[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0292485A - Laser beam machine and method for adjusting beam axis thereof - Google Patents

Laser beam machine and method for adjusting beam axis thereof

Info

Publication number
JPH0292485A
JPH0292485A JP63245821A JP24582188A JPH0292485A JP H0292485 A JPH0292485 A JP H0292485A JP 63245821 A JP63245821 A JP 63245821A JP 24582188 A JP24582188 A JP 24582188A JP H0292485 A JPH0292485 A JP H0292485A
Authority
JP
Japan
Prior art keywords
mirror
light guide
laser beam
nozzle
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63245821A
Other languages
Japanese (ja)
Inventor
Yukio Ogawa
幸夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63245821A priority Critical patent/JPH0292485A/en
Publication of JPH0292485A publication Critical patent/JPH0292485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain the laser beam machine having good cutting accuracy by providing a mirror tilting mechanism to the final-stage mirror of the light guide tube in the laser beam machine provided with the rotary multijoint type light guide device. CONSTITUTION:A laser beam is shot from a nozzle 9 through the light guide tube 2. The beam axis thereof is aligned to the nozzle axis by changing the angle of a mirror by the mirror tilting mechanism 20 if the beam axis has the misalignment of a permissible value or above from the nozzle axis. The mirror 13 is tilted along a spherical body 13a by the cooperative movement of pulling means 22, 23 of the mirror tilting mechanism. Since the mirror is connected by the pulling means 22a, 23a, the three-dimensional displacement of the mirror is free and since the backlash is removed by energizing means 24, 25, the mirror 13 does not clatter. The change rate of the adjustment of the pulling means 22, 23 is measured by a rotary encoder 22f and is memorized in a memory means as the correction value at a point P1. The laser beam machine having good cutting accuracy is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ加工機における回転多関節型導光管の
ビーム角度調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a beam angle adjustment device for a rotary articulated light guide tube in a laser processing machine.

(従来の技術) 多関節型産業ロボットにてレーザ加工装置のノズルを三
次元的に位置制御して切断、溶接を為すレーザ加工装置
が実用化されている。
(Prior Art) A laser processing device that performs cutting and welding by three-dimensionally controlling the position of a nozzle of the laser processing device using an articulated industrial robot has been put into practical use.

このレーザ加工装置の例を第4図に基づいて説明する。An example of this laser processing apparatus will be explained based on FIG. 4.

ワークWを載置するワーク載置台100の脇に多関節型
・ロボット101が配置され、これらワーク載置台10
0とロボット101とを跨ぐようにして基礎上に架台1
02が立設されている。
An articulated robot 101 is arranged beside a workpiece mounting table 100 on which a workpiece W is placed.
0 and the robot 101 on the foundation.
02 is erected.

この架台102上にはレーザビーム発信機103が載置
され、このレーザビーム発信機からレーザビームを導き
だす導光管104が分岐し、その先端はロボット101
のアーム101a先端に取付けたレーザ用ノズル105
に連結する。
A laser beam transmitter 103 is placed on this pedestal 102, and a light guide tube 104 that guides the laser beam from this laser beam transmitter branches, and its tip is connected to the robot 101.
Laser nozzle 105 attached to the tip of arm 101a of
Connect to.

このノズル105はロボット101の作用で三次元的に
変位されるので、前記導光管104はそれに追従すべく
多関節形式とされている。
Since this nozzle 105 is displaced three-dimensionally by the action of the robot 101, the light guide tube 104 is of a multi-joint type in order to follow the displacement.

即ち、導光管104は直管部104aとベンド部104
bとを組み合せ、ベント部104bと直管部104aと
の間を回転自在に構成するとともに、ベンド部104b
の夫々にビームを反射せしめるミラーを備えている。
That is, the light guide tube 104 has a straight tube section 104a and a bend section 104.
b, to freely rotate between the bent part 104b and the straight pipe part 104a, and
Each of the beams is equipped with a mirror that reflects the beam.

レーザビームは複数のミラーで順次反転されて後、ノズ
ル105に至る。
The laser beam reaches the nozzle 105 after being sequentially reversed by a plurality of mirrors.

(発明が解決しようとする課N) 第4図において、ティーチングに基づいてノズル105
がポイントP1からポイントP2へ移動する際に、前記
繰返し反射された後のレーザビーム軸はノズル軸に対し
て偏寄する。
(Problem N to be solved by the invention) In FIG. 4, the nozzle 105 is
When the laser beam moves from point P1 to point P2, the laser beam axis after being repeatedly reflected is biased with respect to the nozzle axis.

この理由は、導光管104がベンド部xo4bで回転し
ながらその形状を複数に変化させることと、直管部10
4aの撓み量が変化することにある。
The reason for this is that the light guide tube 104 changes its shape into a plurality of shapes while rotating at the bend portion xo4b, and the straight tube portion
The reason is that the amount of deflection of 4a changes.

特に、直管部104a・・・は僅かに撓み、この撓み量
はその直管部104a・・・が水平に近づく程増大する
。直管部104aの撓みは隣接するベンド部に影響し、
ベンド部に固設されているミラーをも僅かに変位させる
In particular, the straight pipe portions 104a... are slightly bent, and the amount of deflection increases as the straight pipe portions 104a... approach the horizontal position. The deflection of the straight pipe section 104a affects the adjacent bend section,
The mirror fixed to the bend section is also slightly displaced.

この変位を除くべく導光管104の曲げ剛性を高めるよ
うとすると自重が増大し、ロボットの負担を増す。
If an attempt is made to increase the bending rigidity of the light guide tube 104 in order to eliminate this displacement, its own weight will increase and the burden on the robot will increase.

従って、従来のレーザ加工装置では、ノズル軸に対して
レーザビーム軸がずれたり傾斜し、結果、切断精度の向
上を図り難い。
Therefore, in conventional laser processing devices, the laser beam axis is shifted or tilted with respect to the nozzle axis, and as a result, it is difficult to improve cutting accuracy.

(課題を解決するための手段) 前記課題を解決すべく本発明は、レーザ加工装置の回転
多関節型導光管の最終ミラーにミラー傾動機構を付設す
る。
(Means for Solving the Problems) In order to solve the above problems, the present invention attaches a mirror tilting mechanism to the final mirror of a rotary articulated light guide tube of a laser processing device.

(作用) 本発明は、導光管の最終ミラーを傾動させることにより
ビーム軸をノズル軸へ合致せしめる。
(Operation) The present invention aligns the beam axis with the nozzle axis by tilting the final mirror of the light guide tube.

上記傾動は、ティーチングポイント毎に実施することを
特徴とする。
The above-mentioned tilting movement is characterized in that it is performed for each teaching point.

(実施例) 本発明の実施例を添付図面に基づいて以下に説明する。(Example) Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は、本発明に係るレーザ加工装置を示し、第2図
は本発明に係るミラー傾動機構断面図、第3図は第2図
のA−A矢視図である。
FIG. 1 shows a laser processing apparatus according to the present invention, FIG. 2 is a sectional view of a mirror tilting mechanism according to the present invention, and FIG. 3 is a view taken along the line A--A in FIG. 2.

第1図に示すように、本発明に係るレーザ加工装置1の
導光管2は直管部3とベンド部4,5゜6とレーザビー
ムを絞るレンズ7を収納するハウジング8と、先細り円
錐形のノズル9とからなる。
As shown in FIG. 1, the light guide tube 2 of the laser processing apparatus 1 according to the present invention includes a straight tube section 3, bend sections 4 and 5 degrees 6, a housing 8 that accommodates a lens 7 for narrowing down the laser beam, and a tapered conical shape. It consists of a shaped nozzle 9.

本実施例ではハウジ、ング8がロボットのアーム101
aに固着され、このハウジング8を介してノズル9は位
置制御される。
In this embodiment, the housing 8 is the arm 101 of the robot.
The position of the nozzle 9 is controlled via the housing 8.

ベンド部4〜6には夫々ミラー11〜13が装備され、
これらミラー11〜13にてレーザビームを順次反射さ
せてノズル9へ導く。
Mirrors 11 to 13 are installed in the bend parts 4 to 6, respectively.
The laser beam is sequentially reflected by these mirrors 11 to 13 and guided to the nozzle 9.

前記ミラー11〜13の内、ノズル9に最も近いミラー
13(以降最終段ミラーと記す)には、次に詳述するミ
ラー傾動機構が付設されている。
Among the mirrors 11 to 13, the mirror 13 closest to the nozzle 9 (hereinafter referred to as the final stage mirror) is provided with a mirror tilting mechanism which will be described in detail below.

ミラー傾動機構20は、第2図に示すように、最終段の
ベンド部6にボルト取付けられる蓋体21と、この蓋体
21の略中央を貫通した後にナツト21aにて締結固定
される球付きボルト21bと、このボルトの球に嵌め合
うべくミラー13の背面中央に穿設された球面座13a
と、この球面座13aから距離をおいてミラーの背面に
係合する2組の引張り手段22.23と、これら引張り
手段22.23に引張力を作用する付勢手段24.25
とからなる。
As shown in FIG. 2, the mirror tilting mechanism 20 includes a lid body 21 that is bolted to the final stage bend portion 6, and a ball with a ball that passes through the approximate center of this lid body 21 and is fastened and fixed with a nut 21a. A bolt 21b and a spherical seat 13a drilled in the center of the back of the mirror 13 to fit into the ball of the bolt.
, two sets of tensioning means 22.23 that engage with the back surface of the mirror at a distance from this spherical seat 13a, and biasing means 24.25 that apply a tension force to these tensioning means 22.23.
It consists of

前記引張り手段22は、三次元的変化を可能にするボー
ル継手22aと、このボール継手22aに一端を係合す
るスラスト軸22bと、このスラスト軸22bにネジ嵌
合するギヤ22cと、このギヤ22cに噛合するドライ
ブギヤ22dと、このギヤを回転せしめる減速機22e
及びロータリエンコーダ22f付モータ22gと、上記
ギヤ22c1モータ22g等を支承するハウジング22
hとからなる。
The tensioning means 22 includes a ball joint 22a that enables three-dimensional change, a thrust shaft 22b that engages one end with the ball joint 22a, a gear 22c that is screwed into the thrust shaft 22b, and the gear 22c. A drive gear 22d that meshes with the gear, and a reducer 22e that rotates this gear.
and a housing 22 that supports a motor 22g with a rotary encoder 22f, the gear 22c1 motor 22g, etc.
It consists of h.

この構成により、モータ22gは、減速機22e、ドラ
イブギヤ22dを介してギヤ22cを回転せしめ、ギヤ
22cはスラスト軸22bを上昇若しくは下降させる。
With this configuration, the motor 22g rotates the gear 22c via the reduction gear 22e and the drive gear 22d, and the gear 22c raises or lowers the thrust shaft 22b.

ギヤ22cはベアリング22i、22iで位置決めされ
ているので、回転自在であるが上下方向には移動しない
Since the gear 22c is positioned by bearings 22i, 22i, it is rotatable but does not move vertically.

もう一方の引張り手段23は、上記に説明した引張り手
段22と同一機構であって、第2図のA−A矢視図であ
る第3図に示す如く、引張り手段23と図示90°離れ
た位置に配置されている。
The other tensioning means 23 has the same mechanism as the tensioning means 22 described above, and is separated from the tensioning means 23 by 90 degrees as shown in FIG. 3, which is a view taken along arrow A-A in FIG. placed in position.

更に、バネ″に代表される付勢手段24は、前記球面座
13aを中心に前記引張り手段22と略対称の位置に設
けられ、ミラー13を蓋体21側へ引き寄せる方向へ付
勢する。
Further, a biasing means 24, represented by a spring, is provided at a position substantially symmetrical to the tensioning means 22 with the spherical seat 13a as the center, and biases the mirror 13 in a direction toward the lid 21.

同様にもう一方りの付勢手段25は引張り手段23と対
称に設けられる。
Similarly, the other biasing means 25 is arranged symmetrically to the tensioning means 23.

以上の構成からなるミラー傾動機構の作用を次に述べる
The operation of the mirror tilting mechanism constructed as described above will be described below.

先ず、第4図のポイントP1にノズル9を臨ませる。First, the nozzle 9 is placed facing point P1 in FIG.

導光管2を介して、レーザビームをノズル9から発射せ
しめ、このビーム軸がノズル軸に対し許容値以上のずれ
があれば、ミラー傾動機構20にてミラーの角度を変更
せしめ、ビーム軸をノズル軸へ合致させる。
A laser beam is emitted from the nozzle 9 via the light guide tube 2. If the beam axis deviates from the nozzle axis by more than an allowable value, the mirror tilting mechanism 20 changes the angle of the mirror to change the beam axis. Align it with the nozzle axis.

即ち、第3図に示す如く、ミラー傾動機構の引張り手段
22と引張り手段23の協働にてミラー13を球体13
aに沿って傾動させることができる。この際に、引張り
手段22.23とミラー13とはボール継手22a、2
3aで結ばれているので、ミラーの三次元的変位は自在
であり、更に付勢手段24.25にて引張り手段22.
23に常時引張力を掛け、所謂バックラッシュを除去し
ているのでミラー13のガタつきは無い。
That is, as shown in FIG.
It can be tilted along a. At this time, the tension means 22.23 and the mirror 13 are connected to the ball joints 22a, 22.
3a, the mirror can be freely displaced in three dimensions, and the tension means 22.
Since a tensile force is constantly applied to the mirror 13 to eliminate so-called backlash, there is no wobbling of the mirror 13.

このようにして実施した引張り手段22.23の調整変
化量は、夫々ロータリエンコーダ22f23fで計測し
、ポイントP1における補正値として記憶装置にメモリ
ーしておく。
The amount of adjustment change of the tensioning means 22, 23 carried out in this manner is measured by the rotary encoder 22f23f, respectively, and is stored in the storage device as a correction value at the point P1.

次にポイントP2(第4図参照)へロボットにてノズル
9を位置せしめ、このポイントにおいて、再びビーム軸
をノズル軸へ合致させるべく、ミラー傾動機構20を作
動させ、その結果を記憶させる。
Next, the robot positions the nozzle 9 at point P2 (see FIG. 4), and at this point, the mirror tilting mechanism 20 is operated to again align the beam axis with the nozzle axis, and the result is stored.

このように、本発明は、ロボットのティーチングポイン
ト毎にミラー傾動機構20による補正値を求め、これを
記憶させ、次工程以降のレーザ加工の際にティーチング
ポイント毎に自動補正を為さしめる。
In this manner, the present invention obtains a correction value by the mirror tilting mechanism 20 for each teaching point of the robot, stores this value, and automatically corrects each teaching point during laser processing in the next process and subsequent steps.

以上に述べたビーム軸調整方法によれば、ティーチング
ポイントでビーム軸をノズル軸に合致させるのでレーザ
加工の精度が向上する。
According to the beam axis adjustment method described above, the accuracy of laser processing is improved because the beam axis is matched with the nozzle axis at the teaching point.

そして、次のティーチングポイントで改めてビーム軸を
調整するので、ノズル軸とビーム軸相互のずれ量は累積
しない。
Since the beam axis is adjusted again at the next teaching point, the amount of deviation between the nozzle axis and the beam axis does not accumulate.

更に、ミラー傾動機構を最終段ミラーにのみ付設するの
で、導光管が複雑に大型になる虞れは無い。
Furthermore, since the mirror tilting mechanism is attached only to the final stage mirror, there is no risk that the light guide tube will become complicated or large.

尚、本実施例で説明した付勢手段24.25は1個にま
とめてもよく、又引張り手段22.23のバックラッシ
ュが許容値以下に少量に保たれるなら付勢手段24.2
5を省いてよい。
Note that the biasing means 24.25 described in this embodiment may be combined into one unit, and if the backlash of the tensioning means 22.23 is kept to a small amount below an allowable value, the biasing means 24.2 may be combined into one unit.
You can omit 5.

(発明の効果) 以上述べたように、本発明は構造が簡単で切断精度の良
いレーザ加工装置を提供する。
(Effects of the Invention) As described above, the present invention provides a laser processing device with a simple structure and high cutting accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るレーザ加工装置を示し、第2図
は本発明に係るミラー傾動機構断面図、第3図は第2図
のA−A矢視図、第4図は産業ロボットとレーザ加工装
置との組合せ姿を示す図である。 1・・・レーザ加工装置 2・・・導光管 9・・・ノズル 13・・・最終段ミラー 20・・・ミラー傾動機構
FIG. 1 shows a laser processing device according to the present invention, FIG. 2 is a sectional view of a mirror tilting mechanism according to the present invention, FIG. 3 is a view taken along arrow A-A in FIG. 2, and FIG. 4 is an industrial robot. FIG. 3 is a diagram illustrating a combination of the laser processing device and the laser processing device. 1...Laser processing device 2...Light guide tube 9...Nozzle 13...Final stage mirror 20...Mirror tilting mechanism

Claims (2)

【特許請求の範囲】[Claims] (1)回転多関節型導光管を具備するレーザ加工装置に
おいて、 前記導光管の最終段ミラーにミラー傾動機構を付設した
ことを特徴とするレーザ加工装置。
(1) A laser processing device equipped with a rotary articulated light guide tube, characterized in that a mirror tilting mechanism is attached to the final stage mirror of the light guide tube.
(2)回転多関節型導光管で導かれたレーザビームを前
記導光管先端のノズルに軸合せするビーム軸調整方法に
おいて、 前記ビーム軸調整は導光管の最終段のミラーを傾動させ
て為し、且つこの傾動はノズルを位置制御するロボット
のティーチングポイント毎に実施するようにしたことを
特徴とするレーザ加工装置のビーム軸調整方法。
(2) In a beam axis adjustment method of aligning a laser beam guided by a rotary articulated light guide to a nozzle at the tip of the light guide, the beam axis adjustment is performed by tilting a final stage mirror of the light guide. A method for adjusting a beam axis of a laser processing device, characterized in that the tilting is performed at each teaching point of a robot that controls the position of a nozzle.
JP63245821A 1988-09-29 1988-09-29 Laser beam machine and method for adjusting beam axis thereof Pending JPH0292485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245821A JPH0292485A (en) 1988-09-29 1988-09-29 Laser beam machine and method for adjusting beam axis thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245821A JPH0292485A (en) 1988-09-29 1988-09-29 Laser beam machine and method for adjusting beam axis thereof

Publications (1)

Publication Number Publication Date
JPH0292485A true JPH0292485A (en) 1990-04-03

Family

ID=17139354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245821A Pending JPH0292485A (en) 1988-09-29 1988-09-29 Laser beam machine and method for adjusting beam axis thereof

Country Status (1)

Country Link
JP (1) JPH0292485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316000A (en) * 1991-04-16 1992-11-06 Ohbayashi Corp Method for dismantling nuclear reactor using laser beam
WO2009155908A1 (en) * 2008-06-28 2009-12-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for eccentrically orienting a laser cutting beam in relation to a jet axis and for angle cutting, corresponding laser machining head and laser machining tool
CN111215759A (en) * 2018-11-23 2020-06-02 沈阳新松机器人自动化股份有限公司 Mixed reflection type three-dimensional linkage laser cutting head

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316000A (en) * 1991-04-16 1992-11-06 Ohbayashi Corp Method for dismantling nuclear reactor using laser beam
WO2009155908A1 (en) * 2008-06-28 2009-12-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for eccentrically orienting a laser cutting beam in relation to a jet axis and for angle cutting, corresponding laser machining head and laser machining tool
US20110108533A1 (en) * 2008-06-28 2011-05-12 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Orientating a Laser Cutting Beam
US20110120982A1 (en) * 2008-06-28 2011-05-26 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Oblique Laser Beam Cutting
CN102137733A (en) * 2008-06-28 2011-07-27 通快机床两合公司 Method for eccentrically orienting a laser cutting beam in relation to a jet axis and for angle cutting, corresponding laser machining head and laser machining tool
JP2011526211A (en) * 2008-06-28 2011-10-06 トルンプフ ヴェルクツォイクマシーネン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method for eccentrically orienting a laser cutting beam with respect to the nozzle axis, method for inclined cutting, corresponding laser processing head and laser processing machine
JP2011526210A (en) * 2008-06-28 2011-10-06 トルンプフ ヴェルクツォイクマシーネン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method for eccentrically orienting a laser cutting beam with respect to the nozzle axis, method for inclined cutting, corresponding laser processing head and laser processing machine
US9108271B2 (en) * 2008-06-28 2015-08-18 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Oblique laser beam cutting
US9149889B2 (en) 2008-06-28 2015-10-06 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Orientating a laser cutting beam
CN111215759A (en) * 2018-11-23 2020-06-02 沈阳新松机器人自动化股份有限公司 Mixed reflection type three-dimensional linkage laser cutting head
CN111215759B (en) * 2018-11-23 2022-02-11 沈阳新松机器人自动化股份有限公司 Mixed reflection type three-dimensional linkage laser cutting head

Similar Documents

Publication Publication Date Title
CA1245893A (en) Robotic laser beam delivery apparatus
CN100475405C (en) Positioner for arc welding and arc welding robot system with the positioner
JP3831271B2 (en) Laser welding system and welding method by remote control
US4892992A (en) Industrial laser robot system
JPH0380596B2 (en)
EP0823303A1 (en) Laser processing device
MXPA04012504A (en) A method and device for laser welding.
JPS6336888B2 (en)
CN103846546A (en) Processing device, processing machine and method for moving amachining head
JPH03492A (en) Laser device
JPH0220678A (en) Laser beam-alignment method and device
US5274213A (en) Electric welding robot and a method for welding by using the robot
US7696452B2 (en) Process for the laser beam machining, especially laser beam welding, of components
US5484982A (en) Beam axis adjusting method for a laser robot
EP1277537A1 (en) Machine for cutting pipes with different cross-sections and diameters by means of a laser beam
US4969722A (en) Device for delivering a collimated beam such as a laser beam
JPH0292485A (en) Laser beam machine and method for adjusting beam axis thereof
JPH0255689A (en) Joint structure of industrial articulated robot for laser apparatus
JP2003225787A (en) Method and device for centering nozzle in laser beam machine
JP3072896B1 (en) Hybrid multi-degree-of-freedom mechanism
JP2662679B2 (en) Articulated laser machining robot
JPH02229688A (en) Method and device for laser beam machining using non-axial parabolic reflecting mirror
JP3662319B2 (en) Optical axis moving laser processing equipment
JPH0592290A (en) Vertical multi joint type laser robot for industrial use
JP4235706B2 (en) Apparatus and method for machining a workpiece