JPH0290688A - Distributed feedback type semiconductor laser - Google Patents
Distributed feedback type semiconductor laserInfo
- Publication number
- JPH0290688A JPH0290688A JP63245027A JP24502788A JPH0290688A JP H0290688 A JPH0290688 A JP H0290688A JP 63245027 A JP63245027 A JP 63245027A JP 24502788 A JP24502788 A JP 24502788A JP H0290688 A JPH0290688 A JP H0290688A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- diffraction grating
- wavelength
- semiconductor laser
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 230000008878 coupling Effects 0.000 claims abstract description 23
- 238000010168 coupling process Methods 0.000 claims abstract description 23
- 238000005859 coupling reaction Methods 0.000 claims abstract description 23
- 230000000737 periodic effect Effects 0.000 claims abstract description 8
- 238000005253 cladding Methods 0.000 claims description 7
- 230000001902 propagating effect Effects 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 abstract description 5
- 239000000758 substrate Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract 1
- 239000006117 anti-reflective coating Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000010355 oscillation Effects 0.000 description 35
- 238000013461 design Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002902 bimodal effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は単一波長発振の安定性に優れる分布帰還型半導
体レーザに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed feedback semiconductor laser with excellent stability in single wavelength oscillation.
長距離大容量の光フアイバ通信の進展に伴い、高速変調
時にも単一の波長で安定に動作する分布帰還型半導体レ
ーザ(以下DFB・L Dと称する)の需要が急増して
いる。DFB−LDは素子内部に形成された回折格子の
周期性を利用して、単一の波長でレーザ発振することを
特徴としている。中でも、回折格子の周期性を素子中央
で伝搬波長の1/4だけずらした構造のλ/4シフト型
DFB−LDは、主軸モードと副軸モードとの利得差が
他のDFB構造よりも大きく、そのため高い歩留りで単
一波長発振が得られる光源として、最も活発に開発が進
められている。λ/4シフト型DFB −LDでは、回
折格子による光の分布帰還により、活性層から発っせら
れた光が効果的に共振器内部に閉じ込められ、特に前記
回折格子の周期性がシフトした素子中央部付近(位相シ
フト領域近傍)に光のフィールドが集中する。そのため
文献(9田他、電子情報通信学会、量子エレクトロニク
ス研究会予稿集、0QE86−7)にて指速されている
ように、共振器方向に沿った空間的ホールバーニング現
象によって素子中央付近のキャリア密度が減少し、それ
に伴って生じる屈折率変化により2モ一ド発振に至るケ
ースがよく見られる。このような空間的ホールバーニン
グ現象は、共振方向に沿った光フィールド分布を均一化
することによって防ぐことができるが、そのためには、
回折格子と光との結合係数(KL、には結合効率、Lは
共振器長)を小さく設定する必要がある。上記文献によ
れば、ホールバーニング現象を考慮した理論解析の結果
、λ/4シフト型DFB−LDにおいて、最も歩留りよ
く単一波長発振を得るためには、結合係数(KL)を1
.2〜1.3程度とすることが望ましいとしている。With the development of long-distance, large-capacity optical fiber communications, demand for distributed feedback semiconductor lasers (hereinafter referred to as DFB-LD), which operate stably at a single wavelength even during high-speed modulation, is rapidly increasing. A DFB-LD is characterized in that it oscillates at a single wavelength by utilizing the periodicity of a diffraction grating formed inside the device. Among them, the λ/4 shift type DFB-LD, which has a structure in which the periodicity of the diffraction grating is shifted by 1/4 of the propagation wavelength at the center of the element, has a larger gain difference between the main axis mode and the sub-axis mode than other DFB structures. Therefore, it is being most actively developed as a light source that can provide single wavelength oscillation with high yield. In the λ/4 shift type DFB-LD, the light emitted from the active layer is effectively confined inside the resonator due to the distributed feedback of light by the diffraction grating, especially in the center of the element where the periodicity of the diffraction grating is shifted. The light field is concentrated near the phase shift area (near the phase shift area). Therefore, as pointed out in the literature (K9ta et al., Institute of Electronics, Information and Communication Engineers, Quantum Electronics Research Group Proceedings, 0QE86-7), carriers near the center of the element are caused by the spatial hole burning phenomenon along the resonator direction. There are many cases where the density decreases and the resulting change in refractive index leads to bimodal oscillation. Such spatial hole burning phenomenon can be prevented by uniformizing the optical field distribution along the resonance direction;
It is necessary to set a small coupling coefficient between the diffraction grating and the light (KL, where KL is the coupling efficiency, and L is the resonator length). According to the above literature, as a result of theoretical analysis taking into account the hole burning phenomenon, in order to obtain single wavelength oscillation with the highest yield in a λ/4 shift type DFB-LD, the coupling coefficient (KL) must be set to 1.
.. It is said that it is desirable to set it to about 2 to 1.3.
この設計指針に基づき、従来のλ/4シフト型DFB
−LDでは、KL=1.2〜13程度となる様に回折格
子の山の高さを調整していた。Based on this design guideline, the conventional λ/4 shift type DFB
-LD, the height of the peaks of the diffraction grating was adjusted so that KL=1.2 to about 13.
しかしながら、従来のλ/4シフト型DFB・LDでは
確かにホールバーニング現象による2モ一ド発振の例は
ほとんど観測されなかったが、発振しきい値電流が高く
、且つ高温動作時、光出力の飽和傾向が他のDFB−L
D槽構造比べ大きいと言う問題点があった。However, in the conventional λ/4 shift type DFB/LD, although almost no bimodal oscillation due to the hole burning phenomenon has been observed, the oscillation threshold current is high and the optical output decreases during high temperature operation. Saturation tendency is other DFB-L
There was a problem that it was larger than the D tank structure.
本発明の目的は、低しきい値動作及び高温動作に優れ、
且つ高い歩留りで単一波長発振が得られる^/4シフト
型DFB−LDを提供することにある。The object of the present invention is to have excellent low threshold operation and high temperature operation;
Another object of the present invention is to provide a ^/4 shift type DFB-LD which can obtain single wavelength oscillation with high yield.
本発明による分布帰還型半導体レーザの特徴は、光を発
する活性層と、これを挟む前記活性層よりもエネルギー
ギャップの大きなクラッド層からなる半導体ダブルヘテ
ロ構造を備え、前記活性層とクラッド層との間に、層厚
が伝搬する光の波長の半分の整数倍の周期で変化し、エ
ネルギーギャップが前記活性層よりも大きく且つ前記ク
ラッド層よりも小さなガイド層を有し、前記周期構造が
素子中央において伝搬する光の波長の1/4の整数倍だ
けシフトした位相シフト型分布帰還型半導体レーザにお
いて、前記周期構造と光との結合の強さを示す結合係数
KLを1.5から2.5の間に設定したことである。The distributed feedback semiconductor laser according to the present invention is characterized by having a semiconductor double heterostructure consisting of an active layer that emits light and a cladding layer sandwiching the active layer, which has a larger energy gap than the active layer. In between, there is a guide layer whose layer thickness changes at a period of an integral multiple of half the wavelength of the propagating light, and whose energy gap is larger than the active layer and smaller than the cladding layer, and the periodic structure is located at the center of the element. In a phase-shifted distributed feedback semiconductor laser shifted by an integral multiple of 1/4 of the wavelength of light propagating in , the coupling coefficient KL, which indicates the strength of coupling between the periodic structure and light, is set from 1.5 to 2.5. It was set between
λ/4シフト型DFB−LDでは2つある端面の反射率
が抑制されているため、レーザ発振に必要な光の帰還(
又は反射)は回折格子による分布帰還のみに頼ることに
なる。従って結合係数KLが小さいとこの光の帰還率も
低下し、発振しきい値電流を招くことになる。従ってλ
/4シフト型DFB−LDの発振しきい値電流を低く抑
えるためには、KLをある程度以上大きく設定する必要
がある。このことは、前述のホールバーニング現象を抑
制する方向とは逆向することでもあり、従って両者に与
える影響を十分考慮した最適設計を行う必要がある。In the λ/4 shift type DFB-LD, the reflectance of the two end faces is suppressed, so the feedback (
(or reflection) will rely solely on distributed feedback by the diffraction grating. Therefore, if the coupling coefficient KL is small, the feedback rate of this light will also decrease, leading to an oscillation threshold current. Therefore λ
In order to keep the oscillation threshold current of the /4 shift type DFB-LD low, it is necessary to set KL to a certain degree or more. This is also in the opposite direction to the direction of suppressing the hole burning phenomenon described above, and therefore it is necessary to perform an optimal design that fully considers the effects on both.
まず発振しきい値電流の観点からKLに対する規格を設
定する。DFB−LDの発振しきい値利得は計算から求
めることができ、一般にαthLと表わされる。DFB
・LDを一般のファブリペロ型LDに置き換えた時の等
側端面反射率はαthLを用いて次式で表わされる。First, a standard for KL is set from the viewpoint of oscillation threshold current. The oscillation threshold gain of the DFB-LD can be calculated and is generally expressed as αthL. DFB
- When the LD is replaced with a general Fabry-Perot type LD, the reflectance of the isolateral end face is expressed by the following equation using αthL.
Rerr=exP(2αthe−)
ここでαtbLは結合係vlKL及び実際の端面反射率
Rの関係として求めることができる。ファブリペロ型L
Dにおいて実験的に求めた端面反射率と発振しきい値電
流I thとの関係と、計算から求めたR errとを
用いて、λ/4シフト型DFB・LDの場合の端面反射
率Rと発振しきい値電流Ithとの関係をKLをパラメ
ータとして求めた。Rerr=exP(2αthe-) Here, αtbL can be determined as the relationship between the coupling coefficient vlKL and the actual end face reflectance R. Fabry-Perot type L
Using the relationship between the end face reflectance and the oscillation threshold current I th obtained experimentally in D and the R err obtained from calculation, the end face reflectance R in the case of λ/4 shift type DFB/LD is calculated. The relationship with the oscillation threshold current Ith was determined using KL as a parameter.
その結果を第4図に示す。図においてDFB・LDの発
振しきい値電流■τtは端面反射率30%のファブリペ
ロ型LDの発振しきい値BPで規格して表わした。図よ
り、1℃はRを小さくするほど上昇するがその程度はK
L、が大きいほど小さいことが判る。実際のλ/4シ
フI・型DFB −LDではRは0.5〜1%程度であ
り、この範囲でI?hの上昇を小さく (+”:/■、
’h< 1.5 ) 抑えるためには、K Lは1.5
以上なくてはならないことになる。The results are shown in FIG. In the figure, the oscillation threshold current ■τt of the DFB-LD is standardized by the oscillation threshold BP of a Fabry-Perot type LD with an end face reflectance of 30%. From the figure, 1℃ increases as R becomes smaller, but the degree of increase is K
It can be seen that the larger L is, the smaller it is. In an actual λ/4 shift I type DFB-LD, R is about 0.5 to 1%, and within this range I? Reduce the increase in h (+”: /■,
'h < 1.5) To suppress K L is 1.5
That's all there is to it.
次にホールバーニング現象抑制のために要求されるKL
の規格について述べる。種々の結合係数K Lを有する
λ/4シフト型DFB−LDを実際に試作し、ホールバ
ーニング現象による2モード発振の発生頻度を調べた。Next, KL required to suppress the hole burning phenomenon.
This section describes the standards. We actually fabricated prototype λ/4 shift type DFB-LDs with various coupling coefficients KL, and investigated the frequency of occurrence of two-mode oscillation due to the hole burning phenomenon.
結合係数KLは活性層に近接したガイド層の波長組成を
変えることによって調整した。その結果を第3図に示す
。この図から、ホールバーニング性2モード発振はKL
が2.5を超える付近から急激にその発生確率を増すこ
とが判る。この様な2モード発振の発生確率を10%以
下に抑えるためには、KL<2.5を満たす必要がある
ことが判った。The coupling coefficient KL was adjusted by changing the wavelength composition of the guide layer close to the active layer. The results are shown in FIG. From this figure, the hole-burning two-mode oscillation is KL
It can be seen that the probability of occurrence increases rapidly when the value exceeds 2.5. It has been found that in order to suppress the probability of occurrence of such two-mode oscillation to 10% or less, it is necessary to satisfy KL<2.5.
前述した様に、理論的にはホールバーニング抑制のため
にはKL=1.2〜1.3が適当とされていたが、この
実験結果より、実際にはKL=2.5程度にまで許容さ
れることが判った。As mentioned above, KL = 1.2 to 1.3 was theoretically considered to be appropriate for hole burning suppression, but based on this experimental result, KL = around 2.5 is actually acceptable. It turned out that it would be done.
以上発振しきい値電流の低減及びホールバーニング現象
抑制の観点から、結合係数KLは1.5〜2.5が最適
範囲と言える。以下に示す実施例においては、その中央
値であるKL=2.0を目標として素子製作を行った結
果について述べる。As described above, from the viewpoint of reducing the oscillation threshold current and suppressing the hole burning phenomenon, it can be said that the optimum range for the coupling coefficient KL is 1.5 to 2.5. In the examples shown below, the results of device fabrication with the median value of KL=2.0 as the target will be described.
以下に本発明による実施例を図面を用いて詳細に説明す
る。第1図は本発明の一実施例である半導体レーザの共
振器に沿った断面図である。発振波長1.3ttmのλ
/4シフト型DFB −LDである。n−InP基板1
の表面に周期2015Aで、素子中央に位相シフト領域
2を有する1次の回折格子3を干渉露光法及びケミカル
エツチング法により形成した後、波長組成1.10μm
のn−I nGaAsPガイド層4、波長組成1.31
μmのノンドープrnGaAsP活性層5、p−InP
クラッド層6、P” −1nGaAsPキャップ層7を
それぞれ厚さ0.1μm、0.1μm。Embodiments according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view taken along a resonator of a semiconductor laser according to an embodiment of the present invention. λ of oscillation wavelength 1.3ttm
/4 shift type DFB-LD. n-InP substrate 1
A first-order diffraction grating 3 having a period of 2015A and a phase shift region 2 at the center of the element is formed on the surface of the grating by interference exposure method and chemical etching method, and then the wavelength composition is 1.10 μm.
n-I nGaAsP guide layer 4, wavelength composition 1.31
μm non-doped rnGaAsP active layer 5, p-InP
The cladding layer 6 and the P''-1nGaAsP cap layer 7 have thicknesses of 0.1 μm and 0.1 μm, respectively.
2μm、0.5μmの順に結晶成長させた半導体ダブル
ヘテロ構造を成している。キャップ層7の上及び基板1
の下には電極8.9を備え、活性N5に垂直な2つの端
面には無反射(AR>コーティング10.11が施され
ている。回折格子3の山の高さは400Aで、共振器長
は300μmである。ここで結合係数KLはガイドN4
の波長組成及び回折格子3の山の高さにより調整するこ
とができ、実施例ではKL=2を目標として、前記波長
組成を1.10μm、回折格子高さを400八とした。It forms a semiconductor double heterostructure in which crystals are grown in the order of 2 μm and 0.5 μm. On top of the cap layer 7 and on the substrate 1
An electrode 8.9 is provided below, and anti-reflection (AR> coating 10.11) is applied to the two end faces perpendicular to the active N5.The height of the peaks of the diffraction grating 3 is 400A, and the resonator The length is 300 μm.Here, the coupling coefficient KL is the guide N4.
The wavelength composition can be adjusted by the wavelength composition and the height of the peaks of the diffraction grating 3. In the example, the wavelength composition was set to 1.10 μm and the height of the diffraction grating was set to 400 m, with KL=2 as the target.
実際に本素子のKLを、発振しきい値電流以下にバイア
スした時のスペクトル特性から見積った結果、約2,1
となり目標とした値に非常に近いちととなった。100
個の素子について発振スペクトル特性を評価したところ
、ホールバーニング性2モード発振はほとんど見られず
、その発生率は2%であった。また発振しきい値電流は
平均で17mAであり、従来のファブリペロ型LDの平
均値20mAよりも若干低いものが得られた。また高温
動作特性にも優れており、110℃までのCW発振を得
ることができた。As a result of actually estimating the KL of this device from the spectrum characteristics when biased below the oscillation threshold current, it is approximately 2.1
The value was very close to the target value. 100
When the oscillation spectrum characteristics of each element were evaluated, hole-burning two-mode oscillation was hardly observed, and the occurrence rate was 2%. Further, the oscillation threshold current was 17 mA on average, which was slightly lower than the average value of 20 mA of the conventional Fabry-Perot type LD. It also has excellent high-temperature operating characteristics, and was able to obtain CW oscillation up to 110°C.
尚、本実施例ではKL〜2.0となることを目標にした
素子構造について述べたが、KI、はこれに限らず、低
しきい値且つ高い歩留りでの単一波長発振を得るために
はKLが1.5〜2.5の範囲に入っていればよい。In this example, we have described an element structure aiming at KL ~ 2.0, but KI is not limited to this, and in order to obtain single wavelength oscillation with a low threshold and high yield. It is sufficient that KL falls within the range of 1.5 to 2.5.
前述した様に結合係数K Lは回折格子3の高さ及びガ
イド層4の波長組成により調料できる。第2図(a)は
1次の回折格子を用いた1、3μm体λ/4シフトDF
B−LD(共振波長3006 m )における回折格子
3の山の高さhとK Lの関係を、ガイド層4の波長組
成λgをパラメータとして計算した例を示す。デバイス
製作上実現可能な回折格子3の高さはh<600八であ
り、また活性R5に効果的にキャリアを閉じ込めるため
に許容されるガイド層4の組成はλg<1.2μmであ
る。このことにより、実際のデバイスにおいて、KL=
1.5〜2.0を実現することのできる範囲は図中の太
い実線で囲んだ部分である。従って、本発明によればこ
の範囲にh及びλgを設定することにより、低閾値で且
つ安定な単一波長発振を示す1.3μm帯λ/4シフト
DFB−LDが得られる。ここでパラメータhとλgで
はhの方が制御性が悪い。そこでhに対する許容範囲が
最も広くなるようにλgを設定することが好ましく、λ
g=1.10μmがその意味では最適である。この時り
の狙い目としてはh=400八となる。これらの設計指
針に基づき本実施例ではガイドN4の波長組成をλg=
1.10μm、回折格子3の高さを400Aとした。As described above, the coupling coefficient KL can be adjusted by adjusting the height of the diffraction grating 3 and the wavelength composition of the guide layer 4. Figure 2 (a) shows a 1.3 μm body λ/4 shift DF using a first-order diffraction grating.
An example will be shown in which the relationship between the peak height h of the diffraction grating 3 and KL in B-LD (resonance wavelength 3006 m) is calculated using the wavelength composition λg of the guide layer 4 as a parameter. The height of the diffraction grating 3 that can be realized in terms of device fabrication is h<6008, and the composition of the guide layer 4 allowed to effectively confine carriers in the active layer 5 is λg<1.2 μm. This allows KL=
The range in which 1.5 to 2.0 can be achieved is the area surrounded by the thick solid line in the figure. Therefore, according to the present invention, by setting h and λg within this range, a 1.3 μm band λ/4 shift DFB-LD that exhibits a low threshold and stable single wavelength oscillation can be obtained. Here, between the parameters h and λg, h has poorer controllability. Therefore, it is preferable to set λg so that the tolerance range for h is the widest, and λ
In that sense, g=1.10 μm is optimal. The aim at this time is h=4008. Based on these design guidelines, in this example, the wavelength composition of guide N4 is set to λg=
The height of the diffraction grating 3 was 400A.
本発明によれば発振波長1855μm帯のλ/4シフト
DFB−LDにおいても同様にKL=1.5〜2.0を
目標としたデバイス設計が可能である。第2図(b)は
1次の回折格子3を有する1、55μm帯素子に対して
、KLとhの関係をλgをパラメータとして示したもの
である。According to the present invention, it is possible to similarly design a device aiming at KL=1.5 to 2.0 in a λ/4 shift DFB-LD with an oscillation wavelength of 1855 μm. FIG. 2(b) shows the relationship between KL and h with λg as a parameter for a 1.55 μm band element having a first-order diffraction grating 3.
1.3μmのInGaAsPJlを用いるのであるが、
この活性層5に効果的にキャリアを閉じ込めるためには
ガイド層4の波長組成をλgく1.30μmとする必要
がある。これらの制約を考慮してKL=1.5〜2.5
を実現できるhとλgの範囲を図中の太線で示した。h
に対する許容範囲が最も広くとれるという意味から、1
.55μm帯においてはλg=1.20μmが最適であ
り、この時のhの狙い目としてはh−400八である。Although 1.3 μm InGaAsPJl is used,
In order to effectively confine carriers in this active layer 5, it is necessary to set the wavelength composition of the guide layer 4 to λg - 1.30 μm. Considering these constraints, KL=1.5~2.5
The range of h and λg that can achieve this is shown by the thick line in the figure. h
1, since it has the widest tolerance range for
.. In the 55 μm band, λg=1.20 μm is optimal, and the target value of h at this time is h-4008.
この様に1次の回折格子を有する波長1.55.czm
帯λ/4シフトDFB 、LDでは、ガイド層4の波長
組成をλg=1.20μm、回折格子3の高さをh=4
00Aと設定すれば、低閾値で且つ単一波長発振の歩留
りに優れた素子が再現性よく得られる。この設計指針に
基づき製作した1、55μmλ/4シフトDFB・LD
において、発振しきい値電流の平均値として19mA、
ホールバーニング性2モード発振の発生確率4%と、良
好な結果を得た。In this way, the wavelength 1.55 with a first-order diffraction grating. czm
In the band λ/4 shift DFB, LD, the wavelength composition of the guide layer 4 is λg = 1.20 μm, and the height of the diffraction grating 3 is h = 4.
If it is set to 00A, a device with a low threshold value and an excellent single wavelength oscillation yield can be obtained with good reproducibility. 1.55 μm λ/4 shift DFB/LD manufactured based on this design guideline
, the average value of the oscillation threshold current is 19 mA,
Good results were obtained with a probability of occurrence of hole-burning two-mode oscillation of 4%.
以上、本実施例及びデバイス設計の説明においては、1
次の回折格子格子3を有する素子についてのみ記述した
が、本発明な2次、または3次の回折格子を有する素子
についても有効である。その場合回折格子格子3の字数
が大きくなればなるほど結合係数KLは低下するため、
字数が大きくなるに従い、ガイドN4の波長組成λgを
長波側に変更する必要がある。In the above description of this example and device design, 1.
Although only an element having the following diffraction grating 3 has been described, the present invention is also effective for an element having a second-order or third-order diffraction grating. In that case, the larger the number of characters in the diffraction grating 3, the lower the coupling coefficient KL becomes.
As the number of characters increases, it is necessary to change the wavelength composition λg of the guide N4 to the longer wavelength side.
更に、本実施例では回折格子3がガイド層4の下に形成
された例を示したが、ガイド層4が活性層5の上に、更
に回折格子3がガイド層4の上に形成されたタイプの素
子においても本発明は有効である。Furthermore, in this example, the diffraction grating 3 was formed under the guide layer 4, but the guide layer 4 was formed on the active layer 5, and the diffraction grating 3 was formed on the guide layer 4. The present invention is also effective for devices of this type.
尚、第2図に示したグラフは、回折格子を有するガイド
層を、回折格子格子の山の高さ、ガイド層組成を種々変
えて多数作り、各々の結合係数を実測して測定値をプロ
ットすることで任意の組成に対して求めることができる
。The graph shown in Figure 2 is obtained by making a large number of guide layers with diffraction gratings with various heights of the peaks of the diffraction gratings and varying the composition of the guide layers, measuring the coupling coefficient of each, and plotting the measured values. By doing this, it can be determined for any composition.
本発明によるλ/4シフトDFB −LDにおいては、
発振しきい値電流が低く、且つ単一波長発振の歩留りに
優れるため、デバイスの結合歩留りが従来に比べ大幅に
改善される。更に上記2つの改善は、一定出力を得るた
めの駆動電流の低減、及び単一波長発振特性の安定性向
上といった利点をもたらし、これによりλ/4シフトD
FB・LDの長期的な信頼度も一層向上する。In the λ/4 shift DFB-LD according to the present invention,
Since the oscillation threshold current is low and the yield of single wavelength oscillation is excellent, the yield of device coupling is significantly improved compared to the conventional method. Furthermore, the above two improvements bring about the advantages of reducing the drive current to obtain a constant output and improving the stability of the single wavelength oscillation characteristics, thereby reducing the λ/4 shift D.
The long-term reliability of FB/LD will also be further improved.
第1図は本発明の実施例である分布帰還型半導体レーザ
の構成図であり、図において
1・・・n−InP基板、2・・・位相シフト領域、3
・・・回折格子、4−・n −I n G a A s
Pガイド層、5・−・InGaAsP活性層、0−・
−p−InPクラッド層、7・・・P” −I nGa
As Pキヤツプ層、8.9・・・電極、10.11・
・・ARコーティング膜である。
第2図は結合係数KLと回折格子の高さhとの関係をガ
イド層の波長組成λgをパラメータとして示した図であ
る。
第3図はホールバーニング性2モード発深の発生確率と
結合係数KLとの関係を示した図である。
第4図は規格化発振しきい値電流と端面反射率との関係
を結合係数■ぐLをパラメータとして示した図である。FIG. 1 is a block diagram of a distributed feedback semiconductor laser which is an embodiment of the present invention, and in the figure, 1...n-InP substrate, 2...phase shift region, 3.
...Diffraction grating, 4-・n-I n Ga As
P guide layer, 5--InGaAsP active layer, 0--
-p-InP cladding layer, 7...P” -InGa
As P cap layer, 8.9... Electrode, 10.11.
...AR coating film. FIG. 2 is a diagram showing the relationship between the coupling coefficient KL and the height h of the diffraction grating using the wavelength composition λg of the guide layer as a parameter. FIG. 3 is a diagram showing the relationship between the probability of occurrence of hole-burning two-mode deepening and the coupling coefficient KL. FIG. 4 is a diagram showing the relationship between the normalized oscillation threshold current and the end face reflectance using the coupling coefficient L as a parameter.
Claims (1)
ルギーギャップの大きなクラッド層からなる半導体ダブ
ルヘテロ構造を有し、前記活性層とクラッド層との間に
、層厚が伝搬する光の波長の半分の整数倍の周期で変化
し、エネルギーギャップが前記活性層よりも大きく且つ
前記クラッド層よりも小さなガイド層を有し、前記周期
構造が素子中央において伝搬する光の波長の1/4の整
数倍だけシフトした位相シフト型分布帰還型半導体レー
ザにおいて、前記周期構造と光との結合の強さを示す結
合係数KLを1.5から2.5の間になるよう前記ガイ
ド層の組成及び周期的凹凸の形状(山の高さと形)を定
めたことを特徴とする分布帰還型半導体レーザ。It has a semiconductor double heterostructure consisting of an active layer that emits light and a cladding layer with a larger energy gap than the active layer sandwiching it, and the layer thickness between the active layer and the cladding layer is the wavelength of the light that propagates. The periodic structure changes at an integer multiple of half of the period, has a guide layer whose energy gap is larger than the active layer and smaller than the cladding layer, and the periodic structure has a period of 1/4 of the wavelength of light propagating at the center of the element. In the phase-shifted distributed feedback semiconductor laser shifted by an integer multiple, the composition of the guide layer is adjusted so that the coupling coefficient KL, which indicates the strength of the coupling between the periodic structure and light, is between 1.5 and 2.5. A distributed feedback semiconductor laser characterized by a defined periodic uneven shape (height and shape of the peaks).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63245027A JPH0290688A (en) | 1988-09-28 | 1988-09-28 | Distributed feedback type semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63245027A JPH0290688A (en) | 1988-09-28 | 1988-09-28 | Distributed feedback type semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0290688A true JPH0290688A (en) | 1990-03-30 |
Family
ID=17127489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63245027A Pending JPH0290688A (en) | 1988-09-28 | 1988-09-28 | Distributed feedback type semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0290688A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5394429A (en) * | 1992-10-30 | 1995-02-28 | Nec Corporation | Distributed-feedback laser with improved analog modulation distortion characteristics and method for fabricating the same |
JPH07193024A (en) * | 1993-12-27 | 1995-07-28 | Nec Corp | Semiconductor device and its manufacture |
US5469459A (en) * | 1993-01-08 | 1995-11-21 | Nec Corporation | Laser diode element with excellent intermodulation distortion characteristic |
JP2003133636A (en) * | 2001-08-10 | 2003-05-09 | Furukawa Electric Co Ltd:The | Distributed feedback semiconductor laser element |
DE10161856B4 (en) * | 2001-08-07 | 2004-02-26 | Mitsubishi Denki K.K. | Semiconductor laser arrangement with diffraction grating structure |
US6788725B2 (en) | 2001-11-14 | 2004-09-07 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
JP2004349692A (en) * | 2003-04-28 | 2004-12-09 | Furukawa Electric Co Ltd:The | Laser device |
US7083995B2 (en) * | 1999-11-26 | 2006-08-01 | Nec Electronics Corporation | Optical semiconductor device and process for producing the same |
JP2007324196A (en) * | 2006-05-30 | 2007-12-13 | Nec Electronics Corp | Distributed feedback semiconductor laser |
-
1988
- 1988-09-28 JP JP63245027A patent/JPH0290688A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5394429A (en) * | 1992-10-30 | 1995-02-28 | Nec Corporation | Distributed-feedback laser with improved analog modulation distortion characteristics and method for fabricating the same |
US5469459A (en) * | 1993-01-08 | 1995-11-21 | Nec Corporation | Laser diode element with excellent intermodulation distortion characteristic |
US5568505A (en) * | 1993-01-08 | 1996-10-22 | Nec Corporation | Laser diode element with excellent intermodulation distortion characteristic |
JPH07193024A (en) * | 1993-12-27 | 1995-07-28 | Nec Corp | Semiconductor device and its manufacture |
US7083995B2 (en) * | 1999-11-26 | 2006-08-01 | Nec Electronics Corporation | Optical semiconductor device and process for producing the same |
DE10161856B4 (en) * | 2001-08-07 | 2004-02-26 | Mitsubishi Denki K.K. | Semiconductor laser arrangement with diffraction grating structure |
JP2003133636A (en) * | 2001-08-10 | 2003-05-09 | Furukawa Electric Co Ltd:The | Distributed feedback semiconductor laser element |
US6788725B2 (en) | 2001-11-14 | 2004-09-07 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
JP2004349692A (en) * | 2003-04-28 | 2004-12-09 | Furukawa Electric Co Ltd:The | Laser device |
JP2007324196A (en) * | 2006-05-30 | 2007-12-13 | Nec Electronics Corp | Distributed feedback semiconductor laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8705583B2 (en) | Semiconductor laser | |
US8494320B2 (en) | Optical element and method for manufacturing the same | |
US5289494A (en) | Distributed feedback semiconductor laser | |
US20110091147A1 (en) | Integrated semiconductor optical device | |
US5093835A (en) | Semiconductor laser device | |
JP2001036192A (en) | Distribution feedback type semiconductor laser and manufacture thereof | |
JP3186705B2 (en) | Distributed feedback semiconductor laser | |
JP3086767B2 (en) | Laser element | |
JPH0290688A (en) | Distributed feedback type semiconductor laser | |
US6526087B1 (en) | Distributed feedback semiconductor laser | |
JP5143985B2 (en) | Distributed feedback laser diode | |
JP5310533B2 (en) | Optical semiconductor device | |
JP2002084033A (en) | Distributed feedback semiconductor laser | |
JP2772204B2 (en) | High power distributed feedback semiconductor laser with excellent light output linearity | |
JP3173582B2 (en) | Distributed feedback semiconductor laser | |
CN113328339B (en) | High-power distributed feedback laser | |
JPS63166281A (en) | Distributed feedback semiconductor laser | |
JP2003243767A (en) | Semiconductor laser and method for manufacturing semiconductor optical integrated device including the same | |
JPH10178232A (en) | Semiconductor laser and its manufacture | |
JP2950302B2 (en) | Semiconductor laser | |
Okai et al. | Complex-coupled/spl lambda//4-shifted DFB lasers with a flat FM response | |
JPS63228795A (en) | Distributed feedback type semiconductor laser | |
JP4523131B2 (en) | Semiconductor laser device | |
JPH0548197A (en) | Distribution feedback type semiconductor laser | |
JP2635649B2 (en) | Distributed feedback semiconductor laser |