JPH0275087A - Magnetic line sensor - Google Patents
Magnetic line sensorInfo
- Publication number
- JPH0275087A JPH0275087A JP63227920A JP22792088A JPH0275087A JP H0275087 A JPH0275087 A JP H0275087A JP 63227920 A JP63227920 A JP 63227920A JP 22792088 A JP22792088 A JP 22792088A JP H0275087 A JPH0275087 A JP H0275087A
- Authority
- JP
- Japan
- Prior art keywords
- line sensor
- magnetic
- magnetic line
- conductor
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 claims abstract description 21
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 abstract description 10
- 230000006866 deterioration Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 12
- 230000005389 magnetism Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- OWNRRUFOJXFKCU-UHFFFAOYSA-N Bromadiolone Chemical compound C=1C=C(C=2C=CC(Br)=CC=2)C=CC=1C(O)CC(C=1C(OC2=CC=CC=C2C=1O)=O)C1=CC=CC=C1 OWNRRUFOJXFKCU-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
[概要]
磁気抵抗素子の動作を確認する機構が付属した動作確認
機構付きの磁気ラインセンサに関し、磁気ラインセンサ
を構成する磁気抵抗素子毎に故障検知、特性劣化及びそ
の評価を容易に行えるようにすることができる磁気ライ
ンセンサを提供することを目的とし、
多数の磁気抵抗素子をライン状に配置し、これら各磁気
抵抗素子毎にその出力を増幅する容量結合増幅回路が設
けられた磁気ラインセンサにおいて、前記磁気ラインセ
ンサの近傍に平等磁界弁(1−用の導体を設けておき、
該導体に磁界発生用の電流を流すための基準発振器を接
続できるように構成する。[Detailed Description of the Invention] [Summary] Regarding a magnetic line sensor with an operation confirmation mechanism that is attached with a mechanism for confirming the operation of a magnetoresistive element, failure detection, characteristic deterioration, and its Aiming to provide a magnetic line sensor that can be easily evaluated, we have developed a capacitive coupling amplifier circuit in which a large number of magnetoresistive elements are arranged in a line and the output of each magnetoresistive element is amplified. In the magnetic line sensor provided with a magnetic line sensor, a conductor for an equal magnetic field valve (1- is provided near the magnetic line sensor,
The structure is such that a reference oscillator for passing a current for generating a magnetic field can be connected to the conductor.
[産業上の利用分野]
本発明は磁気抵抗素子の動作を確認゛づる機構が付属し
た動作確認機構付きの磁気ラインセンサに関する。[Industrial Field of Application] The present invention relates to a magnetic line sensor with an operation confirmation mechanism that includes a mechanism for confirming the operation of a magnetoresistive element.
近年、自動取引装置に使用される証券類は磁気情報を使
用したしのも多く、24時間運用にも酎える高信頼性が
要求されている。、証券類に付加された磁気情報を読取
るためには、複数個の磁気抵抗素子をライン状に配置し
た磁気ラインセンサが用いられる。磁気抵抗素子は、そ
の抵抗値が磁気の強さに応じて変化する現象を利用して
、証券煩にf4加された磁気ストライプから情報を読取
るにうにしたものである。ここで、高信頼性のある磁気
情報読取りを実現するためには、故障までの劣化を補償
し、9期に故障を検知する必要がある。In recent years, many securities used in automatic transaction machines use magnetic information, and are required to have high reliability that can be operated 24 hours a day. In order to read magnetic information added to securities, a magnetic line sensor in which a plurality of magnetoresistive elements are arranged in a line is used. A magnetoresistive element is designed to read information from a magnetic stripe added to a securities card by making use of the phenomenon that its resistance value changes depending on the strength of magnetism. Here, in order to achieve highly reliable magnetic information reading, it is necessary to compensate for deterioration leading up to failure and to detect failure in the 9th period.
但し、高信頼性の磁気情報読取りを実現するためではあ
っても、装置コストの上昇は避けなければならない。However, even if this is to achieve highly reliable magnetic information reading, an increase in device cost must be avoided.
[従来の技術]
従来の磁気ラインセン1ノの試験は、ユニツ1−製造時
に出荷検査として外部より平等磁界を与え、磁気ライン
しンサを構成づる磁気抵抗素子の出力信号を確認するよ
うになっている。そして、全ての磁気抵抗素子の出力が
規定値を満足した磁気ラインセンサのみを出荷するよう
にしている。磁気ラインセンサは、高信頼性が要求され
るため、出荷後においても、ユーザザイドで定期的に動
作確認試験を行う必要がある。その侵における磁気ライ
ンセンサの試験は、ユーザが各種の手法(例えば磁気抵
抗素子の出力信号を定期的に検査する。[Prior Art] Conventional magnetic line sensors are tested by applying a uniform magnetic field from the outside as a shipping inspection during manufacturing and checking the output signal of the magnetoresistive element that constitutes the magnetic line sensor. There is. Only magnetic line sensors whose outputs from all magnetoresistive elements satisfy specified values are shipped. Magnetic line sensors are required to have high reliability, so even after shipment, it is necessary to periodically conduct operation verification tests at the user's site. The user can test the magnetic line sensor in this way using various methods (for example, periodically inspecting the output signal of the magnetoresistive element).
磁気抵抗素子の出力を別途設けた回路で監視vlる)で
行っている。The output of the magnetoresistive element is monitored by a separately provided circuit.
[発明が解決しようとする課題〕
従来の方式によれば、以下に示づような問題点があった
。[Problems to be Solved by the Invention] According to the conventional system, there were problems as shown below.
く1)出力を定期的に検査りる方法
磁気抵抗素子は、出力レベルが微弱であり、バイアス電
圧/電流を印加した状態で使用づるため、容頂結合高利
得増幅回路を使用してその出力を増幅してやる必要があ
る。若し、磁気抵抗素子が断線、短絡等でセンサ出力を
出さなくなった場合、磁気抵抗素子は電源電圧又はアー
ス電位どなる筈であるが、容量結合のため外部から判断
することができない。1) How to regularly check the output Magnetoresistive elements have a weak output level and are used with bias voltage/current applied, so a capacitor-coupled high gain amplifier circuit is used to check the output. need to be amplified. If the magnetoresistive element stops outputting a sensor output due to disconnection, short circuit, etc., the magnetoresistive element should be at a power supply voltage or ground potential, but this cannot be determined from the outside due to capacitive coupling.
第4図は、出力測定状態を示す図である。図にJメいて
、RはN源とアース間に接続された磁気抵抗素子、Cは
容量結合用(直流成分カット用)のコンデンサ、Aは磁
気抵抗素子Rの出力を増幅する増幅器である。コンデン
サCと増幅器△とで容量結合増幅器を構成している。(
イ)は磁気が無い場合を、(ロ)は磁気抵抗素子の電源
側抵抗が断線した場合を、(ハ)は磁気抵抗素子のアー
ス側抵抗が断線した場合をそれぞれ示している。FIG. 4 is a diagram showing the output measurement state. In the figure, R is a magnetoresistive element connected between the N source and the ground, C is a capacitor for capacitive coupling (for cutting DC components), and A is an amplifier that amplifies the output of the magnetoresistive element R. The capacitor C and the amplifier Δ constitute a capacitively coupled amplifier. (
(a) shows the case where there is no magnetism, (b) shows the case where the power supply side resistance of the magnetoresistive element is disconnected, and (c) shows the case where the ground side resistance of the magnetoresistive element is disconnected.
図に示すように、磁気抵抗素子Rの出力は容量結合で増
幅器へに伝えられる結果、(イ)の磁気が存在しない場
合(11気抵抗素子出力がゼロの場合)と(ロ)、(ハ
)に示す抵抗断線の場合とで区別がつかない。つまり、
非検出物に磁気が存在するのかどうかは、アンプAの出
力を監視しただけでは区別がつかないという不具合があ
る。また、アナログ慧として磁気を検出する場合、非検
出物の磁気が弱いのか磁気センサ出力の特性が劣化した
のかどうかも判断することができない。As shown in the figure, the output of the magnetoresistive element R is transmitted to the amplifier through capacitive coupling, and as a result, it is transmitted in (a) when no magnetism exists (when the output of the magnetoresistive element is zero), (b), and (h). ) cannot be distinguished from the case of resistor disconnection shown in (). In other words,
There is a problem in that it is impossible to determine whether magnetism exists in the non-detected object just by monitoring the output of amplifier A. Furthermore, when detecting magnetism as an analog method, it is not possible to determine whether the magnetism of a non-detected object is weak or whether the characteristics of the magnetic sensor output have deteriorated.
(2)磁気抵抗素子の出力を別回路で監pAブーる方法
磁気抵抗素子の直流出力を直接監視して、故障か否かを
検知する方法がある。第5図は従来の故障検出法の説明
図である。各磁気抵抗素子Rの出力は、コンデンサCを
介さないで直接切換スイッチSWに入っている。そして
、該切換スイッチSWはその一点の出力のみを選択1ノ
で出力する。その出力はl1li線監視回路Kに入って
、磁気なしか断線かの判定がなされる。つまり、磁気抵
抗素子Rが新線の場合には、その出力は電源電圧かアー
ス電位になる。磁気無しの場合には、その出力は電源電
圧を2つの抵抗で分圧した値として出力されるので、断
線の場合と比較することができる。(2) Method of monitoring the output of the magnetoresistive element using a separate circuit There is a method of directly monitoring the DC output of the magnetoresistive element to detect whether or not there is a failure. FIG. 5 is an explanatory diagram of a conventional failure detection method. The output of each magnetoresistive element R is directly input to the changeover switch SW without passing through the capacitor C. Then, the changeover switch SW outputs only the output of that one point at selection 1. The output enters the l1li line monitoring circuit K, and it is determined whether there is no magnetism or a disconnection. In other words, when the magnetoresistive element R is a new wire, its output becomes the power supply voltage or the ground potential. In the case of no magnetism, the output is a value obtained by dividing the power supply voltage by two resistors, so it can be compared with the case of disconnection.
しかしながら、この方式では切換スイッチ回路が必要に
なる。通常の測定時に、13いても、配線量の多いライ
ンセンサに対して更に検知用の配線を行うのは多大の工
数が必要となる。また、この方式によれば、本来の容量
結合増幅回路をバイパスしているため、増幅回路の異常
は検出づることができない。つまり、磁気抵抗センサが
正常でも、容量結合増幅回路が異常の場合を検出できな
いという問題があった。However, this method requires a changeover switch circuit. During normal measurement, even if there are 13 wires, it takes a large amount of man-hours to further wire detection wires to a line sensor with a large amount of wires. Furthermore, according to this method, since the original capacitively coupled amplifier circuit is bypassed, abnormalities in the amplifier circuit cannot be detected. In other words, even if the magnetoresistive sensor is normal, there is a problem in that it is not possible to detect an abnormality in the capacitively coupled amplifier circuit.
また、磁気ラインセンサの使用者(2−ザ)にとっては
、以下に示すような問題点があった。Furthermore, for the users (2-users) of the magnetic line sensor, there are problems as shown below.
(1)磁気ラインセンサの評価が困難
磁気ラインセンサに外部磁界を与えて評価を行う場合、
外部磁界発生器の設置や磁気シールドの都合で磁気ライ
ンセンサのメーカとのIW境が合わないため正確な評価
ができない。(1) Difficult to evaluate magnetic line sensors When performing evaluation by applying an external magnetic field to the magnetic line sensor,
Due to the installation of an external magnetic field generator and magnetic shielding, the IW boundaries with the magnetic line sensor manufacturer do not match, making accurate evaluation impossible.
(2)実装侵の磁気ラインセンサの検査が困難磁気ライ
ンセンサを装置に組込んだ状態で磁気ラインセンサを検
査づ−る場合、模擬証券を使用することがあるが、模擬
証券の磁気量を正確に管理づ−るのは困難である。(2) Difficult to test a magnetic line sensor that has been damaged by mounting When testing a magnetic line sensor that has been incorporated into a device, a simulated security may be used; It is difficult to manage accurately.
本発明はこのような課題に鑑みてなされたものであって
、磁気ラインセンサを構成する磁気抵抗素子毎に故障検
知、特性劣化及びその評価を容易に行えるようにするこ
とができる磁気ラインセンサを提供することを目的とし
ている。The present invention has been made in view of these problems, and provides a magnetic line sensor that can easily detect failures, degrade characteristics, and evaluate the characteristics of each magnetoresistive element constituting the magnetic line sensor. is intended to provide.
[課題を解決するための手段1
第1図は本発明の原理図である。図において、1は多数
の磁気抵抗素子2をライン状に配置した磁器ラインセン
サ、3はこれら各磁気抵抗素子2毎にその出力を増幅す
る容量結合増幅回路である。[Means for Solving the Problems 1] FIG. 1 is a diagram showing the principle of the present invention. In the figure, numeral 1 is a magnetic line sensor in which a large number of magnetoresistive elements 2 are arranged in a line, and 3 is a capacitive coupling amplifier circuit that amplifies the output of each of these magnetoresistive elements 2.
4は磁気ライン廿ンリ1の一方の端に取付+jられた電
V、端子、5は11気ラインセンサ1の他方の端に取付
けられたアース端子である。6は前記磁気ラインセンサ
1の近傍に設けられた平等磁界発生用の導体、7は該導
体6に平等磁界発生用の電流を流でための基準発振器で
ある。導体6はイの喘△、Bを磁気ラインセンサ1の端
△′、B′に接着するようにして取付けられる。Reference numeral 4 indicates a voltage terminal attached to one end of the magnetic line sensor 1, and reference numeral 5 indicates an earth terminal attached to the other end of the magnetic line sensor 1. 6 is a conductor for generating an equal magnetic field provided near the magnetic line sensor 1, and 7 is a reference oscillator for passing a current through the conductor 6 for generating an equal magnetic field. The conductor 6 is attached by adhering the ends Δ and B of A to the ends Δ' and B' of the magnetic line sensor 1.
[作用1
端子4と5間に電圧を印加した状態で基準発jh器7か
ら基準の交流信号を導体6に流でと、該導体6は信号電
流に応じた平等磁界を発生づ−る。導体6部と磁気ライ
ンセンサ1とは一定の距離関係にあるので、発生した磁
界は磁気抵抗素子2にIP等に印加される。そして、磁
気ラインセンサ1は平等磁界に応じた信号を出力丈る。[Operation 1] When a reference AC signal is applied to the conductor 6 from the reference oscillator 7 while a voltage is applied between the terminals 4 and 5, the conductor 6 generates an equal magnetic field in accordance with the signal current. Since the conductor 6 and the magnetic line sensor 1 are in a constant distance relationship, the generated magnetic field is applied to the magnetoresistive element 2, such as IP. Then, the magnetic line sensor 1 outputs a signal corresponding to the uniform magnetic field.
従って、磁気ラインセンサ1を検査するときは導体6に
基準発振器7から信号電流を供給環るだけで、再現性の
良い磁界を磁気ラインセンサ1全体に平等に与えること
ができる1、従って、本発明によれば磁気抵抗素子2の
出力信号を検査するだけで故障検知。Therefore, when inspecting the magnetic line sensor 1, a magnetic field with good reproducibility can be applied equally to the entire magnetic line sensor 1 by simply supplying a signal current from the reference oscillator 7 to the conductor 6. According to the invention, a failure can be detected simply by inspecting the output signal of the magnetoresistive element 2.
劣化検知、評価等を容易に18麿よく行える。Deterioration detection, evaluation, etc. can be performed easily and quickly.
[実施例]
以下、図面を参照して本発明の実施例を詳細に説明する
。[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第2図は本発明の一実施例を示す図である。図に示す実
施例は、磁気抵抗素子2が16個ある場合を示]ノでい
る。導体6はプリント配線又は銅線を磁気ラインセンサ
1の側面にはりつける形で取付けられている。第3図は
、第2図に示す実施例の電気回路図である。基準発振器
7はオン/オフイを号により、交流信号の発生と停止を
制御できるようになっている。各磁気抵抗素子2の出力
を電子式の切換スイッチに入れて順次高速に切換えるよ
うにして回路規模を縮小する方式も考えられるが、容量
結合増幅回路3では、高速に切換えることが困難なため
、個々に出力を出すようにしている。FIG. 2 is a diagram showing an embodiment of the present invention. The embodiment shown in the figure shows a case where there are 16 magnetoresistive elements 2. The conductor 6 is attached by gluing printed wiring or copper wire to the side surface of the magnetic line sensor 1. FIG. 3 is an electrical circuit diagram of the embodiment shown in FIG. 2. The reference oscillator 7 can control generation and stop of the alternating current signal by turning on/off signals. Although it is possible to reduce the circuit size by putting the output of each magnetoresistive element 2 into an electronic changeover switch and sequentially switching at high speed, it is difficult to switch at high speed with the capacitively coupled amplifier circuit 3. I am trying to output the output individually.
このように構成された装置において、磁気う?ンセン+
j1に電圧を印加した状態で、基準発振器7から導体6
にr4準交流信号を印加遵ると、#記したように該導体
6は平等磁界を発生し、該磁界中に胃かれた磁気抵抗素
子2は正常時において1.上、全ての磁気抵抗素子が略
同−のレベルの信号を出力する。そして、これら磁気抵
抗素子2の出力は、続く容量結合増幅回路3に入って、
所定のレベルまで増幅される。理想的な状態では、各磁
気抵抗素子2は同レベルの出力を発生するため、容量結
合増幅回路も含めて各チャネル毎の適/不適の合否?l
I断を行うことがでさる。In a device configured in this way, is there a magnetic field? +
With voltage applied to j1, the conductor 6 from the reference oscillator 7
When an r4 quasi-AC signal is applied to , the conductor 6 generates a uniform magnetic field as shown in #, and the magnetoresistive element 2 placed in the magnetic field exhibits 1. Above, all the magnetoresistive elements output signals at approximately the same level. The outputs of these magnetoresistive elements 2 then enter the following capacitively coupled amplifier circuit 3,
amplified to a predetermined level. In an ideal state, each magnetoresistive element 2 generates an output of the same level, so whether it is suitable or not for each channel, including the capacitively coupled amplifier circuit. l
It is possible to make a decision.
]−述の実施例でLl、基準発振器7を別途設けた場合
を例にとったが、本発明はこれに限るものではなり、磁
気ラインセン与と一体化tノでもよい。]--Although the above-mentioned embodiment has been exemplified in which the Ll and the reference oscillator 7 are provided separately, the present invention is not limited to this, and may be integrated with the magnetic line sensor.
「弁用の効果〕
以」−1詳細に説明したように、本発明によれば磁気ラ
インセン与と平等磁界発生用の導体を設け、かつこれら
両名を一定距離に配置り−ることにより、各磁気抵抗素
子が全て同一の大きさの平等磁界に感応するように構成
することにより、磁気ラインセン」すを構成する磁気抵
抗素子毎に故障検知、特性劣化及びその評価を容易に行
えるよう(することができる磁気ラインセンサを提供す
ることができる。"Effects for Valve" -1 As explained in detail, according to the present invention, by providing a conductor for magnetic line sensing and for generating an equal magnetic field, and arranging both at a certain distance, By configuring each magnetoresistive element to be sensitive to a uniform magnetic field of the same magnitude, failure detection, characteristic deterioration, and evaluation of each magnetoresistive element making up the magnetic line sensor can be easily performed. A magnetic line sensor that can be used can be provided.
第1図は本発明の原理ブロック図、 第2図は本発明の一実施例を示す図、 第3図は実FM例の電気回路図、 第4図は出力測定状態を示す図、 第5図は従来の故障検出法の説明図である。 第1図において、 1は磁気ラインセンサ、 2は磁気抵抗素子、 3は容量結合増幅回路、 4は電源端子、 5はアース端子、 6は導体、 7は基準発振器である。 3%結治増幅回路 角蒔2 図 第3図 (イ)通気なし く口)’gun:版抗断質 (ハ)アース偕旭抗断襞 呂力謝定秋咋首示す図 第4図 Figure 1 is a block diagram of the principle of the present invention. FIG. 2 is a diagram showing an embodiment of the present invention; Figure 3 is an electrical circuit diagram of an actual FM example. FIG. 4 is a diagram showing the output measurement state, FIG. 5 is an explanatory diagram of a conventional failure detection method. In Figure 1, 1 is a magnetic line sensor, 2 is a magnetoresistive element; 3 is a capacitively coupled amplifier circuit; 4 is the power terminal, 5 is the ground terminal, 6 is a conductor, 7 is a reference oscillator. 3% Yuji amplification circuit Square maki 2 diagram Figure 3 (b) No ventilation (kuguchi)’gun: version anti-destruction (c) Earth Kaasahi anti-break fold Diagram showing the head of Lu Li Xie Dingqiu Figure 4
Claims (1)
各磁気抵抗素子(2)毎にその出力を増幅する容量結合
増幅回路(3)が設けられた磁気ラインセンサ(1)に
おいて、 前記磁気ラインセンサ(1)の近傍に平等磁界発生用の
導体(6)を設けておき、 該導体(6)に磁界発生用の電流を流すための基準発振
器(7)を接続できるように構成したことを特徴とする
磁気ラインセンサ。[Claims] A magnetic line sensor in which a large number of magnetoresistive elements (2) are arranged in a line, and each magnetoresistive element (2) is provided with a capacitive coupling amplifier circuit (3) that amplifies its output. In (1), a conductor (6) for generating an equal magnetic field is provided near the magnetic line sensor (1), and a reference oscillator (7) for passing a current for generating the magnetic field through the conductor (6). A magnetic line sensor characterized by being configured so that it can be connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63227920A JPH0275087A (en) | 1988-09-12 | 1988-09-12 | Magnetic line sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63227920A JPH0275087A (en) | 1988-09-12 | 1988-09-12 | Magnetic line sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0275087A true JPH0275087A (en) | 1990-03-14 |
Family
ID=16868371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63227920A Pending JPH0275087A (en) | 1988-09-12 | 1988-09-12 | Magnetic line sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0275087A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04138285U (en) * | 1991-06-14 | 1992-12-24 | 株式会社村田製作所 | magnetic sensor |
JPH0526993A (en) * | 1991-07-25 | 1993-02-05 | Murata Mfg Co Ltd | Magnetic sensor |
US5263343A (en) * | 1991-06-12 | 1993-11-23 | Samsung Electronics Co., Ltd. | Insulating structure of a washing machine having a water container cover |
WO2015147045A1 (en) * | 2014-03-27 | 2015-10-01 | 三菱電機株式会社 | Information reading device and information reading method |
JP2015175647A (en) * | 2014-03-13 | 2015-10-05 | 株式会社東芝 | Magnetic sensor, magnetic inspection device, and paper sheet handling apparatus |
-
1988
- 1988-09-12 JP JP63227920A patent/JPH0275087A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5263343A (en) * | 1991-06-12 | 1993-11-23 | Samsung Electronics Co., Ltd. | Insulating structure of a washing machine having a water container cover |
JPH04138285U (en) * | 1991-06-14 | 1992-12-24 | 株式会社村田製作所 | magnetic sensor |
JPH0526993A (en) * | 1991-07-25 | 1993-02-05 | Murata Mfg Co Ltd | Magnetic sensor |
JP2015175647A (en) * | 2014-03-13 | 2015-10-05 | 株式会社東芝 | Magnetic sensor, magnetic inspection device, and paper sheet handling apparatus |
WO2015147045A1 (en) * | 2014-03-27 | 2015-10-01 | 三菱電機株式会社 | Information reading device and information reading method |
CN106133543A (en) * | 2014-03-27 | 2016-11-16 | 三菱电机株式会社 | Information read device and information-reading method |
JPWO2015147045A1 (en) * | 2014-03-27 | 2017-04-13 | 三菱電機株式会社 | Information reading apparatus and information reading method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5963038A (en) | Method of testing a connection which includes a conductor in an integrated circuit | |
US4841286A (en) | Apparatus and method for detection of an open thermocouple in a process control network | |
JP3784412B2 (en) | Manufacturing defect analyzer with expanded fault coverage | |
CN110595524B (en) | Sensor saturation fault detection | |
US8378672B2 (en) | Self-testing sensor apparatus and method | |
US4947106A (en) | Programmatically generated in-circuit test of analog to digital converters | |
US5521513A (en) | Manufacturing defect analyzer | |
US10830819B2 (en) | Sensor defect diagnostic circuit | |
JP3963952B2 (en) | Method for testing connections including conductors in integrated circuits | |
JPH0275087A (en) | Magnetic line sensor | |
US20010028256A1 (en) | Diagnostic apparatus for electronics circuit and diagnostic method using same | |
US4629976A (en) | Method and circuit for evaluating an analog voltage | |
US6563313B2 (en) | Electronic device and manufacturing method thereof | |
US9733300B2 (en) | Corrosion detection system | |
JPS62187258A (en) | Inspecting method for circuit board | |
JPH04359126A (en) | Inspecting device for magnetostrictive torque sensor | |
JP4121923B2 (en) | Anomaly detection method and anomaly detection apparatus for electric circuit | |
KR102719929B1 (en) | Tester for FPCB | |
KR200175367Y1 (en) | Circuit for checking normality/ abnormality of a power amplifier | |
JP4876026B2 (en) | Board inspection equipment | |
JPH10300823A (en) | Prober inspection method | |
JPH06138155A (en) | Current detection method | |
CN117347698A (en) | Current detection component, current detection circuit and power supply equipment | |
JPH07151822A (en) | Test board with chuck function for pogo pin pressure | |
CN118843596A (en) | Capacitive sensor and method for operating a capacitive sensor |