[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0287415A - Lithium ion electroconductive solid electrolytic sheet - Google Patents

Lithium ion electroconductive solid electrolytic sheet

Info

Publication number
JPH0287415A
JPH0287415A JP63238362A JP23836288A JPH0287415A JP H0287415 A JPH0287415 A JP H0287415A JP 63238362 A JP63238362 A JP 63238362A JP 23836288 A JP23836288 A JP 23836288A JP H0287415 A JPH0287415 A JP H0287415A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sheet
lithium ion
powder
volume fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63238362A
Other languages
Japanese (ja)
Inventor
Takeo Hara
武生 原
Tadashi Yasuda
直史 安田
Masaki Nagata
正樹 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP63238362A priority Critical patent/JPH0287415A/en
Publication of JPH0287415A publication Critical patent/JPH0287415A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide possibility of making in a thin construction, enhance producibility, uniformity, chemical stability, and flexibility, increase the electroconductivity, and enlarge the transference number of lithium ion by forming a sheet from a mixture of a highpolymer resilient substance and Li4 SiO4-Li3VO4 type solid electrolyte powder, which is dispersed in the resilient substance so that the volume fraction becomes a specified value. CONSTITUTION:Li4SiO4-Li3VO4 type solid electrolyte powder is dispersed in a highpolymer resilient substance so that the volume fraction becomes 55-95%, and the resultant mixture is turned into a sheet. Such solid electrolyte powder contains Li4 SiO4 and Li3VO4. The mix proportion shall preferably be Li4SiO4/Li3 VO4 being 1/9 thru 9/1 by mol ratio, and volume fraction of this solid electrolyte powder in the highpolymer resilient substance shall be 55-95%, favorably being 75-92%. Below 55% causes the ion electroconductivity under 1X10<-8>Scm<-1> as not suitable to practical use, while exceeding 95% causes brittle sheet of solid electrolyte, wherein the powder will easily be separated off.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウムイオン導電性固体電解質シートに関し
、さらに詳しくは固体電池、固体電気化学二重層キャパ
シタ、固体エレクトロクロミックデイスプレィ等に好適
に利用されるリチウムイオン導電性固体電解質シートに
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a lithium ion conductive solid electrolyte sheet, and more specifically, it is suitable for use in solid batteries, solid electrochemical double layer capacitors, solid electrochromic displays, etc. The present invention relates to a lithium ion conductive solid electrolyte sheet.

〔従来の技術〕[Conventional technology]

近年、リチウム系の固体電解質を用いた各種リチウム固
体電池が実用化されているが、より小型化および薄型化
が可能な信頬性に優れたリチウム固体電池の開発が望ま
れている。
In recent years, various lithium solid-state batteries using lithium-based solid electrolytes have been put into practical use, but there is a desire to develop lithium solid-state batteries with excellent reliability that can be made smaller and thinner.

前記リチウム固体電池には、高いリチウムイオン導電性
を有する固体電解質を用いる必要がある。
The lithium solid battery requires the use of a solid electrolyte with high lithium ion conductivity.

このようなリチウムイオン導電性固体電解質としては、
Li1.Li5N等の無機固体電解質およびポリエチレ
ンオキサイドのリチウム塩錯体等の高分子固体電解質が
知られているが、吸湿性が強く、化学的安定性に劣る問
題がある。また無機固体電解質においては、無機質粉末
を高圧プレスでペレット化する必要があり、得られるペ
レットも硬くて脆いため、薄型化が困難であり、生産性
、均−性等に劣る問題がある。一方、高分子固体電解質
においては、導電率の充分に大きいものがなく、リチウ
ムイオンの輸率が低いため、電池に用いた場合、分極現
象を生じ、電圧が急速に低下する問題がある。
As such a lithium ion conductive solid electrolyte,
Li1. Inorganic solid electrolytes such as Li5N and polymer solid electrolytes such as lithium salt complexes of polyethylene oxide are known, but they have the problem of strong hygroscopicity and poor chemical stability. Furthermore, in the case of inorganic solid electrolytes, it is necessary to pelletize the inorganic powder using a high-pressure press, and the resulting pellets are also hard and brittle, making it difficult to make them thinner and causing problems such as poor productivity and uniformity. On the other hand, solid polymer electrolytes do not have sufficiently high conductivity and have a low transference number for lithium ions, so when used in batteries, polarization occurs and the voltage drops rapidly.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、前記従来技術の問題点を解決し、薄型
化が可能で、生産性、均一性、化学的安定性および可撓
性に優れ、かつ導電率が高く、すチウムイオンの輸率が
大きいリチウムイオン導電性固体電解質シートを提供す
るものである。
It is an object of the present invention to solve the problems of the prior art, to be able to be made thinner, to have excellent productivity, uniformity, chemical stability, and flexibility, to have high electrical conductivity, and to have a transference number of stium ions. The purpose of the present invention is to provide a lithium ion conductive solid electrolyte sheet with a large amount of lithium ion conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、L ia S gos −L is VOd
系固体電解質粉を体積分率が55〜95%となるように
高分子弾性体中に分散させた混合物をシート状に成形し
たことを特徴とする。
The present invention provides LiaS gos - Lis VOd
It is characterized in that a mixture in which solid electrolyte powder is dispersed in a polymeric elastomer at a volume fraction of 55 to 95% is molded into a sheet shape.

本発明に用いられるLi、Sin、−Liよ■O1系固
体電解質粉(以下、単に「固体電解質粉」と称する)は
、L i4S io、(!:L i、VOa との混合
物である。その混合割合は、モル比でLiaS to、
/L 13VO4=1/9〜9/1であることが好まし
く、より好ましくは2/8〜8/2、特に好ましくは3
/7〜515である。前記混合割合の範囲以外では、充
分なイオン導電率を得るのが困難である。
The Li, Sin, -Li and O1-based solid electrolyte powder (hereinafter simply referred to as "solid electrolyte powder") used in the present invention is a mixture of Li4Sio, (!: Li, VOa). The mixing ratio is LiaS to, in molar ratio.
/L 13VO4=1/9 to 9/1, more preferably 2/8 to 8/2, particularly preferably 3
/7 to 515. If the mixing ratio is outside the above range, it is difficult to obtain sufficient ionic conductivity.

なお、前記L i、S io4−L i、VOa系固体
電解質粉の詳細については、「電気化学および工業物理
化学J 49 (10)、667 (1981)に記載
されている。
The details of the Li, Sio4-Li, and VOa-based solid electrolyte powders are described in "Electrochemistry and Industrial Physical Chemistry J 49 (10), 667 (1981).

これらの固体電解質粉の形状および粒径は特に限定され
るものではないが、高分子弾性体との混合のし易さ等の
点から、100〜200メツシユ(タイラー標準篩)を
通過するものが好ましい。
The shape and particle size of these solid electrolyte powders are not particularly limited, but from the viewpoint of ease of mixing with the polymeric elastomer, those that pass through a 100 to 200 mesh (Tyler standard sieve) are preferred. preferable.

前記固体電解質粉には、導電率を向上させるためにAn
、O:1等の誘電体を添加することができる。この誘電
体の添加割合は、固体電解質粉と誘電体との合計量の5
0モル%以下が好ましく、より好ましくは10モル%以
下、特に好ましくは2〜5モル%である。
The solid electrolyte powder contains An to improve conductivity.
, O:1, etc. can be added. The addition ratio of this dielectric is 5% of the total amount of solid electrolyte powder and dielectric.
It is preferably 0 mol% or less, more preferably 10 mol% or less, particularly preferably 2 to 5 mol%.

本発明に用いられる高分子弾性体としては、例えば、l
、4−ポリブタジェン、天然ゴム、ポリイソプレン、5
BRSNBR,EPDM、E’PM。
Examples of the elastic polymer used in the present invention include l
, 4-polybutadiene, natural rubber, polyisoprene, 5
BRSNBR, EPDM, E'PM.

ウレタンゴム、ポリエステル系ゴム、クロロプレンゴム
、エピクロルヒドリンゴム、シリコーンゴム、スチレン
−ブタジェン−スチレンブロック共重合体(SBS)、
スチレン−イソプレン−スチレンフロック共重合体(S
IS)、スチレン−エチレン−ブチレン−スチレンブロ
ック共重合体(SEBS)、ブチルゴム、ホスファゼン
ゴム、ポリエチレン、ポリプロピレン、ポリエチレンオ
キシド、ポリプロピレンオキシド、ポリスチレン、塩化
ビニル、エチレン−酢酸エチル共重合体、1゜2−ポリ
ブタジェン、エポキシ樹脂、フェノール樹脂、メタクリ
ル酸メチルおよびこれらの混合物等が挙げられる。これ
らのうち電極材料および固体電解質との接着性の点から
、SBS、SIS、5EBS、1.2−ポリブタジェン
等の熱可塑性を有するものが好ましく、さらに好ましく
は柔軟性の点からASTM−A硬度が90以下のもので
ある6また固体電解質粉の耐熱性の点から、150°C
以下での成形加工性を有するものが好ましく、特に不飽
和結合を含まない高分子弾性体を50体積%以上含有す
るのが好ましい。このような高分子弾性体の体積分率が
50%未満の場合、得られる固体電解質シートの分解電
圧および電子輸率が悪化する場合がある。
Urethane rubber, polyester rubber, chloroprene rubber, epichlorohydrin rubber, silicone rubber, styrene-butadiene-styrene block copolymer (SBS),
Styrene-isoprene-styrene flock copolymer (S
IS), styrene-ethylene-butylene-styrene block copolymer (SEBS), butyl rubber, phosphazene rubber, polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, polystyrene, vinyl chloride, ethylene-ethyl acetate copolymer, 1゜2- Examples include polybutadiene, epoxy resins, phenolic resins, methyl methacrylate, and mixtures thereof. Among these, thermoplastic materials such as SBS, SIS, 5EBS, and 1,2-polybutadiene are preferable from the viewpoint of adhesion with electrode materials and solid electrolyte, and more preferably those having ASTM-A hardness from the viewpoint of flexibility. 90 or less 6 Also, from the standpoint of heat resistance of solid electrolyte powder, 150°C
It is preferable to have the following moldability, and it is particularly preferable to contain 50% by volume or more of an elastic polymer that does not contain unsaturated bonds. If the volume fraction of such an elastic polymer is less than 50%, the decomposition voltage and electron transport number of the obtained solid electrolyte sheet may deteriorate.

前記高分子弾性体には、導電率を向上させるために、ポ
リエチレンオキサイド、ポリプロピレンオキサイド、ポ
リシロキサン、ポリフォスフアゼン等の高分子と、Li
Cl0a 、Li5CN、LiBH4、LiBF4、L
iCFz  SOs 、LiA s F b等のリチウ
ム塩との錯体からなる高分子固体電解質を混合すること
が好ましい。該高分子電解質の混合割合は、重量分率で
高分子弾性体/高分子固体電解質=9/1〜1/9であ
ることが好ましい。
The polymer elastomer contains polymers such as polyethylene oxide, polypropylene oxide, polysiloxane, and polyphosphazene, and Li, in order to improve conductivity.
Cl0a, Li5CN, LiBH4, LiBF4, L
It is preferable to mix a solid polymer electrolyte consisting of a complex with a lithium salt such as iCFzSOs or LiAsFb. The mixing ratio of the polymer electrolyte is preferably a weight fraction of elastomer polymer/solid polymer electrolyte=9/1 to 1/9.

なお、前記高分子固体電解質は高分子弾性体として扱わ
れる。
Note that the solid polymer electrolyte is treated as an elastic polymer.

本発明に用いられる前記固体電解質粉と前記高分子弾性
体との混合物は、高分子弾性体中の固体電解質粉の体積
分率が55〜95%、好ましくは75〜92%である。
In the mixture of the solid electrolyte powder and the polymer elastic body used in the present invention, the volume fraction of the solid electrolyte powder in the polymer elastic body is 55 to 95%, preferably 75 to 92%.

固体電解質粉の体積分率が55%未満の場合は、イオン
導電率がlXl0−’Scl’以下となり実用に適さず
、また体積分率が95%を超える場合は、シート化して
得られる固体電解質シートが脆くなり、固体電解質粉が
脱落し易くなる。
If the volume fraction of the solid electrolyte powder is less than 55%, the ionic conductivity will be less than l The sheet becomes brittle and the solid electrolyte powder easily falls off.

前記混合物を得る方法としては、例えば高分子弾性体を
溶剤に溶解させた高分子溶液と固体電解質粉等をボール
ミル等で混練する方法があげられる。この方法は、混練
時の発熱が少なく、また混練時に大気との接触がほとん
どないため固体電解質粉の湿気、酸素等による変質およ
び分解が起こり難い。
A method for obtaining the mixture includes, for example, a method of kneading a polymer solution in which a polymer elastomer is dissolved in a solvent, solid electrolyte powder, etc. using a ball mill or the like. In this method, there is little heat generation during kneading, and there is almost no contact with the atmosphere during kneading, so that deterioration and decomposition of the solid electrolyte powder due to moisture, oxygen, etc. is unlikely to occur.

この場合に用いられる溶剤としては、例えばn−ヘキサ
ン、n−ヘプタン、n−オクタン、シクロヘキサン、ベ
ンゼン、トルエン、キシレン、酢酸エチル、トリクレン
等の非吸水性で、固体電解質粉と反応しない飽和炭化水
素系溶剤、芳香族炭化水素系溶剤、ハロゲン化炭化水素
系溶剤またはエステル系溶剤が挙げられる。
Examples of solvents used in this case include saturated hydrocarbons that do not absorb water and do not react with the solid electrolyte powder, such as n-hexane, n-heptane, n-octane, cyclohexane, benzene, toluene, xylene, ethyl acetate, trichlene, etc. Examples include hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents.

本発明のリチウムイオン導電性固体電解質シートは、前
記のようにして得られる溶剤を含有するスラリをシート
状に成形して得られる。シート状に成形する方法には特
に制限されないが、固体電解質シートの強度を向上させ
るために例えば網状体の開口部に前記混合物を充填し、
乾燥して得ることができる。
The lithium ion conductive solid electrolyte sheet of the present invention is obtained by molding the solvent-containing slurry obtained as described above into a sheet shape. There is no particular restriction on the method of forming the solid electrolyte sheet into a sheet, but in order to improve the strength of the solid electrolyte sheet, for example, the openings of the mesh body may be filled with the mixture,
It can be obtained by drying.

該網状体としては、例えばセルロース、ポリエチレンテ
レフタレート、ナイロン6、ナイロン66、ポリプロピ
レン、ポリエチレン、ゼオライト、ガラス等の絶縁性材
料などからなる織布または不織布を挙げることができる
。これらの網状体の開口率は35〜65%の範囲が適当
である。この開口率は網状体単位面積当たりの総開口部
面積の割合で定義される。開口率が35%未満では、固
体電解質シートの導電率が小さくなり、また開口率が6
5%を超えると、固体電解質シートとしての強度の維持
効果が得られない。またこれらの網状体の比表面積は5
0〜1000n(/gの範囲が適当である。なお、不織
布の場合の目付けは5〜50g/rrfの範囲が適当で
ある。網状体の厚みは、網状体自身の強崩およびシート
の薄型化を考慮して10〜1508mの範囲が好ましく
、1開口部当たりの平均面積は]、6X10−3〜9 
X 10−”mm”および隣接する開口部間の幅は20
〜120μmが好ましい。
Examples of the network include woven or nonwoven fabrics made of insulating materials such as cellulose, polyethylene terephthalate, nylon 6, nylon 66, polypropylene, polyethylene, zeolite, and glass. The aperture ratio of these net-like bodies is suitably in the range of 35 to 65%. The aperture ratio is defined as the ratio of the total aperture area per unit area of the mesh. If the aperture ratio is less than 35%, the conductivity of the solid electrolyte sheet will be small, and if the aperture ratio is less than 6.
If it exceeds 5%, the effect of maintaining the strength as a solid electrolyte sheet cannot be obtained. Also, the specific surface area of these networks is 5
The appropriate range is 0 to 1000n(/g). In the case of nonwoven fabric, the appropriate basis weight is 5 to 50g/rrf. Taking into consideration, the range is preferably 10 to 1508 m, and the average area per opening is 6 x 10-3 to 9
x 10-”mm” and the width between adjacent openings is 20
~120 μm is preferred.

前記混合物を前記網状体の開口部に充填する方法として
は、例えば固体電解質粉および高分子弾性体を前記溶剤
中に混合させたスラリ中に網状体を浸漬して該網状体に
スラリを充分付着させ、硬質ゴム、プラスチック、金属
等からなるブレード、ロール等で開口部に充填するとと
もに過剰に付着しているスラリを除去する方法が挙げら
れる。この際のスラリ中の固形分濃度は、好ましくは3
0〜80重量%である。
As a method for filling the openings of the net-like body with the mixture, for example, the net-like body is immersed in a slurry in which solid electrolyte powder and polymeric elastomer are mixed in the solvent, and the slurry is sufficiently attached to the net-like body. An example of this method is to fill the opening with a blade, roll, or the like made of hard rubber, plastic, metal, etc., and remove the excessively adhered slurry. The solid content concentration in the slurry at this time is preferably 3
It is 0 to 80% by weight.

このようにして網状体の開口部に充填されたスラリは、
例えば20〜30°Cで、好ましくは不活性ガス雰囲気
中で乾燥され、本発明のリチウムイオン導電性固体電解
質シートとされる。
The slurry filled in the openings of the mesh in this way is
For example, it is dried at 20 to 30°C, preferably in an inert gas atmosphere, to obtain the lithium ion conductive solid electrolyte sheet of the present invention.

該固体電解質シートは、固体電池に用いた場合の電極層
との密着性および導電率、分極性、容量などを向上させ
るために、該網状体の上下両方または一方に各5〜25
μmの混合物層を有することが好ましい。
In order to improve adhesion with the electrode layer, conductivity, polarizability, capacity, etc. when used in a solid-state battery, the solid electrolyte sheet is coated with 5 to 25% of each on both the upper and lower sides of the net-like body or on one side.
It is preferred to have a mixture layer of .mu.m.

上記方法によれば、網状体を母材とするために極めて厚
み精度の優れた固体電解質シートを得ることができ、ま
たこれらは可撓性に優れ、連続的に製造することができ
るため大面積の固体電解質シートを容易に得ることがで
きる。
According to the above method, it is possible to obtain solid electrolyte sheets with extremely high thickness accuracy because the mesh is used as the base material, and because these sheets have excellent flexibility and can be manufactured continuously, they have a large surface area. solid electrolyte sheets can be easily obtained.

このようにして得られる本発明のリチウムイオン導電性
固体電解質シートの厚みは、10〜250μmが好まし
い。該シートの厚みが10μm未満では、裂は易く強度
が保てなくなる。また厚みが250μmを超えると、導
電率がlXl0〜6.Scl’以下となり易い。
The thickness of the lithium ion conductive solid electrolyte sheet of the present invention obtained in this way is preferably 10 to 250 μm. If the thickness of the sheet is less than 10 μm, it will easily tear and will not maintain its strength. Moreover, when the thickness exceeds 250 μm, the conductivity decreases from lXl0 to 6. It is likely to be less than Scl'.

本発明のリチウムイオン導電性固体、電解質シートには
、固体電池に用いた場合の電極層との接着強度を増すた
めに、混合物中に、例えば変性ロジン、ロジン誘導体、
テルペン樹脂、クマロン−インデン樹脂、フェノール変
性クマロン−インデン樹脂等のロジン系粘着付与剤、芳
香族系粘着付与剤またはテルペン系粘着付与剤を含有さ
せることもできる。
In the lithium ion conductive solid electrolyte sheet of the present invention, for example, modified rosin, rosin derivative,
A rosin-based tackifier, aromatic tackifier, or terpene-based tackifier such as a terpene resin, a coumaron-indene resin, or a phenol-modified coumaron-indene resin can also be included.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、本発明はこれ
らに限定されるものではない。なお、実施例中、部とあ
るのは重量部を意味する。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited thereto. In addition, in the examples, parts mean parts by weight.

実施例1 L i2 Cox 、Vt OsおよびSin、をモル
比でLi、Co、:Vz o、:SiO□=1.’l:
0.370.4の割合となるように秤量し、200℃で
12時間真空乾燥した後、n−ヘキサンを添加し、乳ば
ちで1時間混合した。この混合物を80°Cで24時間
減圧乾燥した後、650°Cで3時間、・マツフル炉を
用いて仮焼した。その後、窒素気流下で室温まで冷却し
、仮焼物を乳ばちで粉砕して粉末とした。さらにその粉
末を800℃で24時間、マツフル炉を用いて焼成し、
窒素気流下で室温まで冷却し、乳ばちで粉砕してLi、
5iO4−L i、VO,(7)混合体粉末(L ia
 S i 04 /L i 3 V O4= 4 / 
6 Cモル比))を得た。得られた混合体粉末をタイラ
ー標準篩にかけ、粒径200メツシユ以下のものとした
Example 1 Li2Cox, VtOs and Sin were prepared in a molar ratio of Li, Co, :Vzo, :SiO□=1. 'l:
After weighing to give a ratio of 0.370.4 and vacuum drying at 200° C. for 12 hours, n-hexane was added and mixed in a mortar for 1 hour. This mixture was dried under reduced pressure at 80°C for 24 hours, and then calcined at 650°C for 3 hours using a Matsufuru furnace. Thereafter, it was cooled to room temperature under a nitrogen stream, and the calcined product was ground with a mortar to form a powder. Furthermore, the powder was fired at 800°C for 24 hours using a Matsufuru furnace,
Cool to room temperature under a nitrogen stream and crush with a mortar to obtain Li,
5iO4-L i, VO, (7) Mixture powder (L ia
S i 04 /L i 3 V O4= 4 /
6C molar ratio)) was obtained. The resulting mixture powder was passed through a Tyler standard sieve to obtain a particle size of 200 mesh or less.

次に高分子弾性体としてスチレン−ブタジェン−スチレ
ンブロック共重合体(比重: 0.96、日本合成ゴム
社製、TR−2000)4.8部をトルエン中に溶解さ
せ、高分子弾性体溶液を得た。この高分子弾性体溶液に
、上記で得られたLi、S+04−t、ii VO,の
混合体粉末(比重2.13)95.2部を加えてボール
ミルで2時間混練し、固形分濃度が50重量%のスラリ
を調製した。
Next, 4.8 parts of a styrene-butadiene-styrene block copolymer (specific gravity: 0.96, manufactured by Japan Synthetic Rubber Co., Ltd., TR-2000) as a polymeric elastomer was dissolved in toluene, and the polymeric elastomer solution was dissolved. Obtained. To this polymeric elastomer solution, 95.2 parts of the Li, S+04-t, iiVO mixture powder (specific gravity 2.13) obtained above was added and kneaded for 2 hours in a ball mill to reduce the solid content concentration. A 50% by weight slurry was prepared.

次に織布として厚み50μm、1開口部当たりの平均面
積5.5 X 10−”mff1”および隣接する開口
部間の幅50μmのナイロン製織布を用い、この織布を
上記スラリ中に浸漬し、織布表面に混合物を充分に付着
させた後、フッ素ゴム類のブレードでこの織布を挟み、
充分な挟持力を加えつつ、混合物を織布の開口部に充填
させた。得られたシートを高分子弾性体中で充分に乾燥
させてトルエンを除去し、高分子弾性体中の固体電解質
粉の体積分率が90%で、厚み70μmのリチウムイオ
ン導電性固体電解質シートを得た。
Next, using a nylon woven fabric with a thickness of 50 μm, an average area per opening of 5.5×10-”mff1”, and a width of 50 μm between adjacent openings, this woven fabric was immersed in the slurry. After applying the mixture to the surface of the woven fabric, the woven fabric is sandwiched between fluororubber blades.
The mixture was allowed to fill the openings of the fabric while applying sufficient clamping force. The obtained sheet was thoroughly dried in an elastomer polymer to remove toluene, and a lithium ion conductive solid electrolyte sheet with a volume fraction of solid electrolyte powder in the elastomer polymer of 90% and a thickness of 70 μm was obtained. Obtained.

得られた固体電解質シートを2枚のリチウム金属板から
なる電極ではさみ、電極界面で分極のほとんど起こらな
いような微小な直流電圧を印加して該シートの直流抵抗
を測定してイオン導電率を求めた。
The obtained solid electrolyte sheet was sandwiched between two electrodes made of lithium metal plates, and a minute DC voltage that hardly caused polarization was applied at the electrode interface, and the DC resistance of the sheet was measured to determine the ionic conductivity. I asked for it.

次にグラファイトを正極、リチウムを負極としてワグナ
−の分極法で電子導電率の測定を行なった。
Next, electronic conductivity was measured by Wagner's polarization method using graphite as a positive electrode and lithium as a negative electrode.

また化学的安定性を調べるため、得られた固体電解質シ
ートを、25℃で、50%相対湿度の空気中に12時間
放置した後、イオン導電率を上述と同様の方法で求めた
Further, in order to examine chemical stability, the obtained solid electrolyte sheet was left in air at 25° C. and 50% relative humidity for 12 hours, and then the ionic conductivity was determined in the same manner as described above.

それらの結果を第1表に示した。The results are shown in Table 1.

実施例2 実施例1において、高分子弾性体としてスチレン−ブタ
ジェン−スチレンブロック共重合体(比重: 0.96
、日本合成ゴム社製、TR−2000)4.7部を用い
、また固体電解質粉としてLi、Si0.−L i、V
Oa (7)混合体粉末91.6部とAlto’s3.
1部(比重3.96 )とを用いた以外は実施例1と同
様にして固形分濃度が50重量%のスラリを得、さらに
実施例1と同様にしてナイロン製織布の開口部に充填し
、体積分率が90%、厚み70μmのリチウムイオン導
電性固体電解質シートを得た。
Example 2 In Example 1, a styrene-butadiene-styrene block copolymer (specific gravity: 0.96) was used as the polymer elastomer.
, manufactured by Nippon Synthetic Rubber Co., Ltd., TR-2000), and 4.7 parts of Li, Si0. -L i,V
Oa (7) 91.6 parts of mixed powder and 3.0 parts of Alto's.
A slurry with a solid content concentration of 50% by weight was obtained in the same manner as in Example 1, except that 1 part (specific gravity: 3.96) was used, and the slurry was filled into the opening of a nylon woven fabric in the same manner as in Example 1. A lithium ion conductive solid electrolyte sheet having a volume fraction of 90% and a thickness of 70 μm was obtained.

得られた固体電解質シートを実施例1と同様にして試験
を行ない、その結果を第1表に示した。
The obtained solid electrolyte sheet was tested in the same manner as in Example 1, and the results are shown in Table 1.

実施例3 実施例1において、高分子弾性体としてスチレン−ブタ
ジェン−スチレンブロック共重合体(比重: 0.96
、日本合成ゴム社製、TR−2000)2.4部および
ポリエチレンオキサイドとLiCl0.の錯体(エチレ
ンオキサイド繰り返し単位/ L i Cj! Oa 
 (モル)=0.2)からなる高分子固体電解質2.4
部を用いた以外は実施例1と同様にして固形分濃度が5
0重量%のスラリを得、さらに実施例1と同様にしてナ
イロン製織布の開口部に充填し、体積分率90%、厚み
70μmのリチウムイオン導電性固体電解質シートを得
た。
Example 3 In Example 1, a styrene-butadiene-styrene block copolymer (specific gravity: 0.96) was used as the polymer elastomer.
, manufactured by Japan Synthetic Rubber Co., Ltd., TR-2000) 2.4 parts and polyethylene oxide and LiCl0. complex (ethylene oxide repeating unit/L i Cj! Oa
(mol)=0.2) polymer solid electrolyte 2.4
The solid content concentration was 5 parts in the same manner as in Example 1 except that 5 parts were used.
A 0% by weight slurry was obtained and filled into the openings of a nylon woven fabric in the same manner as in Example 1 to obtain a lithium ion conductive solid electrolyte sheet with a volume fraction of 90% and a thickness of 70 μm.

得られた固体電解質シートを実施例1と同様にして試験
を行ない、その結果を第1表に示した。
The obtained solid electrolyte sheet was tested in the same manner as in Example 1, and the results are shown in Table 1.

以下余白 第 表 〔発明の効果〕 本発明のリチウムイオン導電性電解質シートは、化学的
に安定で、生産性、均一性および可撓性に優れ、薄型化
が可能であり、また導電率が高く、リチウムイオンの輸
率が大きいため、例えば固体マイクロ電池用電解質シー
ト、エレクトロクロミックデイスプレィ、電気二重層キ
ャパシタ等の電気化学素子材料として有用である。
Below is a table with blank spaces [Effects of the Invention] The lithium ion conductive electrolyte sheet of the present invention is chemically stable, has excellent productivity, uniformity, and flexibility, can be made thin, and has high conductivity. Because of its large lithium ion transport number, it is useful as a material for electrochemical devices such as electrolyte sheets for solid micro batteries, electrochromic displays, and electric double layer capacitors.

Claims (1)

【特許請求の範囲】[Claims] (1)Li_4SiO_4−Li_3VO_4系固体電
解質粉を体積分率が55〜95%となるように高分子弾
性体中に分散させた混合物をシート状に成形したことを
特徴とするリチウムイオン導電性固体電解質シート。
(1) A lithium ion conductive solid electrolyte characterized by forming a mixture of Li_4SiO_4-Li_3VO_4-based solid electrolyte powder into an elastic polymer material at a volume fraction of 55 to 95% into a sheet shape. sheet.
JP63238362A 1988-09-22 1988-09-22 Lithium ion electroconductive solid electrolytic sheet Pending JPH0287415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238362A JPH0287415A (en) 1988-09-22 1988-09-22 Lithium ion electroconductive solid electrolytic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238362A JPH0287415A (en) 1988-09-22 1988-09-22 Lithium ion electroconductive solid electrolytic sheet

Publications (1)

Publication Number Publication Date
JPH0287415A true JPH0287415A (en) 1990-03-28

Family

ID=17029061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238362A Pending JPH0287415A (en) 1988-09-22 1988-09-22 Lithium ion electroconductive solid electrolytic sheet

Country Status (1)

Country Link
JP (1) JPH0287415A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337971A (en) * 1989-07-03 1991-02-19 Yuasa Battery Co Ltd Thin battery
JPH04133209A (en) * 1990-09-25 1992-05-07 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte sheet and manufacture thereof
JPH04267005A (en) * 1991-02-22 1992-09-22 Matsushita Electric Ind Co Ltd Solid electrolyte and its manufacture
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method
WO2013111804A1 (en) * 2012-01-27 2013-08-01 国立大学法人東京工業大学 Solid ion capacitor and method for using solid ion capacitor
US8623556B1 (en) * 2010-04-14 2014-01-07 Hrl Laboratories, Llc Lithium battery structures
WO2023190650A1 (en) * 2022-03-31 2023-10-05 株式会社村田製作所 Solid-state electrolyte for solid-state battery, solid-state battery, and battery package

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337971A (en) * 1989-07-03 1991-02-19 Yuasa Battery Co Ltd Thin battery
JPH04133209A (en) * 1990-09-25 1992-05-07 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte sheet and manufacture thereof
JPH04267005A (en) * 1991-02-22 1992-09-22 Matsushita Electric Ind Co Ltd Solid electrolyte and its manufacture
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method
US8383268B2 (en) 2002-11-29 2013-02-26 Kabushiki Kaisha Ohara Lithium ion secondary battery and a method for manufacturing the same
US8623556B1 (en) * 2010-04-14 2014-01-07 Hrl Laboratories, Llc Lithium battery structures
WO2013111804A1 (en) * 2012-01-27 2013-08-01 国立大学法人東京工業大学 Solid ion capacitor and method for using solid ion capacitor
JPWO2013111804A1 (en) * 2012-01-27 2015-05-11 国立大学法人東京工業大学 Solid ion capacitor and method of using solid ion capacitor
WO2023190650A1 (en) * 2022-03-31 2023-10-05 株式会社村田製作所 Solid-state electrolyte for solid-state battery, solid-state battery, and battery package

Similar Documents

Publication Publication Date Title
US6200707B1 (en) Solid electrolytic moldings, electrode moldings, and electrochemical elements including a polybutadiene block copolymer
KR970004137B1 (en) Structure suitable for solid electro chemical elements
US4985317A (en) Lithium ion-conductive solid electrolyte containing lithium titanium phosphate
JP4280339B2 (en) Solid electrolyte molded body, electrode molded body, and electrochemical element
Kim et al. Electrochemical and physical properties of composite polymer electrolyte of poly (methyl methacrylate) and poly (ethylene glycol diacrylate)
Zheng et al. An inorganic–organic nanocomposite calix [4] quinone (C4Q)/CMK-3 as a cathode material for high-capacity sodium batteries
CN108780892B (en) Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
TWI667829B (en) All-solid-state battery, hybrid structure solid electrolyte membrane and their manufacturing methods thereof
KR970004136B1 (en) Solid electrolyte sheet and process for producing the same
CN108682862A (en) A kind of preparation method of lithium ion battery silicon substrate negative plate
Wu et al. Ionic network for aqueous-polymer binders to enhance the electrochemical performance of Li-Ion batteries
Zhang et al. Functional polyethylene separator with impurity entrapment and faster Li+ ions transfer for superior lithium-ion batteries
JPH0287415A (en) Lithium ion electroconductive solid electrolytic sheet
CN109728339B (en) Electrolyte composition, all-solid electrolyte membrane and preparation method thereof
JP4060465B2 (en) Polymer solid electrolyte and electrochemical device using the same
JP2001052746A (en) High-molecular solid electrolyte and lithium secondary battery using the same
JPH0482166A (en) Manufacture of solid electrolytic sheet
JPH1180296A (en) Gel form polymer electrolyte
EP4150683B1 (en) Electrode for a lithium-ion battery and process for its preparation
Arbizzani et al. An all solid-state polymer—polymer electrolyte—lithium rechargeable battery for room temperature applications
CN112442172A (en) Polymer matrix, electrolyte, preparation method of polymer matrix, preparation method of electrolyte, battery pole piece and lithium ion battery
JPH0787045B2 (en) Method for manufacturing solid electrolyte sheet
JPH0576136B2 (en)
JPH01122573A (en) Solid electrolyte cell
JPH03266364A (en) Solid electrolytic sheet