を順
次切換えて同様の動作を行わせることにより、画
像全体を読取つた信号を2次元センサ1の出力か
ら得ることができる。またスイツチング素子92
〜9oを介してY電極のうち電源が印加されてい
る端子以外をアースに接続することでクロストー
ク電流を最小にできる。
Next, the operation of the two-dimensional image reading device having the above structure will be explained. The switching light source 6 is turned on with the optical fiber array 10 facing the X i electrode of the X electrode group due to the feeding of the drive mechanism 14, so that the photoconductive light sandwiched between the X i electrode and the Y 1 electrode is turned on. Part 5 i-1 of the layer becomes conductive. At the same time, reflected light from the original 12 is incident on the optical fiber array 10, and Y 2 to Y o facing the X i electrode are incident on the optical fiber array 10.
An optical signal corresponding to image information is input to the electrode portion. At this time, the photoconductive layer between the Y 1 and Y 2 electrodes is irradiated with light, and the Y 1 and Y 2 electrodes are either shielded from light to prevent conduction between the Y 1 and Y 2 electrodes, or , remove the photoconductive layer between the Y1 and Y2 electrodes.
In this state, the switching elements 9 2 to 9 o connected to the Y 2 to Y o electrodes are sequentially turned on for a certain period of time by the signal from the scanning circuit 11, so that the Y Regarding the l electrode, the photoconductive layer portion 5il under the Yl electrode becomes conductive. The photoconductive layer portion 5 il is electrically coupled to the photoconductive layer portion 5 i-1, which is in a conductive state by the switching light source 6, by the X i electrode, and the power source 8 is connected to the photoconductive layer portion 5 i-1 . Since this voltage is applied, an electric circuit is formed from the output terminal OUT, and an image reading signal is output. By switching the switching elements 92 to 9o , the image on the i-th X electrode can be read, and by sequentially switching the X electrodes and performing the same operation as the optical system moves, the entire image can be read. A signal can be obtained from the output of the two-dimensional sensor 1. Also, switching element 9 2
The crosstalk current can be minimized by connecting the terminals of the Y electrodes other than those to which power is applied to the ground via ~ 9o .

A4原稿サイズの読取りセンサとして8本/mm
の電極数を備えた2次元イメージセンサを作製
し、光学系移動速度を100mm/sec、Y電極のスイ
ツチ周波数1.6MHzで読取り動作させた。この結
果A4原稿を約3秒(約1.2msec/ライン)の時
間で十分なS/N比で読取ることができた。同じ
CdSを光導電層とした従来の1次元イメージセン
サでは、本実施例と同程度のS/N比を得るため
には50msec/ライン以上の速度では困難であつ
た。
8 lines/mm as a reading sensor for A4 document size
A two-dimensional image sensor with the number of electrodes was fabricated, and the reading operation was performed at an optical system movement speed of 100 mm/sec and a Y electrode switch frequency of 1.6 MHz. As a result, an A4 document could be read in about 3 seconds (about 1.2 msec/line) with a sufficient S/N ratio. same
In a conventional one-dimensional image sensor using CdS as a photoconductive layer, it was difficult to obtain an S/N ratio comparable to that of this embodiment at a speed of 50 msec/line or higher.

光導電層4はCdS、CdSeを用いた樹脂分散型
に限定されるものではなく、アモルフアスSi、ア
モルフアスSe、アモルフアスSe化合物、有機半
導体等を用いて構成したイメージセンサにおいて
も前記実施例と同様に良好な結果を得ることがで
きる。
The photoconductive layer 4 is not limited to a resin-dispersed type using CdS or CdSe, and can also be used in an image sensor configured using amorphous Si, amorphous Se, an amorphous Se compound, an organic semiconductor, etc. in the same manner as in the above embodiment. Good results can be obtained.

<効果> 以上本発明によれば、センサエレメントを2次
元に配置した画像読取装置において、光導電層を
挾むX及びY電極の一方の電極を光学的に他方を
電気的スイツチングすることによつて2次元セン
サ面全域を走査するため、信号を導出するための
配線を著く簡略にすることができ、また光学的ス
イツチングする手段は画像読取り信号を形成する
ための光導電層を利用して形成することができ、
画像読取り装置の構成を簡略にすることができ、
経済的にもすぐれた実益価値の大きい装置を得る
ことができる。
<Effects> According to the present invention, in an image reading device in which sensor elements are arranged two-dimensionally, one of the X and Y electrodes sandwiching the photoconductive layer is optically switched, and the other is electrically switched. Since the entire two-dimensional sensor surface is scanned, the wiring for deriving the signals can be significantly simplified, and the optical switching means utilizes a photoconductive layer to form image reading signals. can be formed,
The configuration of the image reading device can be simplified,
It is possible to obtain an economically superior device with great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例の要部斜視図、
第2図は同実施例の全体構成図である。 1:センサ、2:基板、3:X電極、4:光導
電層、5:Y電極、6:スイツチング光源、92
〜9o:スイツチング素子、10:オプテイカル
フアイバアレイ、11:走査回路、Y1:X電極
選択用Y電極。
FIG. 1 is a perspective view of essential parts of an embodiment according to the present invention;
FIG. 2 is an overall configuration diagram of the same embodiment. 1: Sensor, 2: Substrate, 3: X electrode, 4: Photoconductive layer, 5: Y electrode, 6: Switching light source, 9 2
~ 9o : Switching element, 10: Optical fiber array, 11: Scanning circuit, Y1 : Y electrode for selecting X electrode.

Claims (1)

【特許請求の範囲】 1 光導電層4と、 該光導電層4の一方の面に複数本の導体で互い
に平行に形成されたX電極X1〜Xnと、 上記光導電層4の他方の面に複数本の透明導体
で上記X電極X1〜Xnと直交する関係に形成され
た複数のY電極Y1〜Yoと、 上記Y電極Y1〜Yoに沿つて相対的移動可能に
上記Y電極Y1〜Yoの少なくとも1つの電極Y1
対向させて設けられた上記X電極X1〜Xnを選択
するためのスイツチング用光源6と、 上記Y電極Y1〜Yoの少なくとも1つの電極Y1
を除いた他のY電極Y2〜Yoの夫々に接続された
走査スイツチ92〜9oと、 上記走査スイツチ92〜9oと上記Y電極Y1
Yoの少なくとも1つの電極Y1との間に接続され
た電源8と、 上記Y電極Y1〜Yoに沿つて上記スイツチング
用光源6と共に相対移動可能に上記Y電極Y1
Yoの少なくとも1つの電極Y1を除いた他のY電
極Y2〜Yoに対向して設けられた読取るべき画像
情報を上記X電極X1〜Xoに沿つてライン状に導
く光学系10と、 を備え、 上記電源8の電位を上記Y電極Y1〜Yoの少な
くとも1つの電極Y1及び上記スイツチング光源
6によつて選択された光導電層部分5i-1を介し
て上記X電極X1〜Xnの1つの電極Xiに供給して
X電極X1〜Xnを選択するようになしたことを特
徴とする2次元画像読取装置。
[Scope of Claims] 1. A photoconductive layer 4; X electrodes X 1 to X n formed of a plurality of conductors in parallel to each other on one surface of the photoconductive layer 4; and the other side of the photoconductive layer 4. A plurality of Y electrodes Y 1 to Y o formed with a plurality of transparent conductors on the surface in a relationship orthogonal to the X electrodes X 1 to X n , and relative movement along the Y electrodes Y 1 to Y o . a switching light source 6 for selecting the X electrodes X 1 to X n , which are provided to possibly face at least one electrode Y 1 of the Y electrodes Y 1 to Yo; and a switching light source 6 for selecting the X electrodes X 1 to X n ; at least one electrode Y 1 of o
scanning switches 9 2 - 9 o connected to each of the other Y electrodes Y 2 - Yo except for the scanning switches 9 2 - 9 o and the Y electrodes Y 1 -
A power supply 8 connected between at least one electrode Y 1 of Y o and the Y electrodes Y 1 - movable relative to each other along the switching light source 6 along the Y electrodes Y 1 -Y o .
An optical system that guides image information to be read in a line along the X electrodes X 1 to X o , which are provided opposite to the other Y electrodes Y 2 to Y o excluding at least one electrode Y 1 of the Y o . 10, and the potential of the power source 8 is applied to the photoconductive layer portion 5 i-1 selected by the switching light source 6 and at least one electrode Y 1 of the Y electrodes Y 1 to Yo. A two-dimensional image reading device characterized in that the X electrodes X 1 to X n are selected by supplying a signal to one electrode Xi of the X electrodes X 1 to X n .
JP58035608A 1983-02-15 1983-03-03 Two-dimensional picture reader Granted JPS59161176A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58035608A JPS59161176A (en) 1983-03-03 1983-03-03 Two-dimensional picture reader
EP84300990A EP0119742B2 (en) 1983-02-15 1984-02-15 Two-dimensional image readout device
DE8484300990T DE3478779D1 (en) 1983-02-15 1984-02-15 Two-dimensional image readout device
US06/580,386 US4541015A (en) 1983-02-15 1984-02-15 Two-dimensional image readout device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58035608A JPS59161176A (en) 1983-03-03 1983-03-03 Two-dimensional picture reader

Publications (2)

Publication Number Publication Date
JPS59161176A JPS59161176A (en) 1984-09-11
JPH029499B2 true JPH029499B2 (en) 1990-03-02

Family

ID=12446543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58035608A Granted JPS59161176A (en) 1983-02-15 1983-03-03 Two-dimensional picture reader

Country Status (1)

Country Link
JP (1) JPS59161176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758458A (en) * 1993-08-17 1995-03-03 Kokusai Electric Co Ltd Soft case for electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200164315Y1 (en) * 1999-07-12 2000-02-15 주식회사인포웨이브코리아 Text input device using natural light

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134319A (en) * 1976-05-06 1977-11-10 Nippon Telegr & Teleph Corp <Ntt> I/o system for video information
JPS53119619A (en) * 1977-03-28 1978-10-19 Fuji Xerox Co Ltd Twoodimensional photoelectric converter
JPS57207475A (en) * 1981-06-16 1982-12-20 Nec Corp Flat type picture input sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134319A (en) * 1976-05-06 1977-11-10 Nippon Telegr & Teleph Corp <Ntt> I/o system for video information
JPS53119619A (en) * 1977-03-28 1978-10-19 Fuji Xerox Co Ltd Twoodimensional photoelectric converter
JPS57207475A (en) * 1981-06-16 1982-12-20 Nec Corp Flat type picture input sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758458A (en) * 1993-08-17 1995-03-03 Kokusai Electric Co Ltd Soft case for electronic equipment

Also Published As

Publication number Publication date
JPS59161176A (en) 1984-09-11

Similar Documents

Publication Publication Date Title
JP2929550B2 (en) Optical sensor and image reading device
US4908718A (en) Image reading apparatus having a light shielding layer arranged on the sides of the substrate and protective layers of a photo sensor
US4369372A (en) Photo electro transducer device
US4271435A (en) Scanning type readout device
JPH0120592B2 (en)
EP0260824B1 (en) Circuit for a photosensitive pixel with exposed blocking element
US4541015A (en) Two-dimensional image readout device
US4365274A (en) One-dimensional image sensor
JPS6313348B2 (en)
EP0177117B1 (en) Image sensor
US4567374A (en) Photoelectric converting device with a plurality of divided electrodes
JPH0379910B2 (en)
US4746804A (en) Photosensitive pixel with exposed blocking element
JPH029499B2 (en)
JP2001298583A (en) Image sensor
US5079415A (en) Apparatus for converting optical information into electrical information signal, information storage element and method for storing information in the information storage element
JPH022301B2 (en)
JPS61189065A (en) Image sensor
JPH0380385B2 (en)
US5235542A (en) Apparatus for converting optical information into electrical information signal, information storage element and method for storing information in the information storage element
US5767559A (en) Thin film type photoelectric conversion device
JPH027547B2 (en)
JPH07106536A (en) Photodetector array and its manufacture
JPH01179356A (en) Hybrid integrated photoelectric converter array
Suzuki et al. High speed and high resolution contact-type image sensor using an amorphous silicon photodetector array