[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH02759A - Production of aliphatic o-arylurethane - Google Patents

Production of aliphatic o-arylurethane

Info

Publication number
JPH02759A
JPH02759A JP23227888A JP23227888A JPH02759A JP H02759 A JPH02759 A JP H02759A JP 23227888 A JP23227888 A JP 23227888A JP 23227888 A JP23227888 A JP 23227888A JP H02759 A JPH02759 A JP H02759A
Authority
JP
Japan
Prior art keywords
reaction
aliphatic
ammonia
urea
primary amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23227888A
Other languages
Japanese (ja)
Other versions
JPH0415223B2 (en
Inventor
Tadaya Aoki
肇也 青木
Hiroshi Ishida
浩 石田
Shinsuke Fukuoka
伸典 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP23227888A priority Critical patent/JPH02759A/en
Publication of JPH02759A publication Critical patent/JPH02759A/en
Publication of JPH0415223B2 publication Critical patent/JPH0415223B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the subject compound useful as an intermediate raw material for masked isocyanate and aliphatic isocyanate in high yield by reacting an aliphatic primary amine with an aromatic hydroxyl compound and urea while removing the reaction by-product. CONSTITUTION:An aliphatic primary amine is made to react with an aromatic hydroxyl compound and urea at 150-280 deg.C. The reaction is carried out while removing by-produced ammonia from the reaction system in such a manner as to keep the ammonia concentration to <=2wt.%. The amount of the hydroxyl group of the aromatic hydroxyl compound is maintained to >=1mol and that of urea is maintained to >=0.5mol based on 1mol of the amino group of the aliphatic primary amine. Since the process does not use phosgene and carbon monoxide, the objective compound can be produced in one reaction step without causing the problems of corrosion and toxicity, producing large amount of hydrogen chloride gas as a by-product nor using expensive noble metal catalyst.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、マスクドイソシアナート及び脂肪族イソシア
ナートの中間原料等に広く用いられている脂肪族0−ア
リールウレタンの製造方法に関する。さらに詳しくは、
脂肪族1級アミンを芳香族ヒドロキシル化合物及び尿素
と反応させて、反応液中のアンモニア濃度が2重量%以
下になるように、副生ずるアンモニアを反応系から除去
しながら反応させることを特徴とする脂肪族O−アリー
ルウレタンの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing aliphatic 0-aryl urethane, which is widely used as an intermediate raw material for masked isocyanates and aliphatic isocyanates. For more details,
It is characterized by reacting an aliphatic primary amine with an aromatic hydroxyl compound and urea, and removing by-produced ammonia from the reaction system so that the ammonia concentration in the reaction solution is 2% by weight or less. The present invention relates to a method for producing an aliphatic O-aryl urethane.

(従来の技術) 従来、脂肪族0−アリールウレタンは、芳香族ヒドロキ
シル化合物と脂肪族イソシアナートとを反応させて製造
されている〔例えば、岩1)敬治著、 プラスチック材
料講座2 ポリウレタン樹脂、175頁、(日刊工業新
聞社列)、1969年、 K、C、フリッシュ著、「フ
ァンダメンタル・ケミストリー・アンド・キャタリシス
・オプ・ポリウレタンズ」ポリウレタン・テクノロジー
、p、 p、プラインズ編、インターサイエンス・パブ
リッシャーズ社発行、ニューヨーク、1969年、11
頁〕この場合、脂肪族イソシアナートは、対応する脂肪
族1級アミンとホスゲンとの反応によって得られる(例
えば、英国特許1.077、 031号明細書)ので、
以下に述べる欠点を有している。すなわち、猛毒性のホ
スゲンを使用すること、および腐食性の塩化水素ガスが
大量に副生ずること、さらには、製品中に加水分解性の
塩素化合物を含む場合があり、この副生物の除去が非常
に困難であること等の問題点を有している。従って、芳
香族ヒドロキシル化合物と脂肪族イソシアナートとを反
応させて脂肪族0−アリールウレタンを得る方法は満足
すべきものではない。
(Prior Art) Conventionally, aliphatic 0-aryl urethanes have been produced by reacting aromatic hydroxyl compounds with aliphatic isocyanates [for example, Iwa 1], Keiji, Plastic Materials Course 2, Polyurethane Resins, 175. (Nikkan Kogyo Shimbun series), 1969, K. C. Frisch, "Fundamental Chemistry and Catalysis of Polyurethanes", Polyurethane Technology, p., p. Plines, ed., Interscience Publishers. Publishing, New York, 1969, 11
[page] In this case, the aliphatic isocyanate is obtained by the reaction of the corresponding aliphatic primary amine with phosgene (for example, British Patent No. 1.077, 031).
It has the following drawbacks. This means that highly toxic phosgene is used, a large amount of corrosive hydrogen chloride gas is produced as a by-product, and the product may contain hydrolyzable chlorine compounds, making it extremely difficult to remove this by-product. There are problems such as difficulty in Therefore, the method of reacting an aromatic hydroxyl compound with an aliphatic isocyanate to obtain an aliphatic 0-aryl urethane is not satisfactory.

特開昭55−120551号(米国特許4,297.5
01号明細書)公報には、ホスゲンを用いない脂肪族0
−アリールウレタンの製造方法として、1級アミン、−
酸化炭素および脂肪族アルコールまたは芳香族ヒドロキ
シル化合物から、貴金属触媒を用いて酸化的にウレタン
化する方法が記載されている。ただし、芳香族ヒドロキ
シル化合物を用いた実施例はない、しかしこの方法も、
毒性の強い一酸化炭素を使用すること、および高価な貴
金属触媒を用いるため、生成物であるウレタンから触媒
を回収するには、煩雑な操作と多大な費用を要すること
等の問題点を有している。
JP 55-120551 (U.S. Patent No. 4,297.5)
01 specification) publication, aliphatic 0 without using phosgene
- As a method for producing aryl urethane, primary amine, -
A process for oxidative urethanization of carbon oxide and aliphatic alcohols or aromatic hydroxyl compounds using noble metal catalysts is described. However, there are no examples using aromatic hydroxyl compounds, but this method also
Because highly toxic carbon monoxide and expensive precious metal catalysts are used, recovering the catalyst from the product urethane requires complicated operations and a large amount of cost. ing.

また、米国特許3,873.553号明細書には、N−
アルキル−N、N’ −ジアルキル尿素、芳香族ヒドロ
キシル化合物、および塩化水素ガスを反応させて、O−
アリールウレタンを製造する方法が記載されている。し
かし、この方法も、腐食性の塩化水素ガスを使用するこ
と、高価で特殊な尿素化合物を消費すること、および副
生ずるN。
Also, in U.S. Patent No. 3,873.553, N-
By reacting an alkyl-N,N'-dialkyl urea, an aromatic hydroxyl compound, and hydrogen chloride gas, O-
A method for making aryl urethanes is described. However, this method also uses corrosive hydrogen chloride gas, consumes expensive and specialized urea compounds, and produces N as a by-product.

N−ジアルキルアミンの塩酸塩からウレタンを回収する
には、煩雑な操作と多大な費用を要する問題点を有して
いる。
Recovery of urethane from N-dialkylamine hydrochloride has the problem of requiring complicated operations and large costs.

一方、米国特許2,677.698号明細書には、ホス
ゲンを用いない脂肪族モノウレタンの製造方法として、
1段目で脂肪族1級アミンと尿素からN、N’−ジアル
キル尿素を作り、2段目でN、N’ −ジアルキル尿素
とヒドロキシル化合物を反応させて脂肪族モノウレタン
を製造し、副生ずる1級アミンを分離回収して1段目に
戻す方法が記載されている。ただし、芳香族ヒドロキシ
ル化合物を用いた実施例はない。しかしこの方法は生成
するウレタンの収率が低いだけでなく、反応が2段で且
つ1級アミンのリサイクル設備を要するため、工程が極
めて煩雑で工業的に実施するのに満足すべきものではな
い。
On the other hand, US Pat. No. 2,677.698 describes a method for producing aliphatic monourethane that does not use phosgene.
In the first stage, N,N'-dialkyl urea is produced from aliphatic primary amine and urea, and in the second stage, N,N'-dialkyl urea is reacted with a hydroxyl compound to produce aliphatic monourethane, which is produced as a by-product. A method is described in which the primary amine is separated and recovered and returned to the first stage. However, there are no examples using aromatic hydroxyl compounds. However, this method not only has a low yield of urethane but also requires two stages of reaction and equipment for recycling the primary amine, making the process extremely complicated and unsatisfactory for industrial implementation.

1段で脂肪族1級アミンとヒドロキシル化合物および尿
素とを反応させて、脂肪族ウレタンを製造する方法がい
くつか提案されているが、これらの方法で得られる脂肪
族ウレタンは、いずれも脂肪族0−アリールウレタンで
はなく、脂肪族〇−アリキルウレタンである0例えば、
米国特許2゜409.712号明細書には、脂肪族1級
アミンおよび尿素を脂肪族アルコールと反応させて、脂
肪族O−アリキルモノウレタンを製造する方法が記載さ
れている。また、特開昭55−145657号公報(西
独特許2.917.493号)、特開昭56−1031
52号公報(西独特許2,943.551号)には、脂
肪族1級ポリアミンを尿素または尿素化合物の存在下で
脂肪族、脂環族、芳香脂肪族アルコールと反応させて、
脂肪族0−アルキルポリウレタンを製造する方法が記載
されている。
Several methods have been proposed for producing aliphatic urethane by reacting an aliphatic primary amine with a hydroxyl compound and urea in one step, but all of the aliphatic urethanes obtained by these methods are For example, 0 that is an aliphatic 〇-alkyl urethane rather than a 0-aryl urethane,
U.S. Pat. No. 2,409,712 describes a process for producing aliphatic O-alkyl monourethanes by reacting an aliphatic primary amine and urea with an aliphatic alcohol. Also, JP-A-55-145657 (West German Patent No. 2.917.493), JP-A-56-1031
No. 52 (West German Patent No. 2,943.551) discloses that an aliphatic primary polyamine is reacted with an aliphatic, alicyclic, or aromatic aliphatic alcohol in the presence of urea or a urea compound,
A method for making aliphatic 0-alkyl polyurethanes is described.

(発明が解決しようとする課R) しかし、これらの方法で製造される脂肪族〇−アリキル
ウレタンは、熱的に極めて安定なため、対応する脂肪族
イソシアナートとアルコールに分解するのが困難であり
、従ってマクスドイツシアナートおよび脂肪族イソシア
ナートの中間原料等に用いるには満足すべきものではな
い。
(Problem R to be solved by the invention) However, the aliphatic 0-alkyl urethanes produced by these methods are extremely thermally stable, so it is difficult to decompose them into the corresponding aliphatic isocyanates and alcohols. Therefore, it is not satisfactory for use as an intermediate raw material for Max. German cyanate and aliphatic isocyanate.

この点、脂肪族0−アリールウレタンが対応する脂肪族
イソシアナートと芳香族ヒドロキシル化合物に容易に分
解することは知られていた(例えば、O,バイヤー著”
Das Diisocyanat−Polyaddit
ions Verfahren + 12頁、1963
年発行)、シかし、脂肪族0−アリールウレタンを、芳
香族ヒドロキシル化合物および尿素と脂肪族1級アミン
との一段反応から製造する方法は、未だ知られていなか
った。
In this regard, it has been known that aliphatic 0-aryl urethanes easily decompose into corresponding aliphatic isocyanates and aromatic hydroxyl compounds (for example, "O. Bayer").
Das Diisocyanat-Polyaddit
ions Verfahren + 12 pages, 1963
However, a method for producing an aliphatic 0-aryl urethane from a one-step reaction of an aromatic hydroxyl compound and urea with an aliphatic primary amine has not yet been known.

(課題を解決するための手段) まず、本発明者らは、芳香族ヒドロキシル化合物および
尿素と脂肪族1級アミンとの反応から脂肪族0−アリー
ルウレタンを製造する方法を検討し、次の点を見い出し
た。すなわち、本反応を、脂肪族1級ポリアミンと尿素
および芳香族モノヒドロキシル化合物との反応で例示す
れば、下記式lで表されるように、可逆的でかつ、平衡
が著しく原糸側に偏っているため、反応の進行には副生
ずルアンモニアの除去が肝要なこと、次に酸の1つであ
る芳香族ヒドロキシル化合物は、アンモニアと強く結合
するため、通常の方法ではアンモニアの除去が極めて困
難であることを見い出した。
(Means for Solving the Problem) First, the present inventors investigated a method for producing an aliphatic 0-aryl urethane from the reaction of an aromatic hydroxyl compound and urea with an aliphatic primary amine, and found the following points. I found out. In other words, if this reaction is exemplified by the reaction of an aliphatic primary polyamine with urea and an aromatic monohydroxyl compound, it is reversible and the equilibrium is significantly biased toward the yarn side, as expressed by the following formula 1. Therefore, it is important to remove the by-product ammonia for the reaction to proceed.Secondly, aromatic hydroxyl compounds, which are one type of acid, bind strongly to ammonia, so it is difficult to remove ammonia using normal methods. I found it extremely difficult.

R−(MHz)n +nN1(zcONl(z(上記式
中、nは1以上の整数であり、Rは脂肪族基であり、A
rは芳香族基を表す、)さらに、本発明者らは、鋭意検
討を重ねた結果、芳香族ヒドロキシル化合物および尿素
と脂肪族1級アミンを反応させ、反応液中のアンモニア
濃度が2重量%以下になるように副生ずるアンモニアを
反応系から除去することによって、脂肪族〇−アリール
ウレタンを高収率に製造する方法を見い出し、本発明を
完成するに至った。
R-(MHz)n +nN1(zcONl(z(in the above formula, n is an integer of 1 or more, R is an aliphatic group, A
r represents an aromatic group) Further, as a result of extensive studies, the present inventors reacted an aromatic hydroxyl compound and urea with an aliphatic primary amine, and the ammonia concentration in the reaction solution was 2% by weight. We have discovered a method for producing aliphatic 0-aryl urethane in high yield by removing by-produced ammonia from the reaction system as shown below, and have completed the present invention.

すなわら、本発明は、脂肪族1級アミンから脂肪族0−
アリールウレタンを製造する方法において、a)脂肪族
1級アミンを芳香族ヒドロキシル化合物および尿素と反
応させること、 b)反応液中のアンモニア濃度が2重量%以下になるよ
うに副生ずるアンモニアを反応系から除去しながら反応
させること を特徴とする脂肪族0−アリールウレタンの製造方法を
提供するものである。
In other words, the present invention provides a method for converting aliphatic primary amines into aliphatic 0-
A method for producing an aryl urethane includes: a) reacting an aliphatic primary amine with an aromatic hydroxyl compound and urea; b) adding by-produced ammonia to the reaction system so that the ammonia concentration in the reaction solution is 2% by weight or less. The present invention provides a method for producing an aliphatic 0-aryl urethane, characterized in that the reaction is carried out while removing the aliphatic 0-aryl urethane.

本発明の実施に際し、用いられる芳香族ヒドロキシル化
合物は、芳香族基に直接ヒドロキシル基が結合している
ものであれば、どのようなものであってもよい0例えば
、フェノール;クレゾール(各異性体)、キシレノール
(各異性体)、エチルフェノール(各異性体)、プロピ
ルフェノール(各異性体)等の各種アルキルフェノール
傾;メトキシフェノール(各異性体)、エトキシフェノ
ール(各異性体)等の各種アルコキシフェノール頬;ク
ロルフェノール(各異性体)、ブロモフェノール(各異
性体)、ジクロルフェノール(各異性体)、ジブロモフ
ェノール(各異性体)等のハロゲン化フェノール煩;メ
チルクロルフェノール(各異性体)、エチルクロルフェ
ノール(各異性体)、メチルブロモフェノール(各異性
体)、エチルブロモフェノール(各異性体)等のアルキ
ルおよびハロゲン置換フェノール類;〔ただし、Aは単
なる結合、または−〇−−5−3O□−−CO−−CH
□−−C (R2)−等の2価の基を表し、このうち、Rは低級ア
ルキル基であり、また、芳香環はハロゲン、アルキル基
、アルコキシ基、エステル基、アミド基、シアノ基等の
置換基によって置換されていてもよい、〕で示される各
種置換フェノール類;ナフトール(各異性体)および各
種置換ナフトール類;ヒドロキシピリジン(各異性体)
、ヒドロキシクマリン(各異性体)、ヒドロキシキノリ
ン(各異性体)等のへテロ芳香族ヒドロキシル化合物頬
;ハイドロキノン、レゾルシン、カテコール、およびそ
れらのアルキル置換のジヒドロキジル化合物等の芳香族
ジヒドロキモ小化合物頻;〔ただし、Aは単なる結合、
または−〇−3−3Oz−−Co    CHz   
 C(R□)−等の2価の基を表し、このうち、Rは低
級アルキル基であり、芳香環はハロゲン、アルキル基、
アルコキシ基、エステル基、アミド基、シアノ基等の置
換基によって置換されていてもよい、〕で示される芳香
族ジヒドロキジル化合物類;ニトロフェノール(各異性
体)、ニトロナフトール(各異性体)等のニトロ置換芳
香族ヒドロキシル化合物類;シアノフェノール(各異性
体)、シアノナフトール(各異性体)等のシアノ置換芳
香族ジヒドロキジル化合物類等が用いられる。
In carrying out the present invention, the aromatic hydroxyl compound used may be any compound as long as the hydroxyl group is directly bonded to the aromatic group.For example, phenol; cresol (each isomer ), various alkylphenols such as xylenol (each isomer), ethylphenol (each isomer), propylphenol (each isomer); various alkoxyphenols such as methoxyphenol (each isomer), ethoxyphenol (each isomer), etc. Cheek: Halogenated phenols such as chlorphenol (each isomer), bromophenol (each isomer), dichlorophenol (each isomer), dibromophenol (each isomer); Methylchlorophenol (each isomer), Alkyl and halogen-substituted phenols such as ethylchlorophenol (each isomer), methylbromophenol (each isomer), and ethylbromophenol (each isomer); [However, A is a simple bond, or -〇--5- 3O□--CO--CH
□--C represents a divalent group such as (R2)-, where R is a lower alkyl group, and the aromatic ring is a halogen, alkyl group, alkoxy group, ester group, amide group, cyano group, etc. Various substituted phenols represented by ], which may be substituted with a substituent; Naphthol (each isomer) and various substituted naphthols; Hydroxypyridine (each isomer)
Heteroaromatic hydroxyl compounds such as , hydroxycoumarin (all isomers), hydroxyquinoline (all isomers); aromatic dihydrokymo small compounds such as hydroquinone, resorcinol, catechol, and their alkyl-substituted dihydroxyl compounds; [However, A is just a combination,
or -〇-3-3Oz--Co CHz
Represents a divalent group such as C(R□)-, in which R is a lower alkyl group, and the aromatic ring is a halogen, an alkyl group,
Aromatic dihydroxyl compounds represented by ], which may be substituted with a substituent such as an alkoxy group, ester group, amide group, or cyano group; nitrophenol (each isomer), nitronaphthol (each isomer), etc. Nitro-substituted aromatic hydroxyl compounds; cyano-substituted aromatic dihydroxyl compounds such as cyanophenol (all isomers) and cyanonaphthol (all isomers) are used.

このようにな芳香族ヒドロキシル化合物は1種だけでも
よいし、2種以上混合して用いることもできる。また、
蒸留分離の容易なことから、芳香族モノヒドロキシル化
合物を用いるのが好ましい。
In this way, only one kind of aromatic hydroxyl compound may be used, or two or more kinds of aromatic hydroxyl compounds may be used in combination. Also,
It is preferable to use aromatic monohydroxyl compounds because they can be easily separated by distillation.

そのなかでも、沸点が低いフェノールを用いるのがさら
に好ましい。
Among them, it is more preferable to use phenol having a low boiling point.

本発明の実施に際し、用いられる芳香族ヒドロキシル化
合物の量は、使用される脂肪族1級アミンのアミノ基1
モル当たり、ヒドロキシル基が1モル以上となるよう使
用するのが好ましい。
In carrying out the present invention, the amount of aromatic hydroxyl compound used is determined by the amount of amino group of the aliphatic primary amine used.
It is preferable to use one mole or more of hydroxyl groups per mole.

芳香族ヒドロキシル化合物の量が脂肪族1級アミンのア
ミノ基当たり1モルより少ないと、複雑に置換した尿素
化合物が副生ずるからである。より好ましい使用量は、
アミノifモル当たり、ヒドロキシル基が5モル以上、
さらに好ましいのは10モル以上である。とりわけ脂肪
族1級ポリアミンと芳香族ポリヒドロキシル化合物を用
いる場合は、アミノ基1モル当たり、ヒドロキシル基が
1モルに近づくほど、複雑に置換した尿素化合物が副生
ずるから、アミノ51モル当たり、ヒドロキシル基が5
モルより多い方がよい、この意味で使用される脂肪族1
級アミンと芳香族ヒドロキシル化合物の好ましい組合せ
は、脂肪族1級モノアミンと芳香族モノヒドロキシル化
合物、または/および芳香族ポリヒドロキシル化合物、
または芳香族モノヒドロキシル化合物と脂肪族1級モノ
アミンまたは/および脂肪族1級ポリアミンの組合せで
ある。また芳香族ヒドロキシル化合物の量が脂肪族1級
アミンのアミノ基当たり100モル以下が好ましい。1
00モルより多いと空時収率が低下するので、工業的に
実施するには得策ではないからである。
This is because if the amount of the aromatic hydroxyl compound is less than 1 mol per amino group of the aliphatic primary amine, a complexly substituted urea compound will be produced as a by-product. A more preferable usage amount is
5 moles or more of hydroxyl group per mole of amino if,
More preferably, the amount is 10 mol or more. Particularly when using an aliphatic primary polyamine and an aromatic polyhydroxyl compound, the closer the number of hydroxyl groups is to 1 mole per 1 mole of amino groups, the more complexly substituted urea compounds are produced as by-products. is 5
Aliphatic 1 used in this sense, preferably more than molar
A preferred combination of a primary amine and an aromatic hydroxyl compound is an aliphatic primary monoamine and an aromatic monohydroxyl compound, or/and an aromatic polyhydroxyl compound,
Alternatively, it is a combination of an aromatic monohydroxyl compound and an aliphatic primary monoamine or/and an aliphatic primary polyamine. Further, the amount of the aromatic hydroxyl compound is preferably 100 mol or less per amino group of the aliphatic primary amine. 1
This is because if the amount exceeds 0.00 mole, the space-time yield will decrease, which is not a good idea for industrial implementation.

本発明で用いられる脂肪族1級アミンとは、つまたは二
つ以上の1級アミノ基が脂肪族炭素原子に結合している
ものであればどのようなものでもよく、脂環族1級アミ
ンや芳香脂肪族1級アミンであってもよい。
The aliphatic primary amine used in the present invention may be any amine in which one or more primary amino groups are bonded to an aliphatic carbon atom; It may also be an aromatic aliphatic primary amine.

このような脂肪族1級モノアミンまたはポリアミンとし
ては、例えば、メチルアミン、エチルアミン、プロピル
アミン(各異性体)、ブチルアミン(各異性体)、ペン
チルアミン(各異性体)、ヘキシルアミン(各異性体)
、ドデシルアミン(各異性体)、等の脂肪族1級モノア
ミン類;エチレンジアミン、ジアミノプロパン(各異性
体)、ジアミノブタン(各異性体)、ジアミノペンクン
(各異性体)、ジアミノヘキサン(各異性体)、ジアミ
ノデカン(各異性体)等の脂肪族1級ジアミン[;1,
2.3−トリアミノプロパン、トリアミノヘキサン(各
異性体)、トリアミノノナン(各異性体)、トリアミノ
ドデカン(各異性体)、1.8−ジアミノ−4−アミノ
メチルオクタン、2,6−ジアミツカプリン酸−2−ア
ミノエチルエステル、1,3,6.−)リアミノヘキサ
ン、1,6.11−トリアミノウンデカン等の脂肪族1
級トリアミン類;シクロプロピルアミン、シクロブチル
アミン、シクロペンチルアミン、シクロヘキシルアミン
、ジアミノシクロブタン、ジアミノシクロヘキサン(各
異性体)、3アミノメチル−3,5,5−トリメチルシ
クロヘキシルアミン、トリアミノシクロヘキサン(各異
性体)等の脂環族1級モノアミン類およびポリアミン頚
;ベンジルアミン、ジ(アミノメチル)ヘンセン(各異
性体)、アミノメチルピリジン(各異性体)、ジ(アミ
ノメチル)ピリジン(各異性体)、アミノメチルナフタ
レン(各異性体)、ジ(アミノメチル)ナフタレン(各
異性体)等の芳香脂肪族1級モノアミン類およびポリア
ミン類などである。
Examples of such aliphatic primary monoamines or polyamines include methylamine, ethylamine, propylamine (each isomer), butylamine (each isomer), pentylamine (each isomer), and hexylamine (each isomer).
, dodecylamine (each isomer); aliphatic primary monoamines such as ethylenediamine, diaminopropane (each isomer), diaminobutane (each isomer), diaminopenkune (each isomer), diaminohexane (each isomer); aliphatic primary diamines [;1,
2.3-triaminopropane, triaminohexane (each isomer), triaminononane (each isomer), triaminododecane (each isomer), 1.8-diamino-4-aminomethyloctane, 2,6 -Diamizcapric acid-2-aminoethyl ester, 1,3,6. -) Aliphatic 1 such as riaminohexane, 1,6.11-triaminoundecane, etc.
class triamines; cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, diaminocyclobutane, diaminocyclohexane (each isomer), 3-aminomethyl-3,5,5-trimethylcyclohexylamine, triaminocyclohexane (each isomer) Alicyclic primary monoamines and polyamines such as benzylamine, di(aminomethyl) Hensen (each isomer), aminomethylpyridine (each isomer), di(aminomethyl)pyridine (each isomer), amino These include aromatic aliphatic primary monoamines and polyamines such as methylnaphthalene (all isomers) and di(aminomethyl)naphthalene (all isomers).

また、これらの1級アミンの骨格を作っている脂肪族基
、脂環族基、芳香族基において、その水素の一部が、ハ
ロゲン、アルキル基、アルコキシ基、アリール基、エス
テル基、スルホン茫、シアノ基等の置換基によって置換
されてもよいし、骨格に不飽和結合、エーテル結合、エ
ステル結合、チオエーテル結合、スルホン結合、ケトン
結合などを含んでいてもよい。
In addition, some of the hydrogens in the aliphatic groups, alicyclic groups, and aromatic groups that make up the skeletons of these primary amines are halogens, alkyl groups, alkoxy groups, aryl groups, ester groups, and sulfone atoms. , a cyano group, or the like, or the skeleton may contain an unsaturated bond, an ether bond, an ester bond, a thioether bond, a sulfone bond, a ketone bond, or the like.

本発明に用いられる尿素の量は、脂肪族1級アミンのア
ミノ基1モル当たり、尿素が0.5モル以上となるのが
好ましい、より好ましい使用量は、アミノ基1モル当た
り、尿素0.8モル以上2モル以下である。尿素の量が
脂肪族1級アミンのアミノ基1モル当たり0.5モルよ
り少ないと、複雑に置換した尿素化合物が副生ずるし、
2モルより多いと複雑に置換した尿素化合物が副生した
り、未反応の尿素が残存するので好ましくない。
The amount of urea used in the present invention is preferably 0.5 mole or more of urea per mole of amino group of the aliphatic primary amine. More preferably, the amount used is 0.5 mole or more of urea per mole of amino group of the aliphatic primary amine. The amount is 8 moles or more and 2 moles or less. If the amount of urea is less than 0.5 mol per mol of amino group of the aliphatic primary amine, complexly substituted urea compounds will be produced as by-products,
If the amount is more than 2 moles, a complexly substituted urea compound may be produced as a by-product or unreacted urea may remain, which is not preferable.

本発明の実施に際し、芳香族ヒドロキシル化合物を過剰
量用いて溶媒とすることは好ましい手法であるが、適当
な他の溶媒を用いることもできる。
Although it is a preferred practice to use an excess amount of an aromatic hydroxyl compound as a solvent in the practice of this invention, other suitable solvents may also be used.

このような溶媒としては、例えば、ペンタン、ヘキサン
、ヘプタン、オクタン、デカン等の脂肪族炭化水素類;
ベンゼン、トルエン、キシレン、メシチレン等の芳香族
炭化水素類;アセトニトリル、ベンゾニトリル等のニト
リル類;スルホラン、メチルスルホラン、ジメチルスル
ホン等のスルホン類;テトラヒドロフラン、1.4−ジ
オキサン、1.2−ジメトキシエタン等のエーテル類;
アセトン、メチルエチルケトン等のケトン頻;酢酸エチ
ル、安息香酸エチル等のエステル類等が挙げられる。
Such solvents include, for example, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, and decane;
Aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; Nitriles such as acetonitrile and benzonitrile; Sulfones such as sulfolane, methylsulfolane, and dimethylsulfone; Tetrahydrofuran, 1.4-dioxane, and 1.2-dimethoxyethane Ethers such as;
Examples include ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate and ethyl benzoate.

さらには、クロルベンゼン、ジクロルベンゼン、トリク
ロルベンゼン、フルオロベンゼン、クロルトルエン、ク
ロルナフタレン、ブロモナフタレン等のハロゲン化芳香
族炭化水素類;クロルヘキサン、クロルシクロヘキサン
、トリクロルトリフルオロエタン、塩化メチレン、四塩
化炭素等のハロゲン化脂肪族炭化水素類あるいはハロゲ
ン化脂環族炭化水素類等も溶媒として用いられる。
Furthermore, halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene, trichlorobenzene, fluorobenzene, chlorotoluene, chlornaphthalene, bromonaphthalene; chlorhexane, chlorocyclohexane, trichlorotrifluoroethane, methylene chloride, tetrachloride; Halogenated aliphatic hydrocarbons such as carbon or halogenated alicyclic hydrocarbons are also used as the solvent.

本発明の実施に際し、150〜280℃の温度範囲で反
応を行うことが好ましい、150℃より低い温度で反応
を行えば、芳香族ヒドロキシル化合物と脂肪族1級アミ
ンやアンモニア及び尿素が強く結合するため、反応が遅
かったり、反応が殆ど起こらなかったり、あるいは複雑
に置換した尿素化合物が増加したりするために好ましく
ない。
When carrying out the present invention, it is preferable to carry out the reaction at a temperature range of 150 to 280°C. If the reaction is carried out at a temperature lower than 150°C, the aromatic hydroxyl compound and the aliphatic primary amine, ammonia, and urea will strongly bond. Therefore, the reaction is slow, the reaction hardly occurs, or the amount of complexly substituted urea compounds increases, which is not preferable.

280°Cより高い温度で反応を行えば、尿素が分解し
たり、芳香族ヒドロキシル化合物が脱水素変性したり、
あるいは生成物である脂肪族0−アリールウレタンの分
解や変性等による収率低下を招いたりするために好まし
くない、この意味において、より好ましい温度範囲は1
80〜260℃である。さらに好ましい温度範囲は20
0〜250℃である。
If the reaction is carried out at a temperature higher than 280°C, urea may decompose, aromatic hydroxyl compounds may undergo dehydrogenation,
Alternatively, it is not preferable because it may cause a decrease in yield due to decomposition or modification of the aliphatic 0-aryl urethane product.In this sense, the more preferable temperature range is 1.
The temperature is 80-260°C. A more preferable temperature range is 20
The temperature is 0 to 250°C.

本発明の実施に際し、反応系に副生したアンモニアの除
去すべき量は、反応温度及び1級アミンと芳香族ヒドロ
キシル化合物の塩基性度゛の差によって多少異なるが、
反応系の組成によらずほぼ一定であり、反応液中のアン
モニア濃度が2重量%以下となるように除去することが
非常に重要である。アンモニア濃度が2重量%以上だと
、式Iに示した平衡のため脂肪族0−アリールウレタン
は殆ど得られないからである。さらに、脂肪族〇−アリ
ールウレタンの収率を多くするためには、反応液中のア
ンモニア濃度が1重量%以下となるように除去すること
が好ましい、さらに好ましくは、反応液中のアンモニア
濃度が0.5重量%以下である。
When carrying out the present invention, the amount of ammonia that is produced as a by-product in the reaction system will vary somewhat depending on the reaction temperature and the difference in basicity between the primary amine and the aromatic hydroxyl compound.
It is almost constant regardless of the composition of the reaction system, and it is very important to remove the ammonia so that the concentration in the reaction solution is 2% by weight or less. This is because when the ammonia concentration is 2% by weight or more, almost no aliphatic 0-aryl urethane is obtained due to the equilibrium shown in Formula I. Furthermore, in order to increase the yield of aliphatic 〇-aryl urethane, it is preferable to remove the ammonia so that the concentration of ammonia in the reaction liquid becomes 1% by weight or less.More preferably, the ammonia concentration in the reaction liquid is It is 0.5% by weight or less.

反応系に副生したアンモニアを除去する好ましい実施態
様の一つとして、反応蒸留法がある。すなわち、反応蒸
留法とは、反応下で逐次生成してくるアンモニアを蒸留
によって気体状で分離する方法である。アンモニアの蒸
留効率を上げるために、溶媒もしくは芳香族ヒドロキシ
ル化合物の沸騰下で行うこともできる。
One of the preferred embodiments for removing ammonia by-produced in the reaction system is a reactive distillation method. That is, the reactive distillation method is a method in which ammonia, which is successively produced during a reaction, is separated in gaseous form by distillation. In order to increase the efficiency of ammonia distillation, it can also be carried out under boiling of a solvent or an aromatic hydroxyl compound.

反応系に副生じたアンモニアを除去する好ましいもう一
つの実施態様として、不活性ガスを用いる方法がある。
Another preferred embodiment for removing ammonia by-produced in the reaction system is a method using an inert gas.

すなわち、反応下で逐次的に生成してくるアンモニアを
、気体状ヤ不活性ガスに同伴させることによって、反応
系から分離する方法である。このような不活性ガスとし
て、例えば、窒素、ヘリウム、アルゴン、炭酸ガス、メ
タン、エタン、プロパン等を単独で、または混合して反
応系中に導入することも好ましい方法である。同様な作
用をするものとして低沸点の有機溶媒類、例えば、ジク
ロルメタン、クロロホルム、四塩化炭素等のハロゲン化
炭化水素類、ペンタン、ヘキサン、ヘプタン、ベンゼン
、トルエン、キシレン等の低級炭化水素類、アセトン、
メチルエチルケトン等の一ケトン頻、テトラヒドロフラ
ン、ジオキサン等のエーテル類を用いることもできる。
That is, this is a method in which ammonia, which is successively produced during the reaction, is separated from the reaction system by being entrained in a gaseous inert gas. It is also a preferred method to introduce such inert gases, such as nitrogen, helium, argon, carbon dioxide, methane, ethane, propane, etc., singly or in combination into the reaction system. Organic solvents with a similar effect include low-boiling point organic solvents, such as dichloromethane, chloroform, halogenated hydrocarbons such as carbon tetrachloride, lower hydrocarbons such as pentane, hexane, heptane, benzene, toluene, and xylene, and acetone. ,
Monoketones such as methyl ethyl ketone, ethers such as tetrahydrofuran and dioxane can also be used.

またさらに、反応蒸留や不活性ガス等を用いて温度を低
下させたり、反応速度を高める目的で、触媒を用いるこ
ともできる。このような触媒としては、例えば、希土類
元素、アンチモン、ビスマスの単体およびこれらの元素
の酸化物、硫化物および塩類;ホウ素単体およびホウ素
化合物;周期律表の銅族、亜鉛族、アルミニウム族、炭
素族、チタン族の金属およびこれらの金属の酸化物およ
び硫化物;周期律表の炭素を除く炭素族、チタン族、バ
ナジウム族、クロム族元素の炭化物および窒化物が好ま
しく用いられる。触媒を用いる場合、これら触媒と脂肪
族1級アミンの量比はいくらでもとりうるが、脂肪族1
級アミンに対し重量比で通常0.0001〜100倍の
触媒を用いるのが好ましい。
Furthermore, a catalyst can also be used for the purpose of lowering the temperature using reactive distillation, inert gas, etc., or increasing the reaction rate. Such catalysts include, for example, elemental rare earth elements, antimony, bismuth and their oxides, sulfides and salts; elemental boron and boron compounds; copper group, zinc group, aluminum group of the periodic table, carbon and oxides and sulfides of these metals; carbides and nitrides of elements of the carbon group, titanium group, vanadium group, and chromium group excluding carbon in the periodic table are preferably used. When using a catalyst, the quantitative ratio of the catalyst and the aliphatic primary amine can be set as desired;
It is preferable to use the catalyst in a weight ratio of usually 0.0001 to 100 times the weight of the grade amine.

反応系に副生じたアンモニアを除去する好ましい他の実
施態様として、アンモニアを吸着剤に吸着させて分離す
る方法がある。このような吸着剤として、例えば、シリ
カ、アルミナ、各種ゼオライト類、珪藻土類等の150
〜280℃の温度条件下で使用可能な吸着剤を用いるこ
とができる。
Another preferred embodiment for removing ammonia by-produced in the reaction system is a method of separating ammonia by adsorbing it onto an adsorbent. Examples of such adsorbents include silica, alumina, various zeolites, diatomaceous earths, etc.
Adsorbents that can be used under temperature conditions of ~280°C can be used.

さらに、反応系に副生じたアンモニアを除去するために
、反応蒸留法、不活性ガス等を用いる方法、および吸着
剤に吸着させて分離する方法等を組み合わせて用いるこ
ともできる。
Furthermore, in order to remove ammonia by-produced in the reaction system, a combination of a reactive distillation method, a method using an inert gas, a method of separating the ammonia by adsorption onto an adsorbent, etc. can be used.

本発明の実施に際し、反応圧力は、反応系の組成、反応
温度、アンモニアの除去方法、および反応装置の種類等
によって異なるが、通常0.1〜50気圧の圧力範囲で
反応を行うことが好ましい。
When carrying out the present invention, the reaction pressure varies depending on the composition of the reaction system, reaction temperature, ammonia removal method, type of reaction apparatus, etc., but it is usually preferable to carry out the reaction in a pressure range of 0.1 to 50 atm. .

さらに好ましくは、1〜30気圧の圧力範囲が工業的に
実施する上で好ましい、同様に、反応時間も、反応系の
組成、反応温度、アンモニアの除去方法、および反応装
置の種類等によって異なるが、通常数十分〜数十時間で
ある。好ましくは、数十分〜数時間であり、可能な限り
短い方がよい。
More preferably, a pressure range of 1 to 30 atm is preferred for industrial implementation. Similarly, the reaction time also varies depending on the composition of the reaction system, reaction temperature, ammonia removal method, type of reaction equipment, etc. , usually several tens of minutes to several tens of hours. Preferably, it is several tens of minutes to several hours, and the shorter the better.

本発明の実施に際し使用する装置の様式は、なんら限定
されるものではなく、例えば、縦型の管形装置の内部に
原料液を流下させながら反応を進め、副生ずるアンモニ
アを装置の上部から取り出して除去する方法や、あるい
は種型装置を用いて反応させると共に、副生ずるアンモ
ニアを気相に取り出して除去する方法、およびこれらを
組み合わせた方法等が好ましく用いられる。さらに必要
に応じて、これらの装置の上部に蒸留塔および(または
)部分凝縮器等を設けることも好ましい方法である。
The style of the apparatus used to carry out the present invention is not limited in any way; for example, the reaction proceeds while the raw material liquid is allowed to flow down inside a vertical tubular apparatus, and ammonia as a by-product is taken out from the upper part of the apparatus. Preferably used are a method in which the ammonia is removed by using a seed mold, a method in which the reaction is carried out using a seed mold device, and ammonia produced as a by-product is taken out and removed in the gas phase, and a method in which these are combined. Furthermore, it is also a preferable method to provide a distillation column and/or a partial condenser, etc. above these devices, if necessary.

また、本発明の反応は、回分式、連続式いずれの方法で
も実施できる。
Furthermore, the reaction of the present invention can be carried out either batchwise or continuously.

本発明の方法は、脂肪族0−アリールモノウレタンおよ
びポリウレタンを製造するのに適しており、工業的に多
量に使用されている1、6−へキサメチレンジイソシア
ナートのマスクドイソシアナートである1、6−へキサ
メチレン−〇、0°−ジフェニルウレタンの製造、3−
インシアナートメチル−3,5,5−トリメチルシクロ
ヘキシルイソシアナート(IPI)のマスクドイソシア
ナートである3−フェノキシカルボニルアミノメチル−
3,5,5−トリメチル−1−フェノキシカルボニルア
ミノシクロヘキサンの製造、およびm −キシリレンジ
イソシアナートのマスクドイソシアナートであるm−キ
シリレン−0,0−ジフェニルウレタンの製造にも適し
た方法である。
The method of the present invention is suitable for producing aliphatic 0-aryl monourethane and polyurethane, and is a masked isocyanate of 1,6-hexamethylene diisocyanate, which is used in large quantities industrially. , Production of 6-hexamethylene-〇,0°-diphenyl urethane, 3-
3-phenoxycarbonylaminomethyl, a masked isocyanate of methyl incyanato-3,5,5-trimethylcyclohexyl isocyanate (IPI)
This method is also suitable for producing 3,5,5-trimethyl-1-phenoxycarbonylaminocyclohexane and m-xylylene-0,0-diphenylurethane, which is a masked isocyanate of m-xylylene diisocyanate.

(発明の効果) 本発明によれば、従来法に比べ次の利点がある。(Effect of the invention) According to the present invention, there are the following advantages compared to the conventional method.

l)反応液中のアンモニア濃度が2重量%以下になるよ
うに、副生ずるアンモニアを反応系から積極的に除去し
ながら反応させることにより、脂肪族0−アリールウレ
タンを高収率で得ることができる。
l) Aliphatic 0-aryl urethane can be obtained in high yield by performing the reaction while actively removing by-product ammonia from the reaction system so that the ammonia concentration in the reaction solution is 2% by weight or less. can.

2)ホスゲンや一酸化炭素を用いないため、腐食や毒性
等の問題、及び塩化水素ガス等が大量に副生ずる問題が
ない、さらに、高価な貴金属触媒を使用する必要がない
ため安価である。
2) Since phosgene and carbon monoxide are not used, there are no problems such as corrosion or toxicity, and there is no problem of large amounts of hydrogen chloride gas being produced as by-products. Furthermore, there is no need to use expensive noble metal catalysts, so it is inexpensive.

3)1段反応であるためプロセスが単純である。3) The process is simple because it is a one-stage reaction.

4)ウレタン収率が高いため工業的に実施する上で有利
である。
4) Since the urethane yield is high, it is advantageous for industrial implementation.

5)さらに、得られたウレタンが脂肪族O−アリールウ
レタンであるため、熱解離が容易であり、マスクドイソ
イアナート及び脂肪族イソシアナートの中間原料等に用
いるのに有利である。
5) Furthermore, since the obtained urethane is an aliphatic O-aryl urethane, it can be easily thermally dissociated and is advantageous for use as an intermediate raw material for masked isocyanate and aliphatic isocyanate.

(実施例) 次に、実施例によって本発明をさらに詳細に説明するが
、本発明は、これらの実施例に限定されるものではない
(Examples) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

反応液中のアンモニアの定量は、反応液を10倍量以上
の水で抽出して水溶液とした後、アンモニウムイオンを
イオンクロマトグラフィー(IC)を用いて定量した。
The amount of ammonia in the reaction solution was determined by extracting the reaction solution with 10 times or more of water to obtain an aqueous solution, and then quantifying ammonium ions using ion chromatography (IC).

イオンクロマトカラム及び検出器は、東ソー■製 TS
K−ゲルIC−カチオン及びCM−8000を用い、溶
離液として2mM4硝酸水溶液を毎分1.2−流し、3
5°Cで測定した。
The ion chromatography column and detector are manufactured by Tosoh TS.
Using K-gel IC-cation and CM-8000, a 2mM 4 nitric acid aqueous solution was flowed as an eluent at 1.2-min/3.
Measured at 5°C.

また、反応ガス中のアンモニアの定量はガスクロマトグ
ラフィー(CC)で行った。
Further, the amount of ammonia in the reaction gas was determined by gas chromatography (CC).

芳香族ヒドロキシル化合物及び脂肪族1級アミンの定量
は、ガスクロマトグラフィー(GC)及び液体クロマト
グラフィー(LC)で行った。
Aromatic hydroxyl compounds and aliphatic primary amines were quantified by gas chromatography (GC) and liquid chromatography (LC).

尿素及び脂肪族0−アリールウレタンの定量は、ゲルパ
ーミュエーションクロマトグラフィー(Gpc)及びL
Cで行った。
Quantification of urea and aliphatic O-aryl urethanes was performed using gel permeation chromatography (Gpc) and L
I went with C.

実施例1 温度計、撹拌器、還流器、およびガス導入管を備えた1
000d容のガラス四つロフラスコに、1.6−ヘキサ
メチレンジアミン(以下1(DAという)29g、尿素
33g、フェノール470gを仕込み、反応器の底まで
達したボールフィルターから窒素ガスを毎時20ffi
流しながら、フェノールの沸騰下(170〜180℃)
で撹拌しながら反応を行った。
Example 1 1 equipped with a thermometer, stirrer, reflux and gas introduction tube
29 g of 1,6-hexamethylene diamine (hereinafter referred to as DA), 33 g of urea, and 470 g of phenol were placed in a four-glass flask with a capacity of 1,000 d, and nitrogen gas was introduced at a rate of 20 ffi per hour from a ball filter that reached the bottom of the reactor.
Under boiling phenol (170-180℃) while flowing.
The reaction was carried out with stirring.

さらに、20時間毎に次の操作を繰り返した。Furthermore, the following operation was repeated every 20 hours.

まず、反応液を全量回収し、重さ(g)を測定した0次
に、1.0g採集し、反応液に含まれる1゜6−へキサ
メチレン−o、 o’−ジフェニルウレタン(HDPh
)およびアンモニア(NHi)の重量%を定量した。こ
の値から、HDAの仕込みモル数当たりの1. 6−へ
キサメチレン−0,0°−ジフェニルウレタンのモル収
率%を換算した。
First, the entire amount of the reaction solution was collected, and the weight (g) was measured. Next, 1.0g was collected and 1°6-hexamethylene-o,o'-diphenylurethane (HDPh) contained in the reaction solution was collected.
) and ammonia (NHi) weight percent were determined. From this value, 1. The molar yield% of 6-hexamethylene-0,0°-diphenyl urethane was calculated.

80時間までに、還流器上部からアンモニアを含むフェ
ノールが140g流出していた。
By 80 hours, 140 g of phenol containing ammonia had flowed out from the upper part of the reflux vessel.

結果を表1に示す0表1より、反応液に副生するアンモ
ニアを0.01重量%まで積極的に除去すれば1.6−
ヘキサメチレン−〇、OI−ジフェニルウレタンが90
%の高収率で得られることが分かる。また、反応液に副
生ずるアンモニアの重量%が多いほど、1.6−へキサ
メチレン−〇、0°−ジフェニルウレタンの収率が低い
ことが分かる。
The results are shown in Table 1.0 From Table 1, if ammonia by-produced in the reaction solution is actively removed to 0.01% by weight, 1.6-
Hexamethylene-〇, OI-diphenylurethane is 90
% in high yield. It is also seen that the greater the weight percent of ammonia produced as a by-product in the reaction solution, the lower the yield of 1,6-hexamethylene-〇,0°-diphenylurethane.

従って、式1の平衡があること、および平衡は原糸側に
偏っていることが明らかとなった。
Therefore, it has become clear that there is an equilibrium expressed by Formula 1, and that the equilibrium is biased toward the yarn side.

表1 比較例1 窒素ガスを流さない点以外は、実施例1と全く同様な操
作を行った。還流温度(179〜182”C)で80時
間攪拌した0反応液中にアンモニアは2. 2重!i%
含まれていたが、1.6−へキサメチレン−〇、O°−
ジフェニルウレタンは検出されなかった。また、還流器
上部からの流出物もなかった。
Table 1 Comparative Example 1 The same operation as in Example 1 was performed except that nitrogen gas was not passed. Ammonia was 2.2 times i% in the reaction solution stirred for 80 hours at reflux temperature (179-182"C).
Although it contained, 1,6-hexamethylene-〇, O°-
Diphenylurethane was not detected. Moreover, there was no effluent from the upper part of the reflux vessel.

80時間後の反応液からフェノールを除去したところ、
黄褐色の固形物43gが得られた。
When phenol was removed from the reaction solution after 80 hours,
43 g of a tan solid was obtained.

そこで、1.6−へキサメチレン−0,0”−ジフェニ
ルウレタンの良溶媒であるジメチルアセトアミドで抽出
してさらに分析をした。しかし、この抽出物からも1.
6−ヘキサメチレン−o、o’−ジフェニルウレタンは
全く検出されなかった。
Therefore, 1.6-hexamethylene-0,0''-diphenylurethane was extracted with dimethylacetamide, which is a good solvent, and further analyzed.However, from this extract, 1.
No 6-hexamethylene-o,o'-diphenylurethane was detected.

比較例2 フェノールの代わりにアルコールの一種であるn−オク
タツール650g用いる以外は、比較例1と全く同じ窒
素ガスを流さない操作を行った。
Comparative Example 2 The same operation as in Comparative Example 1 was performed without flowing nitrogen gas, except that 650 g of n-octatool, which is a type of alcohol, was used instead of phenol.

還流温度(180〜182℃)で20時間攪拌した0反
応液からn−オクタツールを留去したところ、淡黄色の
反応生成物が100g得られた。
When n-octatool was distilled off from the O reaction solution that was stirred at reflux temperature (180 to 182°C) for 20 hours, 100 g of a pale yellow reaction product was obtained.

この中にヘキサメチレンジ(n−オクチルウレタン)が
87g生成していた。仕込みのHDA当たり1.6−ヘ
キサメチレン−0,0”−ジ(n−オクチルウレタン)
の収率は81%であった。
In this, 87 g of hexamethylene di(n-octyl urethane) was produced. 1.6-hexamethylene-0,0”-di(n-octylurethane) per HDA charged
The yield was 81%.

実施例1と比較例1とから、次のことが分かった。芳香
族ヒドロキシル化合物及び尿素と脂肪族1級アミンから
脂肪族O−アリールウレタンを製造する反応は、アンモ
ニアが極めて除去しにくい。
The following was found from Example 1 and Comparative Example 1. In the reaction for producing aliphatic O-aryl urethane from an aromatic hydroxyl compound, urea, and aliphatic primary amine, ammonia is extremely difficult to remove.

従って、効率的にアンモニアを除去しないと、目的の脂
肪族0−アリールウレタンが得られない。
Therefore, unless ammonia is efficiently removed, the desired aliphatic 0-aryl urethane cannot be obtained.

この場合、アンモニアの除去には、反応蒸留や不活性ガ
スを用いる手法等が極めて有効であることが分かった。
In this case, it has been found that methods such as reactive distillation and methods using inert gas are extremely effective in removing ammonia.

さらに比較例1と比較例2から、アルコールおよび尿素
と脂肪族1級アミンから脂肪族O−アルキルウレタンを
製造する反応では、アンモニアは容易に除去できる。従
って、上述の脂肪族O−アリールウレタンを製造する反
応でアンモニアが極めて除去しにくいことは、脂肪族O
−アルキルウレタンを製造する反応からは全く予想でき
ないことが分かった。
Further, from Comparative Examples 1 and 2, ammonia can be easily removed in the reaction for producing aliphatic O-alkylurethane from alcohol, urea, and aliphatic primary amine. Therefore, the fact that ammonia is extremely difficult to remove in the reaction for producing aliphatic O-aryl urethanes mentioned above is due to the fact that ammonia
-It was found that something completely unexpected from the reaction for producing alkyl urethanes was observed.

実施例2〜10 第1図に示す充填剤を詰めた容積21の縦型反応管lの
上部より原料液Aを連続的に流入し、反応管1の下部よ
り反応液Bを連続的に回収した。
Examples 2 to 10 Raw material liquid A was continuously flowed from the upper part of a vertical reaction tube 1 with a volume of 21 filled with filler shown in FIG. 1, and reaction liquid B was continuously recovered from the lower part of the reaction tube 1. did.

一方、反応管lの下部より窒素ガスCを導入し、反応管
上部の冷却還流器2及び気液分離器3を経て反応ガスE
を回収した。この時、ガスに同伴する凝縮成分りは、気
液分離器の下部より連続的に回収した。
On the other hand, nitrogen gas C is introduced from the bottom of the reaction tube 1, and the reaction gas E is passed through the cooling reflux device 2 and gas-liquid separator 3 at the top of the reaction tube.
was recovered. At this time, condensed components accompanying the gas were continuously collected from the lower part of the gas-liquid separator.

HDA464 g、尿素504g、そしてフェノール7
.520gからなる原料液を用い、反応圧は6気圧(実
施例9及び10は!2気圧)、冷却還流器2の温度は1
40°C1窒素ガス量は標準状B換算で毎時20j!流
した。反応温度(°C)及び原料液Aの流入!(g/H
r)は表2に示す様々な条件下で行った。平均滞留時間
は5〜30分であった0反応終了後、反応>&Bを全量
回収し、重! (g)を測定した。
464 g HDA, 504 g urea, and 7 phenols
.. A raw material liquid consisting of 520 g was used, the reaction pressure was 6 atm (2 atm in Examples 9 and 10), and the temperature of the cooling refluxer 2 was 1.
40°C1 nitrogen gas amount is 20j/hour in standard B conversion! It flowed. Reaction temperature (°C) and inflow of raw material liquid A! (g/H
r) was conducted under various conditions shown in Table 2. The average residence time was 5 to 30 minutes.0 After the reaction was completed, the entire amount of the reaction>&B was collected and the heavy! (g) was measured.

次に反応液Bに含まれる1、6−へキサメチレン−〇、
0°−ジフェニルウレタン(HDPh)及びアンモニア
(NHs)の重量%を定置した。この値からHDAの仕
込モル数当たりの1.6−へキサメチレン−o、 o’
−ジフェニルウレタンのモル収率%を換算した。その結
果を表2に示す。
Next, 1,6-hexamethylene-〇 contained in reaction solution B,
0°-diphenylurethane (HDPh) and ammonia (NHs) weight percent were placed. From this value, 1.6-hexamethylene-o, o' per mole of HDA charged
- The molar yield % of diphenyl urethane was calculated. The results are shown in Table 2.

表2 実施例2の結果から、反応液に副生ずるアンモニアを0
.01重量%まで積極的に除去することで1.6−へキ
サメチレン−〇、O1−ジフェニルウレタンを連続的に
92%の高収率で得られることが分かった。
Table 2 From the results of Example 2, it was found that the amount of ammonia by-produced in the reaction solution was 0.
.. It was found that 1,6-hexamethylene-〇, O1-diphenyl urethane could be continuously obtained at a high yield of 92% by actively removing up to 0.01% by weight.

また、実施例2〜6の結果から、反応液に副生ずるアン
モニアを除去するほど、1.6−ヘキサメチレン−0,
0°−ジフェニルウレタンの収率が高いこと、及び1.
 6−へキサメチレン−〇、0゛−ジフェニルウレタン
を得るためには、反応液に副生するアンモニア濃度を2
重量%になるまで除去すべきであること、さらに20%
以上の1.6−へキサメチレン−〇IO°−ジフェニル
ウレタン収率を得るためには、反応液に副生ずるアンモ
ニア濃度を1重量%になるまで除去するのが好ましい、
さらに高収率を得るためには、液中のアンモニア濃度を
0.5重量%になるまで除去するのが好ましいことが分
かりた。
Moreover, from the results of Examples 2 to 6, the more ammonia by-produced in the reaction solution was removed, the more 1,6-hexamethylene-0,
High yield of 0°-diphenyl urethane, and 1.
In order to obtain 6-hexamethylene-〇,0゛-diphenyl urethane, the ammonia concentration as a by-product in the reaction solution should be reduced to 2.
% by weight, further 20%
In order to obtain the above 1.6-hexamethylene-〇IO°-diphenylurethane yield, it is preferable to remove the ammonia concentration as a by-product in the reaction solution to 1% by weight.
It has been found that in order to obtain a higher yield, it is preferable to remove the ammonia concentration in the liquid to 0.5% by weight.

さらに、実施例2と実施例7〜10の比較から、1.6
−へキサメチレン−〇、0°−ジフェニルウレタンを得
るためには、反応温度が150°C〜280°Cの範囲
にあることが好ましく、さらに高収率を得るためには、
反応温度が180℃〜260℃の範囲にあると好ましい
ことが分かった一実施例11 実施例2と同じ操作を、原料Aの組成を次のように変え
て行った。HDA464 g、尿素504g1そしてm
−クレゾール8,640gからなる原料液を用い、反応
圧は6気圧、反応温度は220°C1原料液Aの流入量
は毎時100g、及び窒素ガス量は標準状態換算で毎時
20ffi流した0反応終了後、反応液Bは8,880
g回収された。
Furthermore, from a comparison of Example 2 and Examples 7 to 10, 1.6
In order to obtain -hexamethylene-〇,0°-diphenyl urethane, the reaction temperature is preferably in the range of 150°C to 280°C, and in order to obtain a higher yield,
Example 11 It was found that it was preferable for the reaction temperature to be in the range of 180° C. to 260° C. The same operation as in Example 2 was performed with the composition of raw material A changed as follows. HDA 464 g, urea 504 g1 and m
- A raw material liquid consisting of 8,640 g of cresol was used, the reaction pressure was 6 atm, the reaction temperature was 220°C, the inflow rate of raw material liquid A was 100 g per hour, and the amount of nitrogen gas was 20ffi per hour in terms of standard conditions. 0 Reaction completed. After that, reaction solution B was 8,880
g was recovered.

この中に、1.6−ヘキサメチレン−o、o’−ジ(m
−クレシルウレタン)は15.9重量%、及びアンモニ
アは0.01重量%含まれていた。この値からHDAの
仕込モル数当たりの1.6−へキサメチレン−0,0′
−ジ(m−クレシルウレタン)収率は93%であった。
In this, 1,6-hexamethylene-o,o'-di(m
-cresyl urethane) was contained in an amount of 15.9% by weight, and ammonia was contained in an amount of 0.01% by weight. From this value, 1.6-hexamethylene-0,0' per mole of HDA charged
-Di(m-cresyl urethane) yield was 93%.

実施例12 実施例11と同じ反応条件で同じ操作を、原料Aの組成
を次のように変えて行った。すなわち、HDA464g
、尿素504g、そしテo −り。
Example 12 The same operation as in Example 11 was carried out under the same reaction conditions, but with the composition of raw material A changed as follows. That is, HDA464g
, 504g of urea, and 504g of urea.

ルフェノール10.280gからなる原料液を用いた。A raw material liquid consisting of 10.280 g of phenol was used.

反応終了後、反応液Bは9,625g回収された。この
中に1. 6−ヘキサメチレン−0,0”−ジ(O−ク
ロルフェニルウレタン)は13.5重量%、及びアンモ
ニアは0.01f!1%含まれていた。この値からHD
Aの仕込モル数当たりの1゜6−へキサメチレン−o、
 o’−ジ(O−クロルフェニルウレタン)収率は91
%であった。
After the reaction was completed, 9,625 g of reaction solution B was recovered. Among these are 1. 6-hexamethylene-0,0"-di(O-chlorophenyl urethane) was contained in 13.5% by weight, and ammonia was contained in 0.01f!1%. From this value, HD
1°6-hexamethylene-o per mole of A charged,
o'-di(O-chlorophenyl urethane) yield is 91
%Met.

実施例13 実施例11と同じ反応条件で同じ操作を、原料Aの組成
を次のように変えて行った。すなわち、HDAJ64 
g、尿素504 g、そして2−ナフトール11,52
0gからなる原料液を用いた。
Example 13 The same operation as in Example 11 was carried out under the same reaction conditions, but with the composition of raw material A changed as follows. That is, HDAJ64
g, 504 g of urea, and 11,52 g of 2-naphthol.
A raw material liquid containing 0 g was used.

反応終了後、反応液Bは11,457g回収された。こ
の中に1,6−へキサメチレン−o、o’ −ジ(2−
ナフチルウレタン)は14.0重量%、及びアンモニア
は0.01重量%含まれていた。
After the reaction was completed, 11,457 g of reaction solution B was recovered. In this, 1,6-hexamethylene-o,o'-di(2-
Naphthyl urethane) was contained in an amount of 14.0% by weight, and ammonia was contained in an amount of 0.01% by weight.

この値からHDAの仕込モル数当たりの1.6−へキサ
メチレン−OIθ′−ジ(2−ナフチルウレタン)収率
は89%であった。
From this value, the yield of 1.6-hexamethylene-OIθ'-di(2-naphthylurethane) per mole of HDA charged was 89%.

実施例14 実施例11と同じ反応条件で同じ操作を、原料Aの組成
を次のように変えて行った。すなわち、3−アミノメチ
ル−3,5,5−トリメチルシクロヘキシルアミン(I
PA)680g、尿素504g1そしてフェノール7.
520gからなる原料液を用いた。
Example 14 The same operation as in Example 11 was carried out under the same reaction conditions, but with the composition of raw material A changed as follows. That is, 3-aminomethyl-3,5,5-trimethylcyclohexylamine (I
PA) 680g, urea 504g1 and phenol7.
A raw material liquid consisting of 520 g was used.

反応終了後、反応液Bは7,931g回収された。この
中に3−フェノキシカルボニルアミノメチル−3,5,
5−トリメチル−1−フェノキシカルボニルアミノシク
ロヘキサンは18.2重量%、及びアンモニアは0.0
1重量%含まれていた。この値からIPAの仕込モル数
当たりの3−フェノキシカルボニルアミノメチル−3,
5,5−トリメチル−1−フェノキシカルボニルアミノ
シクロヘキサン収率は89%であった。
After the reaction was completed, 7,931 g of reaction solution B was recovered. Among these, 3-phenoxycarbonylaminomethyl-3,5,
5-trimethyl-1-phenoxycarbonylaminocyclohexane was 18.2% by weight, and ammonia was 0.0%.
It contained 1% by weight. From this value, 3-phenoxycarbonylaminomethyl-3 per mole of IPA charged,
The yield of 5,5-trimethyl-1-phenoxycarbonylaminocyclohexane was 89%.

実施例15 実施例11と同じ反応条件で同じ操作を、原料Aの組成
を次のように変えて行った。すなわち、m−キシリレン
ジアミン544 g、尿素504g・そしてフェノール
7.520gからなる原料液を用いた。
Example 15 The same operation as in Example 11 was carried out under the same reaction conditions, but with the composition of raw material A changed as follows. That is, a raw material liquid consisting of 544 g of m-xylylene diamine, 504 g of urea, and 7.520 g of phenol was used.

反応終了後、反応液Bは7,690g回収された。この
中にm−キシリレン−o、o’−ジフェニルウレタンは
18.8重量%、及びアンモニアは0゜O1重量%含ま
れていた。この値からm−キシリレンジアミンの仕込モ
ル数当たりのm−キシリレン−0,0”−ジフェニルウ
レタン収率は96%であった。
After the reaction was completed, 7,690 g of reaction solution B was recovered. This contained 18.8% by weight of m-xylylene-o,o'-diphenylurethane and 1% by weight of 0°O ammonia. From this value, the yield of m-xylylene-0,0''-diphenylurethane per mole of m-xylylene diamine charged was 96%.

実施例16 窒素ガス量を標準状態換算で毎時101流すこと以外は
、実施例11と同じ反応条件で同じ操作を、原料Aの組
成を次のように変えて行った。すなわち、n−オクチル
アミン516g、尿素257g1そしてフェノール3,
760gからなる原料液を用いた。
Example 16 The same operation was carried out under the same reaction conditions as in Example 11 except that the amount of nitrogen gas was flowed at 101 per hour in terms of standard conditions, but the composition of raw material A was changed as follows. That is, 516 g of n-octylamine, 257 g of urea, and 3 g of phenol.
A raw material liquid consisting of 760 g was used.

反応終了後、反応液Bは1.029g回収された。この
中にn−オクチル−〇−フェニルウレタンは30.4重
量%、及びアンモニアは0.01重量%含まれていた。
After the reaction was completed, 1.029 g of reaction solution B was recovered. This contained 30.4% by weight of n-octyl-〇-phenyl urethane and 0.01% by weight of ammonia.

この値からn−オクチルアミンの仕込モル数当たりのn
−オクチル−〇−フェニルウレタン収率は97%であっ
た。
From this value, n per mole of n-octylamine charged
-Octyl-〇-phenyl urethane yield was 97%.

実施例17 実施例16と同じ反応条件で同じ操作を、原料Aの組成
を次の様に変えて行った。すなわち、n−オクチルアミ
ン516g、尿素257 g、そして4.4°−ジヒド
ロキシビフェニル3720gからなる原料液を用いた。
Example 17 The same operation as in Example 16 was carried out under the same reaction conditions, but with the composition of raw material A changed as follows. That is, a raw material solution consisting of 516 g of n-octylamine, 257 g of urea, and 3720 g of 4.4°-dihydroxybiphenyl was used.

反応終了後、反応液Bは4353g回収された。After the reaction was completed, 4353 g of reaction solution B was recovered.

この中に4,4′−ジ(n−オクチルカルバモイルオキ
シ)−ビフェニルは21.8重量%、およびアンモニア
は0.01重量%含まれていた。この値からn−オクチ
ルアミンの仕込モル数当たりの4.4゛−ジ(n−オク
チルカルバモイルオキシ)−ビフェニル収率は48%で
あった。
This contained 21.8% by weight of 4,4'-di(n-octylcarbamoyloxy)-biphenyl and 0.01% by weight of ammonia. From this value, the yield of 4.4'-di(n-octylcarbamoyloxy)-biphenyl per mole of n-octylamine charged was 48%.

実施例18 実施例2と同じ操作を、充填剤を詰めた容積81の縦型
反応管1を用い、原料Aの組成および反応条件を次のよ
うに変えて行った。HDA464g1尿素504 g、
そしてフェノール15,040gからなる原料液を用い
、反応圧は4.2気圧、反応温度は235°C1冷却還
流器2の温度は100℃、原料液Aの流入量は毎時1.
500g、および窒素ガス量は標準状態換算で毎時10
01流した。平均滞留時間は30分であった。
Example 18 The same operation as in Example 2 was carried out using a vertical reaction tube 1 filled with a filler and having a volume of 81, changing the composition of raw material A and the reaction conditions as follows. HDA464g1 urea504g,
Using a raw material liquid consisting of 15,040 g of phenol, the reaction pressure was 4.2 atm, the reaction temperature was 235° C., the temperature of the cooling refluxer 2 was 100° C., and the flow rate of the raw material liquid A was 1.2 atm/hour.
500g, and the amount of nitrogen gas is 10% per hour in standard conditions.
01 was played. Average residence time was 30 minutes.

反応終了後、反応液Bは15.119g回収された。こ
の中に1. 6−へキサメチレン−o、o’ −ジフェ
ニルウレタンは9.23重量%、及びアンモニアは0.
04重盪%含まれていた。この値からHDAの仕込モル
数当たりの1.6−ヘキサメチレン−o、 o’−ジフ
ェニルウレタンの収率は98%であった。
After the reaction was completed, 15.119 g of reaction solution B was recovered. Among these are 1. 6-hexamethylene-o,o'-diphenylurethane was 9.23% by weight, and ammonia was 0.9% by weight.
It contained 0.4% by weight. From this value, the yield of 1.6-hexamethylene-o,o'-diphenylurethane per mole of HDA charged was 98%.

また、反応終了までに反応ガスENは標準状態換算で1
,435ffi回収され、反応ガス已にアンモニアガス
はGC分析より25容量%含まれていたことから、アン
モニアはガスとして理論量の99%が回収できたことに
なる。
In addition, by the end of the reaction, the reaction gas EN is 1 in terms of standard conditions.
, 435ffi were recovered, and GC analysis showed that 25% by volume of ammonia gas was contained in the reaction gas, which means that 99% of the theoretical amount of ammonia was recovered as a gas.

さらに、ロータリーエバポレーターを用い、反応液Bか
らフェノールを留去し、1.560gの淡黄色固体が得
られた0次に、この固体を100℃で31のキシレンに
溶解し、再結晶したところ1.350gの白色固体が得
られた。1.6−へキサメチレン−0,0゛−ジフェニ
ルウレタンの純度はCPC分析により99重量%であっ
た。
Furthermore, phenol was distilled off from reaction solution B using a rotary evaporator to obtain 1.560 g of pale yellow solid.Next, this solid was dissolved in xylene 31 at 100°C and recrystallized. .350 g of white solid was obtained. The purity of 1,6-hexamethylene-0,0'-diphenyl urethane was 99% by weight by CPC analysis.

実施例19 実施例18と同じ操作を、窒素ガスの代わりにn−ヘキ
サンを用いることだけを変えて行った。
Example 19 The same procedure as in Example 18 was carried out except that n-hexane was used instead of nitrogen gas.

毎時385gのn−ヘキサンは蒸発器を経て縦型反応管
lの下部にガス杖で導入した。
385 g of n-hexane per hour was introduced with a gas rod into the lower part of the vertical reaction tube 1 via an evaporator.

反応終了後、反応液Bは15.213g回収された。こ
の中に1.6−ヘキサメチレン−o、o’−ジフェニル
ウレタンは9.08重量%、及びアンモニアは0.00
4重量%含まれていた。この値からHDAの仕込モル数
当たりの1.6−へキサメチレン−〇、0°−ジフェニ
ルウレタンの収率は97%であった。
After the reaction was completed, 15.213 g of reaction solution B was recovered. In this, 1,6-hexamethylene-o,o'-diphenyl urethane is 9.08% by weight, and ammonia is 0.00% by weight.
It contained 4% by weight. From this value, the yield of 1.6-hexamethylene-〇,0°-diphenylurethane per mole of HDA charged was 97%.

さらに、ロータリーエバポレーターでフェノールを留去
し、次にt o o ”c、32のキシレンから再結晶
したところ、1,336gの白色固体が得られた。1.
6−へキサメチレン−〇、o“−ジフェニルウレタンの
純度はGPc分析により99重量%であった。
Further, phenol was distilled off using a rotary evaporator, and then recrystallized from xylene of t o ``c, 32'' to obtain 1,336 g of white solid.1.
The purity of 6-hexamethylene-〇,o''-diphenylurethane was found to be 99% by weight by GPc analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例2〜19の工程説明図である。 (ほか1名) FIG. 1 is a process explanatory diagram of Examples 2 to 19. (1 other person)

Claims (1)

【特許請求の範囲】 脂肪族1級アミンから脂肪族0−アリールウレタンを製
造する方法において、 a)脂肪族1級アミンを芳香族ヒドロキシル化合物及び
尿素と反応させること、 b)反応液中のアンモニア濃度が2重量%以下になるよ
うに、副生するアンモニアを反応系から除去しながら反
応させること、 を特徴とする脂肪族0−アリールウレタンの製造方法。
[Claims] A method for producing an aliphatic 0-aryl urethane from an aliphatic primary amine, comprising: a) reacting the aliphatic primary amine with an aromatic hydroxyl compound and urea; b) ammonia in the reaction solution. 1. A method for producing an aliphatic 0-aryl urethane, comprising: performing the reaction while removing by-product ammonia from the reaction system so that the concentration is 2% by weight or less.
JP23227888A 1987-12-08 1988-09-19 Production of aliphatic o-arylurethane Granted JPH02759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23227888A JPH02759A (en) 1987-12-08 1988-09-19 Production of aliphatic o-arylurethane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-308744 1987-12-08
JP30874487 1987-12-08
JP23227888A JPH02759A (en) 1987-12-08 1988-09-19 Production of aliphatic o-arylurethane

Publications (2)

Publication Number Publication Date
JPH02759A true JPH02759A (en) 1990-01-05
JPH0415223B2 JPH0415223B2 (en) 1992-03-17

Family

ID=26530371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23227888A Granted JPH02759A (en) 1987-12-08 1988-09-19 Production of aliphatic o-arylurethane

Country Status (1)

Country Link
JP (1) JPH02759A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329918A (en) * 2001-05-02 2002-11-15 Sony Corp Optical device
WO2011021257A1 (en) * 2009-08-21 2011-02-24 旭化成ケミカルズ株式会社 Method for producing n-substituted carbamic acid ester, method for producing isocyanate using n-substituted carbamic acid ester, and composition for transferring and storing n-substituted carbamic acid ester containing n-substituted carbamic acid ester and aromatic hydroxy compound
JP2012136481A (en) * 2010-12-27 2012-07-19 Asahi Kasei Chemicals Corp Process for producing compound having ureido group
US8957241B2 (en) 2011-02-21 2015-02-17 Asahi Kasei Chemicals Corporation Method for producing carbonyl compound
DE102014222648B4 (en) 2014-11-06 2022-09-15 Bayerische Motoren Werke Aktiengesellschaft Brake disc with internal ventilation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329918A (en) * 2001-05-02 2002-11-15 Sony Corp Optical device
US9145357B2 (en) 2009-08-21 2015-09-29 Asahi Kasei Chemicals Corporation N-substituted carbamic acid ester production method, isocyanate production method using such N-substituted carbamic acid ester, and composition for transfer and storage of N-substituted carbamic acid ester comprising N-substituted carbamic acid ester and aromatic hydroxy compound
EA022171B1 (en) * 2009-08-21 2015-11-30 Асахи Касеи Кемикалз Корпорейшн Method for producing n-substituted carbamic acid ester, method for producing isocyanate using such n-substituted carbamic acid ester, and composition for transferring and storing n-substituted carbamic acid ester containing n-substituted carbamic acid ester and aromatic hydroxy compound
EA030865B1 (en) * 2009-08-21 2018-10-31 Асахи Касеи Кемикалз Корпорейшн Process for the preparation of n-substituted carbamic acid ester, process for the preparation of isocyanate using such n-substituted carbamic acid ester and composition for transfer and storage of the n-substituted carbamic acid ester comprising the n-substituted carbamic acid ester and an aromatic hydroxy compound
JP5043191B2 (en) * 2009-08-21 2012-10-10 旭化成ケミカルズ株式会社 Method for producing N-substituted carbamic acid ester, method for producing isocyanate using said N-substituted carbamic acid ester, and transportation and storage of N-substituted carbamic acid ester containing N-substituted carbamic acid ester and aromatic hydroxy compound Composition
US8658819B2 (en) 2009-08-21 2014-02-25 Asahi Kasei Chemicals Corporation N-substituted carbamic acid ester production method, isocyanate production method using such N-substituted carbamic acid ester, and composition for transfer and storage of N-substituted carbamic acid ester comprising N-substituted carbamic acid ester and aromatic hydroxy compound
US8884047B2 (en) 2009-08-21 2014-11-11 Asahi Kasei Chemicals Corporation N-substituted carbamic acid ester production method and isocyanate production method using the N-substituted carbamic acid ester
US9249090B2 (en) 2009-08-21 2016-02-02 Asahi Kasei Chemicals Corporation N-substituted carbamic acid ester production method and isocyanate production method using the N-substituted carbamic acid ester
WO2011021258A1 (en) 2009-08-21 2011-02-24 旭化成ケミカルズ株式会社 Process for the preparation of n-substituted carbamic acid ester and process for the preparation of isocyanate using the n-substituted carbamic acid ester
WO2011021257A1 (en) * 2009-08-21 2011-02-24 旭化成ケミカルズ株式会社 Method for producing n-substituted carbamic acid ester, method for producing isocyanate using n-substituted carbamic acid ester, and composition for transferring and storing n-substituted carbamic acid ester containing n-substituted carbamic acid ester and aromatic hydroxy compound
US9145358B2 (en) 2009-08-21 2015-09-29 Asahi Kasei Chemicals Corporation N-substituted carbamic acid ester production method, isocyanate production method using such N-substituted carbamic acid ester, and composition for transfer and storage of N-substituted carbamic acid ester comprising N-substituted carbamic acid ester and aromatic hydroxy compound
JP2012136481A (en) * 2010-12-27 2012-07-19 Asahi Kasei Chemicals Corp Process for producing compound having ureido group
JP2015157863A (en) * 2011-02-21 2015-09-03 旭化成ケミカルズ株式会社 Method for producing carbonyl compound
US8957241B2 (en) 2011-02-21 2015-02-17 Asahi Kasei Chemicals Corporation Method for producing carbonyl compound
DE102014222648B4 (en) 2014-11-06 2022-09-15 Bayerische Motoren Werke Aktiengesellschaft Brake disc with internal ventilation

Also Published As

Publication number Publication date
JPH0415223B2 (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US5386053A (en) Multistep, continuous preparation of organic polyisocyanates
JP5692964B2 (en) Isocyanate production method
JPS6317820B2 (en)
EP0323514B1 (en) Process for preparing isocyanate compounds
EP1323708B1 (en) Method for producing carbamates and method for producing isocyanates
JP3083039B2 (en) Method for producing isocyanates
US4925971A (en) Method for producing aliphatic o-arylurethanes
JPH02759A (en) Production of aliphatic o-arylurethane
JPH0246576B2 (en)
JPH05310677A (en) Production of carbamic acid ester
JP4298995B2 (en) Method for producing carbamate and method for producing isocyanate
JP2790855B2 (en) Method for producing aliphatic O-aryl urethane
JP2004262835A (en) Method for producing aromatic isocyanate
JPH04164060A (en) Production of o-arylurethane
WO1999050234A1 (en) Novel urethane compounds and process for producing polycyclic aliphatic diisocyanate
WO2018212208A1 (en) Isocyanate production method
JPH06192204A (en) Method for thermally decomposing polycarbamic acid ester compound
JPH08277255A (en) Continuous production of urethane
US4278805A (en) Process for the preparation of an aryl mono-, di-, and/or polyurethane
US4490551A (en) Process for the production of urethanes
JPH04221359A (en) Production of urethane
JPH07157463A (en) Production of aliphatic poly-o-arylurethane
JP7446221B2 (en) Method for producing carbamate and method for producing isocyanate
JPH08217744A (en) Continuous production of urethane
EP0315178A2 (en) Process for producing a urethane and a carbonic acid ester

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 17