JPH0279685A - Image pickup device - Google Patents
Image pickup deviceInfo
- Publication number
- JPH0279685A JPH0279685A JP63229964A JP22996488A JPH0279685A JP H0279685 A JPH0279685 A JP H0279685A JP 63229964 A JP63229964 A JP 63229964A JP 22996488 A JP22996488 A JP 22996488A JP H0279685 A JPH0279685 A JP H0279685A
- Authority
- JP
- Japan
- Prior art keywords
- image sensor
- solid
- imaging device
- image
- receiving area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 32
- 238000003384 imaging method Methods 0.000 claims description 44
- 238000004364 calculation method Methods 0.000 claims description 43
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000009434 installation Methods 0.000 claims description 6
- 230000004075 alteration Effects 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000012556 adjustment buffer Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
- Color Television Image Signal Generators (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は固体撮像索子を用いたカラー固体撮像カメラの
撮像素子取り付け誤差の補正回路と、取り付け誤差の補
正を可能にする固体撮像素子の構造に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a correction circuit for image sensor mounting errors in a color solid-state imaging camera using a solid-state imaging cable, and a solid-state image sensor that enables correction of mounting errors. Regarding structure.
現在放送局などでは3管式のテレビカメラが広く用いら
れている。しかし近年固体撮像素子の急速な発展を背景
に、撮像管の代わりに固体撮像素子を用いた多板式テレ
ビカメラも普及しつつある。Currently, three-tube television cameras are widely used in broadcasting stations and the like. However, with the rapid development of solid-state imaging devices in recent years, multi-disc television cameras that use solid-state imaging devices instead of image pickup tubes are also becoming popular.
第3図は例として3管式カメラのブロック図を模式的に
示したものである。入射光はレンズ1とプリズム2によ
って3色の映像に分け、その各々の映像を撮像管3によ
って電気信号に変換する。FIG. 3 schematically shows a block diagram of a three-tube camera as an example. The incident light is divided into three color images by a lens 1 and a prism 2, and each image is converted into an electric signal by an image pickup tube 3.
その後この電気信号(映像信号)を信号処理回路4に通
してテレビ信号を得る。Thereafter, this electric signal (video signal) is passed through a signal processing circuit 4 to obtain a television signal.
ところで第3図のプリズムによって分離した色の映像の
中心と撮像管の受光面の中心が管ごとにずれていると、
テレビ信号に含まれる像の位置が各色ごとに異るため2
重像になり、色のにじみや解像度の低下を引き起こし画
質を劣化させてしまう。このことは多板式のカメラにお
いても同様に問題になる。そのため多管式、多板式とも
に各管あるいは各素子の像を精度よく重ね合せることが
必要である。By the way, if the center of the color images separated by the prism in Figure 3 and the center of the light-receiving surface of the image pickup tube are different for each tube,
Because the position of the image included in the TV signal is different for each color, 2
This results in superimposed images, causing color blurring and a drop in resolution, which deteriorates image quality. This problem also occurs in multi-disc cameras. Therefore, in both the multi-tube type and the multi-plate type, it is necessary to accurately superimpose the images of each tube or each element.
撮像管の場合受光領域の位置は電子ビームの偏向信号を
調整することによっである程度補正できる。従来多管式
カメラでは撮像管のこの性質を利用し、第3図偏向用信
号発生器6の電流量を調節することによって3管の受光
領域のレジストレーションを取っている。第3図回路7
は撮像管のこの性質を利用し、レンズの色収差による像
のずれも取り除くための回路である。(例えば、TV学
会誌Vo 1.36.NG、10(’ 82)P40参
照)。In the case of an image pickup tube, the position of the light receiving area can be corrected to some extent by adjusting the deflection signal of the electron beam. In the conventional multi-tube type camera, this property of the image pickup tube is used to register the light-receiving areas of the three tubes by adjusting the amount of current of the deflection signal generator 6 shown in FIG. Figure 3 circuit 7
is a circuit that takes advantage of this property of the image pickup tube and eliminates image shift due to chromatic aberration of the lens. (For example, see TV Society Journal Vo 1.36.NG, 10 ('82) P40).
この様に撮像管を用いたカメラでは受光領域の位置は電
子ビームの偏向信号を調整することによっである程度補
正できるので、撮像管の取り付け精度には余裕がある。In this way, in a camera using an image pickup tube, the position of the light receiving area can be corrected to some extent by adjusting the deflection signal of the electron beam, so there is a margin for accuracy in mounting the image pickup tube.
しかし固体撮像索子では副索位置が受光面上に固定され
ており、撮像管のようには自由に位置ずれを補正できな
い、そのため多板式カメラでは、各撮像素子の取り付け
位置合わせと固定法に高い精度が要求される。However, in a solid-state imaging device, the position of the sub-cable is fixed on the light-receiving surface, and positional deviation cannot be corrected as freely as in the case of an image pickup tube.Therefore, in a multi-disc camera, it is difficult to align and fix each image sensor. High precision is required.
また現在テレビ方式は従来のNTSC方式を更に高精細
化する検討が進められている。この様な方式に用いる固
体撮像素子の画素ピッチは従来より更に小さくなり、そ
れにつれて素子の取り付け精度も更に厳しくなる。その
ため調整が困難になるだけでなく、調整装置は高価にな
るあるいは製造コストが上がるなどの問題が発生する。Furthermore, currently, studies are underway to improve the definition of the conventional NTSC television system. The pixel pitch of solid-state image sensing devices used in such systems has become even smaller than in the past, and as a result, the accuracy of mounting the devices has become even more demanding. This not only makes adjustment difficult, but also causes problems such as the adjustment device becoming expensive or the manufacturing cost increasing.
本発明は固体撮像素子を用いたカメラにおいても余り亮
い取り付け精度を要求しなくてもすむ、画面位置合わせ
手段を提供するものである。The present invention provides a screen positioning means that does not require high mounting accuracy even in cameras using solid-state image sensors.
上記目的を達成するために本発明においては、固体撮像
素子の取り付け位置が光学レンズの光軸からずれていて
も、光軸近傍から出画に必要な画素の映像信号が得られ
るように、用いる固体撮像索子受光領域が広くシ、それ
にあわせて画素数を多くしておく。In order to achieve the above object, the present invention uses a solid-state image sensor so that even if the mounting position of the solid-state image sensor is shifted from the optical axis of the optical lens, the video signal of the pixel necessary for image output is obtained from near the optical axis. The solid-state imaging element has a wide light-receiving area, and the number of pixels is increased accordingly.
また固体撮像素子を光学系に固定した後、固体撮像素子
の受光領域どうしおよび光学レンズの光軸との位置関係
を前もって計819シておき、その情報をカメラに記憶
しておく。Further, after fixing the solid-state image sensor to the optical system, a total of 819 positional relationships between the light-receiving areas of the solid-state image sensor and the optical axis of the optical lens are determined in advance, and this information is stored in the camera.
出画の際は既に記憶しである取り付け誤差に関する情報
から求めた画素点のずれ量を基に、固体撮像素子の各画
素から得られる映像信号に演算を加え、出画に必要な有
効画素領域内の各画素点の映像レベルを予想して補間し
、補間後の48号を出力する。When outputting an image, calculations are performed on the video signal obtained from each pixel of the solid-state image sensor based on the amount of deviation of pixel points obtained from information about mounting errors that has already been memorized, and the effective pixel area required for outputting the image is calculated. The image level of each pixel point in the image is predicted and interpolated, and the interpolated No. 48 is output.
本発明によれば固体撮像素子の取り付け位bgLがずれ
ても、必要な領域の映像信号は常に固体撮像素子から得
られるようになる上、出画に必要な位置ずれのない映像
信号は固体撮像索子の出力信号から補間して求めるため
、固体撮像素子に対して余り高い取り付け精度を要求し
なくてもすむ。According to the present invention, even if the mounting position bgL of the solid-state image sensor is shifted, the video signal of the necessary area can always be obtained from the solid-state image sensor, and the video signal without positional shift required for image output can be obtained from the solid-state image sensor. Since it is determined by interpolation from the output signal of the cable, there is no need to require very high mounting accuracy for the solid-state image sensor.
本発明の第1の実施例を第1図に示す。第3図の従来の
回路では偏向信号に微;filを加え、直接撮像管面上
の受光領域位置を移動する。これに対し第1図の回路で
は前もって記憶しておいた固体撮像素子取り付け誤差の
情報と固体撮像素子の各画素から得られる映像信号を基
に、出画に必要な映像信号を予想して補間する様にした
点が従来の回路と異なる。A first embodiment of the invention is shown in FIG. In the conventional circuit shown in FIG. 3, a small amount of fil is added to the deflection signal to directly move the position of the light receiving area on the image pickup tube surface. On the other hand, the circuit shown in Figure 1 predicts and interpolates the video signal required for image output based on the information on the solid-state image sensor mounting error stored in advance and the video signal obtained from each pixel of the solid-state image sensor. It differs from conventional circuits in that it is made to do so.
第1図においてプリズム2によって分けられた映像は、
各々の固体撮像素子10によって電気信号に変換する。In Fig. 1, the image divided by prism 2 is
Each solid-state image sensor 10 converts it into an electrical signal.
この時用いる固体撮像索子の画素数は通常有効画素周辺
部の影響を除くために必要な、上下左右に2〜5画素程
度しか多く構成しない。しかし本発明では固体撮像素子
の取り付け位置が第2図の様に光学レンズの光@20か
らずれていても、光軸近傍から出画に必要な有効画素2
1の全ての映像信号が得られるように、用いる固体撮像
素子受光領域22.24を広くし、それに合わせて全受
光画素数を多くしておく (fdl単のため2板の間の
関係のみ模式的に示す)。すなわち出画に必要な有効画
素数を縦方向Nv画索、横方向Nh画画素し、また全て
の画素を同一ピッチで構成するときの取り付け誤差の画
素数換算値を縦方向Mv画素、横方向Mh画素とすると
き、用いる固体撮像素子の受光領域は
縦方向 N v + M v画素
横方向 Nh+Mh画素
以上の画素数を設けられるように広くしておく。The number of pixels of the solid-state imaging element used at this time is usually only about 2 to 5 pixels in the upper, lower, left, and right directions, which is necessary to eliminate the influence of the peripheral areas of effective pixels. However, in the present invention, even if the mounting position of the solid-state image sensor is shifted from the light @20 of the optical lens as shown in Fig. 2, the effective pixel 2 required for image output from near the optical axis
In order to obtain all the video signals of 1, the light-receiving area 22, 24 of the solid-state image sensor used is widened, and the total number of light-receiving pixels is increased accordingly. show). In other words, the effective number of pixels required for image output is Nv pixels in the vertical direction and Nh pixels in the horizontal direction, and the conversion value of the installation error when configuring all pixels at the same pitch is Mv pixels in the vertical direction and Nh pixels in the horizontal direction. When using Mh pixels, the light-receiving area of the solid-state image sensing device used is made wide so that the number of pixels in the vertical direction is N v + Mv pixels and the horizontal direction is Nh + Mh pixels or more.
また固体撮像素子を光学系に固定した後、固体撮像索子
の受光領域と光学レンズの光軸が交差する点の受光領域
内における位置23.25及び回転角26を前もって計
測しておく。そしてこれら取り付け誤差情報そのものあ
るいはそれから求めた各画素点のずれ量を取り付け誤差
量記憶演算回路11に記憶しておく。Further, after the solid-state imaging device is fixed to the optical system, the position 23,25 in the light-receiving region and the rotation angle 26 of the point where the light-receiving region of the solid-state imaging cable intersects with the optical axis of the optical lens are measured in advance. Then, the mounting error information itself or the displacement amount of each pixel point obtained from the mounting error information is stored in the mounting error amount storage calculation circuit 11.
出画に必要な映像信号の内の1画素点の信号レベルは次
の様にして求める。まず出画の画素点位置における像の
移動量を、取り付け誤差量記憶演算回路11のデータを
基に画素点移動量演算回路12によって求める。一方固
体撮像素子10によって変換した電気信号の内少なくと
も像の移動位置近傍の画面の一部の信号を、出画の画素
点位置にあわせて順次映像記憶回路13に記憶する。そ
して画素点移動量演算回路12で求めた像の移動量と映
像記憶回路13に記憶した画素信号から、映像信号演算
回路」4によって直線近似等の方法で出画の画素点位置
の信号レベルを予想し補間する。補間した映像信号演算
回路14の出力信号は従来同様信号処理回路に通してブ
レビ信号を得る。The signal level of one pixel point of the video signal necessary for image output is determined as follows. First, the amount of movement of the image at the pixel point position of the output image is determined by the pixel point movement amount calculation circuit 12 based on the data of the mounting error amount storage calculation circuit 11. On the other hand, among the electric signals converted by the solid-state image sensor 10, at least the signals of a part of the screen near the moving position of the image are sequentially stored in the video storage circuit 13 in accordance with the pixel point positions of the output image. Then, from the amount of image movement determined by the pixel point movement amount calculation circuit 12 and the pixel signal stored in the video storage circuit 13, the signal level of the pixel point position of the output image is calculated by the video signal calculation circuit 4 using a method such as linear approximation. Predict and interpolate. The interpolated output signal of the video signal calculation circuit 14 is passed through a signal processing circuit to obtain a blur signal as in the conventional case.
なお第1図の回路では出画の画素点位置の信号レベルを
予想し補間する映像信号演算の際の丸め誤差をおさえる
ため、レンズレジずれ量記憶演算回路7で求めた光学レ
ンズの色収差によるずれ量を含めて画素点移11)I量
演算回路12で像の移動域を求め、−挙に映像信号の演
算が行われるように構成した。In addition, in the circuit shown in FIG. 1, in order to suppress rounding errors during video signal calculation that predicts and interpolates the signal level at the pixel point position of the output image, the amount of deviation due to chromatic aberration of the optical lens determined by the lens registration deviation amount storage calculation circuit 7 is calculated. Including pixel point shift 11) The I amount calculating circuit 12 calculates the moving range of the image, and then calculates the video signal.
また固体撮像素子の取り付け精度が悪く像の移動量が数
画素に及ぶと、13の映像記憶回路として大きな記憶容
量が必要になる。第1E!Iのスタートパルス位置演算
回路16は、この映像記憶回路13の記憶容量を小さく
抑えるために挿入した物である。そのために回路16で
は光軸近傍の画素信号がお互いにほぼ同一時間に出力さ
れるように。Furthermore, if the solid-state image sensing device is mounted poorly and the amount of image movement extends to several pixels, a large storage capacity will be required for the 13 video storage circuits. 1st E! The start pulse position calculation circuit 16 of I is inserted to keep the storage capacity of the video storage circuit 13 small. For this purpose, the circuit 16 outputs pixel signals near the optical axis at approximately the same time.
撮像索子毎にその画素信号読み出し開始パルスタイミン
グを演算し駆動パルス発生回路を制御する。The pixel signal readout start pulse timing is calculated for each imaging probe and the drive pulse generation circuit is controlled.
これにより補間に必要な画素信号は、補間後の画素信号
を出力する時間に合わせて撮像索子から出力されるので
、各素子からの出力信号のタイミングを合わせるための
余計なバッファメモリが不用に成る。As a result, the pixel signals required for interpolation are output from the imaging element at the same time as the pixel signals after interpolation are output, eliminating the need for extra buffer memory to match the timing of the output signals from each element. Become.
この様に本回路では映像信号演算回路14によって、固
体撮像素子上での像の位置ずれを補正できる。そのため
固体撮像素子では撮像管のように受光領域の位置を撮像
面上で自由に移動できないにもかかわらず、固体撮像素
子に対して余り亮い取り付け精度を要求しなくてもすむ
。In this way, in this circuit, the image signal calculation circuit 14 can correct the positional deviation of the image on the solid-state image sensor. Therefore, even though the solid-state image sensor cannot freely move the position of the light-receiving area on the imaging surface like an image pickup tube, there is no need to require the solid-state image sensor to have very high mounting precision.
第4図は本発明の第2の実施例である。一般に光学レン
ズの分解能は中心はど高く、周辺に近ずくに連れて悪く
なる。そのため画面周辺では中心部に比べ映像信号の高
域成分を強調したエンハンサをかけることが望ましい。FIG. 4 shows a second embodiment of the invention. Generally, the resolution of an optical lens is high at the center and worsens as it approaches the periphery. Therefore, it is desirable to apply an enhancer that emphasizes the high-frequency components of the video signal at the periphery of the screen compared to the center.
第4図の回路は第1図の回路にエンハンス量演算回路4
1とマトリクス演算回路42を加え、上記のエンハンサ
を始め各種の2次元フィルタリング演算も可能にした物
である。The circuit in Figure 4 is the circuit in Figure 1 plus the enhancement amount calculation circuit 4.
1 and a matrix calculation circuit 42, it is possible to perform various two-dimensional filtering calculations including the above-mentioned enhancer.
レンズの収差や素子の取り付け誤差による像のずれ域は
、第1図の回路同様にレンズレジずれ線記憶演算回路7
.取り付け誤差量記憶演算回路11、画素点移動量演算
回路12で求める。一方エンハンス量演算回路41で各
画素点に対するエンハンス量その他の量を求めると共に
、その鰍に合わせて通常の2次元フィルタ(吹抜「画像
のディジタル信号処理」日刊工業新聞社P113)と同
様の例えば3X3(一般に2X2以上であれば良い)の
マトリクスの係数を求める。そしてマトリクス要素演算
回路42において、このマトリクスの係数に画素点移動
量演算回路12で求めた像のずれ量による修正を加える
。その後映像信号演算回路14で、像のずれ量やエンハ
ンス等の全てを考慮してマトリクス要素演算回路42で
求めたマトリクスの係数を使って画素信号の補間をする
。Image deviation areas due to lens aberrations and element installation errors are determined by the lens registration deviation line storage calculation circuit 7, similar to the circuit shown in FIG.
.. It is determined by the mounting error amount storage calculation circuit 11 and the pixel point movement amount calculation circuit 12. On the other hand, the enhancement amount calculation circuit 41 calculates the enhancement amount and other amounts for each pixel point, and uses a 3 Find the coefficients of the matrix (generally 2x2 or more is sufficient). Then, in the matrix element calculation circuit 42, the coefficients of this matrix are modified based on the amount of image shift determined by the pixel point movement amount calculation circuit 12. Thereafter, the video signal calculation circuit 14 interpolates the pixel signal using the matrix coefficients obtained by the matrix element calculation circuit 42, taking into account everything such as the amount of image shift and enhancement.
補間した映像信号演算回路14の出力信号は従来同様信
号処理回路に通してテレビ信号を得る。The interpolated output signal of the video signal calculation circuit 14 is passed through a signal processing circuit to obtain a television signal as in the conventional case.
ところで通常補間等に使うマトリクス要素は単純な整数
で構成された分数値を用いることが多く、マトリクス#
素どうしの演算は比較的容易に行える。これに対し像の
移動に伴う画素間補間演算やエンハンサ等の演算では高
い精度を要求する映像信号を扱うため、同様の演算を繰
り返すと演算の際の丸め誤差が累積して画質を劣化させ
る欠点がある。By the way, the matrix elements used for interpolation etc. are often fractional values made up of simple integers, and the matrix #
Arithmetic operations between elements are relatively easy. On the other hand, interpixel interpolation calculations and enhancer calculations associated with image movement handle video signals that require high precision, so repeating the same calculations has the disadvantage of accumulating rounding errors during calculations and deteriorating image quality. be.
本回路では像の移動量をはじめエンハンサ等の各種の2
次元フィルタリング演算に必要な係数を前もって求めて
から、高い精度を要求する映像信号の演算を一挙に行う
ため、映像信号演算の際の丸め誤差を小さくおさえるこ
とができる。This circuit handles various functions such as the amount of image movement and the enhancer.
Since the coefficients necessary for the dimensional filtering calculation are obtained in advance and the video signal calculations that require high accuracy are performed all at once, rounding errors during video signal calculations can be kept small.
また第1図の回路同様本回路においても像の位置ずれを
補正できるため、固体撮像素子に対して余り高い取り付
け精度を要求しなくてもすむ。Further, like the circuit shown in FIG. 1, this circuit can also correct the positional deviation of the image, so there is no need to require very high mounting precision for the solid-state image sensor.
第5図は本発明の第3の実施例である。固体撮像素子は
一般に第6図(a)の様に2次元状に画素が並んだ情造
をしており、第6図(b)、(c)に示すように一定の
水平クロック周波数と水IV同期周波数の駆動パルスに
よって順次読み出して行く。第2図に示す出画に必要と
しない不用な画素の信号は、水平帰線期間および垂直帰
線期間に相当する期間に読み出し除去できる。しかし取
り付け精度が悪いと用意するべき不用画素数が増加する
ため、水平帰線期間および垂直帰線期間に相当する期間
だけでは不用な画素の信号を除去できなくなる。FIG. 5 shows a third embodiment of the invention. A solid-state image sensor generally has a structure in which pixels are arranged in a two-dimensional manner as shown in Figure 6(a). The data are sequentially read out using drive pulses at the IV synchronous frequency. Signals from unnecessary pixels not required for image output shown in FIG. 2 can be read out and removed during periods corresponding to the horizontal retrace period and the vertical retrace period. However, if the mounting accuracy is poor, the number of unnecessary pixels to be prepared increases, and therefore it becomes impossible to remove the signals of unnecessary pixels only during a period corresponding to the horizontal retrace period and the vertical retrace period.
第5図の回路ではこの様な不用画素信号も除去できるよ
うに、出画に用いるテレビ方式の必要な有効画素数から
決まる水平クロック周波数と水平同期周波数に対し、こ
れとは異なる水平クロック周波数と水平同期周波数で固
体撮像素子を駆動する。ただしそのフィールド周波数は
出画に用いるテレビ方式のフィールド周波数と同一にし
ておく。In order to remove such unnecessary pixel signals, the circuit shown in Figure 5 uses a horizontal clock frequency and horizontal synchronization frequency that are different from the horizontal clock frequency and horizontal synchronization frequency, which are determined by the number of effective pixels required for the television system used for image output. The solid-state image sensor is driven at the horizontal synchronous frequency. However, the field frequency is set to be the same as the field frequency of the television system used for image output.
すなわち同期信号発生器15から出力される垂直同期パ
ルス(フィールド周波数を決める)を基に、テレビ方式
で決まる周波数より高い水平クロック周波数と水平同期
周波数を持つ駆動パルスを駆動パルス発生回路53で作
る。そしてこの駆mノパルスを用いて固体撮像素子を初
め画素点移動量演算回路12等映像信号演算回路14ま
での回路を駆動する。その後映像信号演算回路14の出
力信号は、出力信号の周波数に合わせるため時間調整バ
ッファ回路54に通した後、信号処理回路によってテレ
ビ信号に変換して出力する。That is, based on the vertical synchronization pulse (which determines the field frequency) output from the synchronization signal generator 15, the drive pulse generation circuit 53 generates a drive pulse having a horizontal clock frequency and a horizontal synchronization frequency higher than the frequency determined by the television system. Then, this driving pulse is used to drive circuits including the solid-state image sensor, the pixel point movement amount calculation circuit 12, and the video signal calculation circuit 14. Thereafter, the output signal of the video signal calculation circuit 14 is passed through a time adjustment buffer circuit 54 in order to match the frequency of the output signal, and then converted into a television signal by a signal processing circuit and output.
この様に本回路において固体撮像素子の取り付け精度が
悪く、用意した不用画素の信号を通常のクロック周波数
で駆動したのでは除去できない場合でも、これを除去し
像の位置ずれを補正することができる。In this way, in this circuit, even if the mounting accuracy of the solid-state image sensor is poor and the signal of the prepared unused pixel cannot be removed by driving it at the normal clock frequency, it is possible to remove it and correct the image position shift. .
なお第5図では固体撮像素子から信号を水平ライン毎に
順番に読み出す場合に付いて述べたが。In FIG. 5, a case has been described in which signals are sequentially read out from the solid-state image sensor for each horizontal line.
固体撮像素子を数ライン同時に読み出せるようにし、テ
レビ方式で決まる周波数より低い水平クロック周波数と
水平同期周波数を持つ駆動パルスで駆動するようにして
もよい。The solid-state image sensor may be configured to be able to read several lines at the same time, and may be driven with drive pulses having a horizontal clock frequency and a horizontal synchronization frequency lower than the frequency determined by the television system.
また不用な画素の信号を除去するには、第6図のように
常に一定のクロック周波数で駆動するのではなく、第7
図に示すように水平帰線期間および垂直帰線期間に相当
する期間だけでは除去できない不用画素信号の少なくと
も一部を除去する期間のみ高速で読み出すようにしても
よい。In addition, in order to remove unnecessary pixel signals, instead of driving at a constant clock frequency as shown in Figure 6,
As shown in the figure, high-speed reading may be performed only during a period during which at least a portion of unnecessary pixel signals that cannot be removed only during periods corresponding to the horizontal retrace period and the vertical retrace period are removed.
以上3板全てを光軸に合わせる場合について述べたが3
板の内の1枚(例えば緑色光用)の素子位置を基準に取
り、この基準素子に対する相対位置として他の素子の位
置を決めても良い。Above we have described the case where all three plates are aligned with the optical axis, but 3
The position of the element on one of the plates (for example, for green light) may be taken as a reference, and the positions of the other elements may be determined as relative positions with respect to this reference element.
また以上3板式を中心に述べたが、3色を分離して読み
出す単板式、2板式をはじめモノクロカメラにおいても
同様に本発明を適用できる。Further, although the above description has focused on a three-panel type camera, the present invention can be similarly applied to monochrome cameras such as a single-panel type and two-panel type that read out three colors separately.
さらに撮像管を用いる撮像装置においても、電子ビーム
の偏向によらず、本発明による方法すなわち読み出した
信号に演算を加えて像のひずみを補正する方法を用いて
も良いことは明かである。Furthermore, it is clear that even in an imaging apparatus using an image pickup tube, the method according to the present invention, that is, the method of correcting image distortion by performing calculations on read signals, may be used, regardless of the deflection of the electron beam.
以上本発明によれば固体撮像素子の取り付け位置がずれ
ても、必要な領域の映像信号は常に固体撮像素子から得
られるようになる上、出画に必要な位置ずれのない映像
信号は固体撮像素子の出力信号から補間して求めるため
、固体撮像索子に対して余り高い取り付け精度を要求し
なくてもすむ。As described above, according to the present invention, even if the mounting position of the solid-state image sensor shifts, the video signal of the necessary area can always be obtained from the solid-state image sensor, and the video signal without positional shift required for image output can be obtained from the solid-state image sensor. Since it is determined by interpolation from the output signal of the element, there is no need to require very high mounting accuracy for the solid-state imaging cable.
また合わせて光学レンズの色収差の補正やエンハンスな
どの処理も同時に容易に行うことができる。Additionally, processing such as correction and enhancement of chromatic aberration of optical lenses can be easily performed at the same time.
第1図、第2図はそれぞれ本発明の第1の実施例とその
説明図、第3図は従来の回路ブロック図。
第4図は\本発明の第2の実施例図、第5図乃至第7図
は本発明の第3の実施例とその説明図である。
■、2・・・光学レンズとプリズム、3.10・・・撮
俄管と固体撮像素子、4・・・信号処理回路、11・・
・取り付け誤差量記憶演算回路、12・・・画素点移動
量演算回路、13・・・映像信号記憶回路、14・・・
映像信号演算回路、16・・・スタートパルス位置演算
回路、42・・・マトリクス要素演算回路、54・・・
時間調節バッファ回路。1 and 2 are respectively a first embodiment of the present invention and an explanatory diagram thereof, and FIG. 3 is a conventional circuit block diagram. FIG. 4 shows a second embodiment of the present invention, and FIGS. 5 to 7 show a third embodiment of the present invention and explanatory diagrams thereof. ■, 2... Optical lens and prism, 3.10... Camera tube and solid-state image sensor, 4... Signal processing circuit, 11...
- Attachment error amount storage calculation circuit, 12... Pixel point movement amount calculation circuit, 13... Video signal storage circuit, 14...
Video signal calculation circuit, 16... Start pulse position calculation circuit, 42... Matrix element calculation circuit, 54...
Time adjustment buffer circuit.
Claims (1)
変換する撮像素子(撮像管あるいは固体撮像素子など)
を有する撮像装置において、該光学レンズの収差や該撮
像素子の取り付け誤差などによる像のずれを、該撮像素
子からの出力信号に一定の演算を加えることによつて補
正することを特徴とする撮像装置。 2、光学レンズを通つた光を電気信号に変換する撮像素
子を有する撮像装置において、 該撮像素子を該撮像装置の光学レンズの後ろに固定する
際の縦方向の取り付け誤差をJv、横方向の取り付け誤
差をJhとし、出画に必要な有効受光領域の縦方向の長
さをLv、横方向の長さをLhとした時、該撮像素子の
受光領域の大きさを (Lv×Jv)×(Lh×Jh) 以上にすることを特徴とする撮像装置。 3、撮像素子として複数個の光電変換素子からなる画素
を2次元的に配列した構造を有する固体撮像素子を用い
た撮像装置において、 該固体撮像素子を光学レンズの後ろに固定する際の取り
付け誤差の画素数換算値を縦方向Mv画素、横方向Mh
画素とする時、該固体撮像素子の受光領域に含まれる縦
方向と横方向の画素数を縦方向Mv+Nv画素以上、横
方向Mh+Nh画素以上にすることを特徴とする撮像装
置。 4、撮像素子から信号を読みだす際のフィールド周波数
は出画に用いるテレビ方式のフィールド周波数と同一に
するが、水平方向の走査の速さ(固体撮像素子では水平
クロック周波数)あるいは水平同期周波数は、該出画に
用いるテレビ方式で必要な有効受光領域の面積から決ま
る水平方向の走査の速さ(固体撮像素子では水平クロッ
ク周波数)あるいは水平同期周波数とは異なる周波数に
設定して該撮像素子を駆動することを特徴とする撮像装
置。 5、請求項2又は3記載の撮像装置において、該撮像素
子の受光領域内で、出画に用いる信号を得る有効受光領
域(固体撮像素子においては縦方向Nv画素、横方向N
h画素から成る領域)を除く領域に蓄積される信号の内
の、少なくとも一部の信号を該有効受光領域内の信号を
読み出す速度より高速で読みだす様に該撮像素子を駆動
することを特徴とする撮像装置。 6、請求項2又は3記載の撮像装置において、該光学レ
ンズの光軸が該固定した撮像素子の受光領域と交差する
点の位置情報を、該固定した撮像素子の取り付け誤差情
報として記憶する記憶回路と、 該記憶回路の撮像素子取り付け誤差情報及び該光学レン
ズの色収差によるレズのずれ量情報の少なくとも一方の
情報を基に出画に必要な有効受光領域内の各点(固体撮
像素子では画素点)と該固定した撮像素子上の点(固体
撮像素子では画素点)の位置のずれ量を計算する演算回
路と、 該演算したずれ量あるいは別に設けた記憶回路に一旦記
憶してあつたずれ量から該出画に必要な有効受光領域内
の各点(固体撮像索子では画素点)の映像レベルを予想
して補間する映像信号演算回路を有することを特徴とす
る撮像装置。 7、請求項6記載の撮像装置において、 該出画に必要な有効受光領域内の各点(固体撮像素子で
は画素点)と該固体した撮像索子の受光領域内の各点(
固体撮像素子では画素点)とのずれ量から映像レベルを
予想して補間する際、画像の高域成分を補強するための
エンハンス等も同時に行うマトリクス係数を求めてから
該出画に必要な有効受光領域内の各点(固体撮像素子で
は画素点)の映像レベルを予想して補間することを特徴
とする撮像装置。 8、請求項6記載の撮像装置において、 該撮像素子から信号を読みだす際の縦方向あるいは横方
向の読みだし開始のタイミングを、該光学レンズの光軸
が該撮像素子受光領域の中心を通ると仮定した場合の読
み出し開始タイミングより前後し、該撮像素子の取り付
け誤差に対する位置補正量が、該光学レンズの光軸が該
撮像素子受光領域の中心を通ると仮定した開始タイミン
グの場合の位置補正量より小さくなるようにしたことを
特徴とする撮像装置。 9、2つ以上の撮像素子を用いる請求項6〜8記載のい
ずれかの撮像装置において、 該固定した1つの撮像索子の取り付け誤差情報と、該1
つの撮像素子に対する該1つの撮像素子以外の撮像素子
の位置と回転角からなる取り付け誤差情報を記憶してお
く記憶回路と、該記憶回路の情報を基に該出画に必要な
有効受光領域内の各点(固体撮像素子では画素点)と該
固定した各撮像素子の点(固体撮像素子では画素点)と
のずれ量を計算する演算回路と、該演算したずれ量から
該出画に必要な有効受光領域内の各点(固体撮像素子で
は画素点)の映像レベルを予想して補間する映像補間回
路を有することを特徴とする撮像装置。[Claims] 1. An optical lens and an imaging device (such as an imaging tube or solid-state imaging device) that converts the light passing through the optical lens into an electrical signal.
In an imaging device having an image sensor, an image shift caused by aberrations of the optical lens, mounting errors of the image sensor, etc. is corrected by adding a certain calculation to an output signal from the image sensor. Device. 2. In an imaging device that has an imaging device that converts light passing through an optical lens into an electrical signal, the vertical mounting error when fixing the imaging device behind the optical lens of the imaging device is Jv, and the horizontal mounting error is Jv. When the installation error is Jh, the vertical length of the effective light-receiving area required for image output is Lv, and the horizontal length is Lh, the size of the light-receiving area of the image sensor is (Lv x Jv) x (Lh×Jh) An imaging device characterized by the above. 3. In an imaging device that uses a solid-state image sensor having a two-dimensional arrangement of pixels consisting of a plurality of photoelectric conversion elements as an image sensor, installation error when fixing the solid-state image sensor behind an optical lens. The converted value of the number of pixels is Mv pixels in the vertical direction and Mh in the horizontal direction.
An imaging device characterized in that, when used as a pixel, the number of vertical and horizontal pixels included in the light receiving area of the solid-state image sensor is at least Mv+Nv pixels in the vertical direction and at least Mh+Nh pixels in the horizontal direction. 4. The field frequency when reading signals from the image sensor is the same as the field frequency of the television system used for image output, but the horizontal scanning speed (horizontal clock frequency for solid-state image sensors) or horizontal synchronization frequency is , the image sensor is set to a horizontal scanning speed (horizontal clock frequency for solid-state image sensors) determined by the area of the effective light-receiving area required by the television system used for image output or a frequency different from the horizontal synchronization frequency. An imaging device characterized by being driven. 5. In the imaging device according to claim 2 or 3, an effective light-receiving area for obtaining a signal used for image output within the light-receiving area of the image sensor (in a solid-state image sensor, Nv pixels in the vertical direction and Nv pixels in the horizontal direction).
The image sensor is driven to read out at least some of the signals accumulated in the area except the area (area consisting of h pixels) at a higher speed than the readout speed of the signals in the effective light receiving area. An imaging device that uses 6. In the imaging device according to claim 2 or 3, a memory for storing position information of a point where the optical axis of the optical lens intersects with a light receiving area of the fixed image sensor as installation error information of the fixed image sensor. Each point within the effective light-receiving area necessary for image output (in the case of a solid-state image sensor, a pixel an arithmetic circuit that calculates the amount of positional deviation between the fixed point on the image sensor (pixel point in the case of a solid-state image sensor); 1. An imaging device comprising a video signal calculation circuit that predicts and interpolates the video level of each point (pixel point in a solid-state imaging device) in an effective light-receiving area necessary for image output based on the amount of image output. 7. The imaging device according to claim 6, wherein each point (pixel point in a solid-state image sensor) within the effective light-receiving area necessary for the image output and each point (in the light-receiving area of the solid-state imaging element)
When predicting and interpolating the video level from the amount of deviation from the pixel point (with a solid-state image sensor), the matrix coefficients that also perform enhancement to reinforce the high-frequency components of the image are calculated, and then the effective An imaging device characterized by predicting and interpolating the image level of each point (pixel point in the case of a solid-state imaging device) within a light receiving area. 8. The imaging device according to claim 6, wherein the timing of starting reading in the vertical or horizontal direction when reading signals from the imaging device is such that the optical axis of the optical lens passes through the center of the light receiving area of the imaging device. The position correction amount for the mounting error of the image sensor is the start timing before and after the readout start timing assuming that the optical axis of the optical lens passes through the center of the light receiving area of the image sensor. An imaging device characterized in that the imaging device is smaller than the amount of light. 9. The imaging device according to any one of claims 6 to 8, which uses two or more imaging elements, comprising: installation error information of the one fixed imaging cord;
a memory circuit that stores mounting error information consisting of the position and rotation angle of an image sensor other than the one image sensor with respect to the one image sensor; A calculation circuit that calculates the amount of deviation between each point (pixel point in the case of a solid-state image sensor) and the fixed point of each image sensor (pixel point in the case of the solid-state image sensor), and a calculation circuit that calculates the amount of deviation between each point (pixel point in the case of a solid-state image sensor) and the amount of deviation required for the image output from the calculated amount of deviation. 1. An imaging device comprising an image interpolation circuit that predicts and interpolates the image level of each point (pixel point in the case of a solid-state image sensor) within an effective light-receiving area.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229964A JPH0279685A (en) | 1988-09-16 | 1988-09-16 | Image pickup device |
DE68926637T DE68926637T2 (en) | 1988-07-13 | 1989-07-06 | Convergence error correction for solid-state imaging devices |
EP89112381A EP0350794B1 (en) | 1988-07-13 | 1989-07-06 | Misregistration correction for a solid-state image pick-up apparatus |
US07/378,399 US5113247A (en) | 1988-07-13 | 1989-07-11 | Solid state image pickup apparatus for correcting discrepancy of registration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63229964A JPH0279685A (en) | 1988-09-16 | 1988-09-16 | Image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0279685A true JPH0279685A (en) | 1990-03-20 |
Family
ID=16900466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63229964A Pending JPH0279685A (en) | 1988-07-13 | 1988-09-16 | Image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0279685A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002262167A (en) * | 2001-03-02 | 2002-09-13 | Canon Inc | Electronic camera |
US8937681B2 (en) | 2007-07-19 | 2015-01-20 | Digitaloptics Corporation | Camera module back-focal length adjustment method and ultra compact components packaging |
US9118825B2 (en) | 2008-02-22 | 2015-08-25 | Nan Chang O-Film Optoelectronics Technology Ltd. | Attachment of wafer level optics |
US9419032B2 (en) | 2009-08-14 | 2016-08-16 | Nanchang O-Film Optoelectronics Technology Ltd | Wafer level camera module with molded housing and method of manufacturing |
US10009528B2 (en) | 2011-02-24 | 2018-06-26 | Nan Chang O-Film Optoelectronics Technology Ltd | Autofocus camera module packaging with circuitry-integrated actuator system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52132722A (en) * | 1976-04-30 | 1977-11-07 | Sony Corp | Solid state pick up unit |
JPS5885678A (en) * | 1981-11-18 | 1983-05-23 | Sony Corp | Solid-state image pickup device |
JPS6025389A (en) * | 1983-07-21 | 1985-02-08 | Sony Corp | Image pickup device |
-
1988
- 1988-09-16 JP JP63229964A patent/JPH0279685A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52132722A (en) * | 1976-04-30 | 1977-11-07 | Sony Corp | Solid state pick up unit |
JPS5885678A (en) * | 1981-11-18 | 1983-05-23 | Sony Corp | Solid-state image pickup device |
JPS6025389A (en) * | 1983-07-21 | 1985-02-08 | Sony Corp | Image pickup device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002262167A (en) * | 2001-03-02 | 2002-09-13 | Canon Inc | Electronic camera |
US8937681B2 (en) | 2007-07-19 | 2015-01-20 | Digitaloptics Corporation | Camera module back-focal length adjustment method and ultra compact components packaging |
US9118825B2 (en) | 2008-02-22 | 2015-08-25 | Nan Chang O-Film Optoelectronics Technology Ltd. | Attachment of wafer level optics |
US9419032B2 (en) | 2009-08-14 | 2016-08-16 | Nanchang O-Film Optoelectronics Technology Ltd | Wafer level camera module with molded housing and method of manufacturing |
US10009528B2 (en) | 2011-02-24 | 2018-06-26 | Nan Chang O-Film Optoelectronics Technology Ltd | Autofocus camera module packaging with circuitry-integrated actuator system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5060074A (en) | Video imaging apparatus | |
US7042509B2 (en) | Image sensing apparatus and method of capable of merging function for obtaining high-precision image by synthesizing images and image stabilization function | |
JP4503878B2 (en) | Imaging apparatus and imaging method | |
CN100425058C (en) | Image processing device and method, recording medium, and program | |
US20120243746A1 (en) | Image processor, image processing method, and program | |
JPH03502755A (en) | Photoelectric color image sensor | |
JP4754939B2 (en) | Image processing device | |
US7340160B2 (en) | Imaging apparatus | |
US5113247A (en) | Solid state image pickup apparatus for correcting discrepancy of registration | |
JPH08205181A (en) | Chromatic aberration correcting circuit and image pickup device with chromatic aberration correcting function | |
JPH01253372A (en) | Television camera | |
JPH06181530A (en) | Solid-state image pickup camera | |
US5081525A (en) | Opto-electric converting image pickup element and image pickup apparatus employing the same | |
JPH0279685A (en) | Image pickup device | |
US9749520B2 (en) | Imaging device and image processing method | |
JP3222687B2 (en) | Solid-state imaging device | |
JPH02252375A (en) | Solid-state image pickup camera | |
JPH045314B2 (en) | ||
JPH0191590A (en) | Solid-state color image pickup device | |
JP2922905B2 (en) | Imaging device | |
JPH0377483A (en) | Picture blur preventing camera | |
JP2003051990A (en) | Defective image compensation system and method | |
JPH06350904A (en) | Camera | |
JP2618661B2 (en) | Imaging device | |
JP4377970B2 (en) | Imaging device |