[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0275731A - Turbine plant - Google Patents

Turbine plant

Info

Publication number
JPH0275731A
JPH0275731A JP22469888A JP22469888A JPH0275731A JP H0275731 A JPH0275731 A JP H0275731A JP 22469888 A JP22469888 A JP 22469888A JP 22469888 A JP22469888 A JP 22469888A JP H0275731 A JPH0275731 A JP H0275731A
Authority
JP
Japan
Prior art keywords
steam
turbine
cooling
combustor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22469888A
Other languages
Japanese (ja)
Other versions
JP2544453B2 (en
Inventor
Masatoshi Kudome
正敏 久留
Sunao Aoki
青木 素直
Hidetaka Mori
森 秀隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63224698A priority Critical patent/JP2544453B2/en
Publication of JPH0275731A publication Critical patent/JPH0275731A/en
Application granted granted Critical
Publication of JP2544453B2 publication Critical patent/JP2544453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To aim at the improvement of turbine plant efficiency by supplying one of steam generated by an exhaust heat recovery type steam generator to the steam cooling unit of a turbine so as to cool the turbine, and then, throwing the remainder of the steam generated by the exhaust heat recovery type steam generator together with it into a combustor. CONSTITUTION:Most of air compressed by an air compressor 3 is supplied to a combustor 6, and its one part is bleeded from a middle stage to make it possible to supply it to a gas turbine 1 via a turbine cooling/sealing air pipe 17. It is conducted, until the required volume of turbine cooling steam volume generated by an exhaust heat recovery type steam generator 8 and supplied to the steam cooling unit 32 of the gas turbine 1 is obtained, to supply the turbine cooling air to the gas turbine 1 at the time of starting and low load. When the required volume of the turbine cooling steam quantity is obtained, a turbine cooling air control valve 37 is closed to change the air cooling method to a steam cooling method. At the time of usual operation, one of steam generated by the exhaust heat recovery type steam generator 8 is used for cooling the turbine, but the whole quantity is thrown in the combustor 6 at the time of starting and low load.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、二流体タービンプラント、水素燃焼タービン
プラント、再生式ガスタービンプラント、圧縮酸素貯蔵
タービンプラント等のタービンプラントに関し、より詳
細にはそのタービン高温部を冷却する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to turbine plants such as two-fluid turbine plants, hydrogen combustion turbine plants, regenerative gas turbine plants, compressed oxygen storage turbine plants, etc. Related to technology for cooling parts.

従来の技術 従来のタービンプラントとして、例えば第2図及び第3
図に示すようなものがある。
2. Prior Art As a conventional turbine plant, for example, FIGS.
There is something like the one shown in the figure.

第2図に示すものはガスタービン−蒸気タービン複合方
式と呼ばれるもので、■がガスタービン(二流体タービ
ン)、2が蒸気タービンである。
The system shown in FIG. 2 is called a gas turbine-steam turbine combined system, where ◯ indicates a gas turbine (two-fluid turbine), and 2 indicates a steam turbine.

ガスタービン1は、空気圧縮機3にて圧縮された空気と
燃料供給管4及び燃料制御弁5を通して送られてきた燃
料とを燃焼器6で燃焼させて得た燃焼ガスにより駆動さ
れる。そして、蒸気ター°ビン2は、このガスタービン
lから排気ダクト7を通して送られてくる排ガスの熱を
回収して蒸気を発生する貫流形の排熱回収蒸気発生器(
ボイラ)8からの蒸気により駆動される。
The gas turbine 1 is driven by combustion gas obtained by burning air compressed by an air compressor 3 and fuel sent through a fuel supply pipe 4 and a fuel control valve 5 in a combustor 6. The steam turbine 2 is a once-through type exhaust heat recovery steam generator (
It is driven by steam from boiler 8.

なお、第2図において、9は吸込空気制御ダンパ、tO
,Uは発電機、12は復水器、13は給水管、14は給
水ポンプ、15は排ガスダクト、16は煙突である。
In addition, in FIG. 2, 9 is a suction air control damper, tO
, U is a generator, 12 is a condenser, 13 is a water supply pipe, 14 is a water supply pump, 15 is an exhaust gas duct, and 16 is a chimney.

これに対し、第3図に示すものは、蒸気投入ガスタービ
ン方式と呼ばれるもので、排熱回収蒸気発生器8にて発
生した蒸気が主蒸気管21、蒸気制御弁22及び投入蒸
気管23を通して燃焼器6へ投入されるようになってい
る。そして、この発生蒸気の一部又は全部が、必要に応
じて補助蒸気管24及び蒸気制御弁25を通して系外へ
補助蒸気として供給できるようにもされている。
On the other hand, the system shown in FIG. 3 is called a steam input gas turbine system, in which steam generated in the exhaust heat recovery steam generator 8 passes through the main steam pipe 21, the steam control valve 22, and the input steam pipe 23. It is designed to be input into the combustor 6. A part or all of this generated steam can be supplied outside the system as auxiliary steam through an auxiliary steam pipe 24 and a steam control valve 25 as needed.

なお、第3図において1126は給水タンクであり、ま
た第2図に示したものと同一の部分には同一の符号を付
しである。
In addition, in FIG. 3, 1126 is a water supply tank, and the same parts as shown in FIG. 2 are given the same reference numerals.

しかして、第2図及び第3図に示した従来のタービンプ
ラントにおいて、°ガスタービン1の冷却及びシールは
空気圧縮機3にて圧縮した空気の一部を利用して行われ
、空気圧縮#I3の中間段より抽気したタービン冷却及
びシール用の圧縮空気が管17を通して燃焼器6をバイ
パスしてガスタービンIへ導入され、タービン作動流体
1こ混入されるようになっている。
Therefore, in the conventional turbine plants shown in FIGS. 2 and 3, cooling and sealing of the gas turbine 1 are performed using a part of the air compressed by the air compressor 3, and the air compressor # Compressed air for turbine cooling and sealing extracted from the intermediate stage of I3 is introduced into the gas turbine I through a pipe 17, bypassing the combustor 6, and is mixed with the turbine working fluid.

また、このようなタービン空気冷却方式の他に、従来技
術として、タービン翼を蒸気で冷却する方式もあり、そ
の冷却用の蒸気はタービン翼を冷却後タービン作動流体
に混入されるか、又は冷却凝縮されて回収されるように
なっている。
In addition to this type of turbine air cooling system, there is also a conventional technology that cools turbine blades with steam, and the cooling steam is either mixed into the turbine working fluid after cooling the turbine blades, or It is condensed and collected.

発明が解決しようとする課題 以上述べた従来技術は、しかし、次のような問題点があ
った。
Problems to be Solved by the Invention The prior art described above, however, has the following problems.

まず、第2図及び第3図に示したタービン空気冷却方式
においては、空気は熱輸送能力、それ故冷却能力が小さ
い(比熱が小さい、熱伝達性能が劣る)ので、メタル温
度の低下が難しく、したがってタービン入口温度を低く
抑えなければならず、よってタービンプラント効率が低
くなる。
First, in the turbine air cooling system shown in Figures 2 and 3, air has a small heat transport capacity and therefore a small cooling capacity (low specific heat, poor heat transfer performance), so it is difficult to lower the metal temperature. , thus the turbine inlet temperature must be kept low, resulting in low turbine plant efficiency.

第4図に理解しやすいように、タービン圧力比を調整し
て同一排気温度条件で比較したタービン入口温度とエン
トロピとの関係の一例を示すが、タービン入口温度の高
い方が同一熱損失に対し仕事量が大きいことがわかるで
あろう。
To make it easier to understand, Figure 4 shows an example of the relationship between the turbine inlet temperature and entropy when the turbine pressure ratio is adjusted and compared under the same exhaust temperature condition. You can see that the amount of work is large.

タービン空気冷却方式は、また、その冷却空気量が一般
に空気圧縮機出口空気量のおおよそ30%にも及ぶため
、空気圧縮機の動力が大きくなり、しtこがってタービ
ンプラント出力が低くなる。
In the turbine air cooling method, the amount of cooling air is generally approximately 30% of the air amount at the outlet of the air compressor, so the power of the air compressor increases, which in turn reduces the turbine plant output. .

一方、従来のタービン蒸気冷却方式は、タービンを蒸気
で冷却するので、タービン入口温度を上昇することがで
きるとともに、空気圧縮機の動力を低減することができ
、したがってタービンプラント効率を向上することがで
きる。
On the other hand, the conventional turbine steam cooling method cools the turbine with steam, which can increase the turbine inlet temperature and reduce the power of the air compressor, thus improving the turbine plant efficiency. can.

しかし、この冷却用の蒸気をタービン冷却後作動流体に
混入したり、又は凝縮回収する場合、タービン排気損失
が増大し・たり、又は凝縮熱損失となり、したがってタ
ービン入口温度の上昇及び空気圧縮機の動力低減による
タービンプラント効率の向上のメリットが相殺されるこ
とになる。
However, when this cooling steam is mixed into the working fluid after cooling the turbine or is condensed and recovered, the turbine exhaust loss increases or condensation heat loss occurs, resulting in an increase in the turbine inlet temperature and the air compressor. The benefits of improved turbine plant efficiency due to reduced power will be offset.

課題を解決するための手段 本発明によるタービンプラントは、このような従来技術
の課題を解決するために、空気圧縮機と、この空気圧縮
機にて圧縮された空気と燃料とが導入されて燃焼する燃
焼器と、この燃焼器からの燃焼ガスで駆動するタービン
と、このタービンからの排ガスの熱を利用する排熱回収
蒸気発生器と、この排熱回収蒸気発生器にて発生した蒸
気を前記燃焼器と前記タービンの蒸気冷却部とへ送給す
る第1の蒸気流路と、前記タービンの蒸気冷却部下流と
前記第1の蒸気流路における燃焼器への蒸気送給流路と
を接続する第2の蒸気流路とを具備してなる。
Means for Solving the Problems In order to solve the problems of the prior art, the turbine plant according to the present invention includes an air compressor, and air and fuel compressed by the air compressor are introduced to perform combustion. a combustor, a turbine driven by combustion gas from the combustor, an exhaust heat recovery steam generator that utilizes the heat of exhaust gas from the turbine, and a steam generator that uses the steam generated by the exhaust heat recovery steam generator to A first steam flow path that supplies steam to a combustor and a steam cooling section of the turbine, and a steam supply flow path that connects downstream of the steam cooling section of the turbine and the first steam flow path to the combustor. and a second steam flow path.

作用 このようなタービンプラントにおいては、したがって、
排熱回収蒸気発生器にて発生した蒸気の一部が、タービ
ンの蒸気冷却部へ送給されてタービンを冷却し、その後
排熱回収蒸気発生器にて発生した残りの蒸気と一緒に燃
焼器へ投入され、これによりタービンプラント効率を上
昇することができる。
In such a turbine plant, therefore:
A part of the steam generated in the heat recovery steam generator is sent to the steam cooling section of the turbine to cool the turbine, and then sent to the combustor together with the remaining steam generated in the heat recovery steam generator. This can increase the efficiency of the turbine plant.

実施例 以下第1図を参照して本発明の一実施例について詳述す
る。なお、第1図において、第2図及び第3図に示した
ものと同一の部分には同一の符号を付して、その詳細な
説明は省略する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to FIG. In FIG. 1, the same parts as those shown in FIGS. 2 and 3 are given the same reference numerals, and detailed explanation thereof will be omitted.

しかして、本実施例によれば、排熱回収蒸気発生器8に
て発生した蒸気を燃焼器6側へ送給する主蒸気管21に
おける燃焼器投入蒸気制御弁22上流側部分からタービ
ン冷却蒸気供給管31が分岐されて、ガスタービンlの
高温部タービン翼等の蒸気冷却部32へ接続され、この
蒸気供給管31の途中にはタービン冷却蒸気制御弁33
が設けられている。
According to this embodiment, the turbine cooling steam is supplied from the upstream portion of the combustor input steam control valve 22 in the main steam pipe 21 that supplies the steam generated in the exhaust heat recovery steam generator 8 to the combustor 6 side. The supply pipe 31 is branched and connected to a steam cooling part 32 such as a high-temperature turbine blade of the gas turbine l, and a turbine cooling steam control valve 33 is installed in the middle of the steam supply pipe 31.
is provided.

また、ガスタービン1の蒸気冷却部32下流と燃焼器投
入蒸気管23とを接続するタービン冷却蒸気戻り管34
が設けられている。そして、タービン冷却蒸気供給管3
1を流れる蒸気とタービン冷却蒸気戻り管34を流れる
蒸気との温度差を検出して、燃焼器投入蒸気制御弁22
を制御し、これによりかかる温度差が所定の値となるよ
うにする温度差制御器35が設けられている。
Additionally, a turbine cooling steam return pipe 34 connects the downstream side of the steam cooling section 32 of the gas turbine 1 and the combustor input steam pipe 23.
is provided. And the turbine cooling steam supply pipe 3
The temperature difference between the steam flowing through the combustor input steam control valve 22 and the steam flowing through the turbine cooling steam return pipe 34 is detected.
A temperature difference controller 35 is provided to control the temperature difference so that the temperature difference becomes a predetermined value.

更に、前述したタービン冷却蒸気供給管31におけるタ
ービン冷却蒸気制御弁33下流側部分には、タービン冷
却・シール空気管17から分岐されたタービン冷却空気
管36が接続され、その途中にはタービン冷却空気制御
弁37が設けられている。
Further, a turbine cooling air pipe 36 branched from the turbine cooling/sealing air pipe 17 is connected to the downstream portion of the turbine cooling steam control valve 33 in the turbine cooling steam supply pipe 31 described above, and a turbine cooling air pipe 36 is connected to the turbine cooling air pipe 36 branched from the turbine cooling/sealing air pipe 17. A control valve 37 is provided.

一方、排熱回収蒸気発生器8と主蒸気管21との間には
気水分離器41が設けられ、その分離水管42は燃焼器
6へ接続され、その途中には燃焼器投入分離水制御弁4
3が設けられている。また、この燃焼器投入分離水管4
2から分岐された分離水管44が給水タンク26へ接続
され、その途中には給水タンク回収分離水制御弁45が
設けられている。
On the other hand, a steam/water separator 41 is provided between the exhaust heat recovery steam generator 8 and the main steam pipe 21, and the separated water pipe 42 is connected to the combustor 6. valve 4
3 is provided. In addition, this combustor input separation water pipe 4
A separated water pipe 44 branched from 2 is connected to the water supply tank 26, and a water supply tank recovery separated water control valve 45 is provided in the middle thereof.

そして、給水タンク26には給水管46が接続され、そ
の途中には水位制御器47により制御される水位制御弁
48が設けられている。また、給水タンク26と排熱回
収蒸気発生器7の伝熱管49とを接続する給水管13の
途中には、蒸気温度制御器51により制御される給水制
御弁52が設けられている。
A water supply pipe 46 is connected to the water supply tank 26, and a water level control valve 48 controlled by a water level controller 47 is provided in the middle thereof. Further, a water supply control valve 52 controlled by a steam temperature controller 51 is provided in the middle of the water supply pipe 13 that connects the water supply tank 26 and the heat transfer tube 49 of the waste heat recovery steam generator 7 .

次に、作用について説明する。Next, the effect will be explained.

吸込空気制御ダンパ9により制御されて空気圧縮機3に
導入された燃焼用空気はこの空気圧縮機3にて圧縮され
、その大部分は燃焼器6に供給されるが、その一部分は
中間段から油気され、タービン冷却・シール空気管17
とタービン冷却空気管36、タービン冷却空気制御弁3
7及びタービン冷却蒸気供給管31の一部とを通してガ
スタービンlへ供給される。
Combustion air controlled by the intake air control damper 9 and introduced into the air compressor 3 is compressed by the air compressor 3, and most of it is supplied to the combustor 6, but a part of it is supplied from the intermediate stage. Oiled, turbine cooling and sealing air pipe 17
and turbine cooling air pipe 36, turbine cooling air control valve 3
7 and a part of the turbine cooling steam supply pipe 31 to the gas turbine l.

おいて、排熱回収蒸気発生器8にて蒸気を発生させター
ビン冷却蒸気供給管31を通してガスタービンlの蒸気
冷却部32へ供給するタービン冷却蒸気量が必要量確保
されるまで行われる。そして、この必要量のタービン冷
却蒸気が確保されると、タービン冷却空気制御弁37が
閉じられ、タービン冷却蒸気供給管31を通しての蒸気
冷却方式に切替えられる。そして、その後は、タービン
冷却・シール空気管17を通してはタービンの高温部以
外の部分(低温部)の冷却及びタービンシールのための
空気のみがガスタービン1へ供給される。
Steam is generated in the exhaust heat recovery steam generator 8 and supplied to the steam cooling section 32 of the gas turbine I through the turbine cooling steam supply pipe 31 until the required amount of turbine cooling steam is secured. When this required amount of turbine cooling steam is secured, the turbine cooling air control valve 37 is closed, and the system is switched to a steam cooling method through the turbine cooling steam supply pipe 31. Thereafter, only air for cooling parts other than the high temperature part (low temperature part) of the turbine and for turbine sealing is supplied to the gas turbine 1 through the turbine cooling/sealing air pipe 17.

一方、燃料は、燃料供給管4及び燃料制御弁5を通して
燃焼器6に供給され、前述した圧縮空気とともに燃焼す
る。この燃焼器6には、排熱回収蒸気発生器8にて発生
した蒸気の大部分が気水分離器41、主蒸気管21、燃
焼器投入蒸気制御弁22及び燃焼器投入蒸気管23を通
して供給される。
On the other hand, fuel is supplied to the combustor 6 through the fuel supply pipe 4 and the fuel control valve 5, and is combusted together with the aforementioned compressed air. Most of the steam generated in the exhaust heat recovery steam generator 8 is supplied to the combustor 6 through a steam separator 41, a main steam pipe 21, a combustor input steam control valve 22, and a combustor input steam pipe 23. be done.

定常運転時は、後述するように、排熱回収蒸気発生器8
は最高温度で最大蒸気量が得られるように運転されてお
り、その発生蒸気中の一部がタービン冷却用に使用され
るが、起動時及び低負荷時にはこれを含めて全量が燃焼
器6に投入される。
During steady operation, as described later, the exhaust heat recovery steam generator 8
is operated to obtain the maximum amount of steam at the highest temperature, and a portion of the generated steam is used for cooling the turbine, but the entire amount, including this, is sent to the combustor 6 at startup and at low loads. Injected.

そしてガスタービンlは、この運転状態で、タービン入
口温度を定格温度で運転した時定格出力となるように設
計される。
In this operating state, the gas turbine 1 is designed so that the rated output is achieved when the turbine inlet temperature is operated at the rated temperature.

ガスタービン(二流体タービン)1に流入した燃焼ガス
と蒸気との混合二流体ガスは、このガスタービンlで略
大気圧まで膨張し、仕事をした後、排気ダクト7を通し
て排熱回収蒸気発生器8に導入される。
The mixed two-fluid gas of combustion gas and steam that has flowed into the gas turbine (two-fluid turbine) 1 is expanded to approximately atmospheric pressure in the gas turbine 1, and after doing work, is passed through the exhaust duct 7 to the exhaust heat recovery steam generator. 8 will be introduced.

この排熱回収蒸気発生器8の伝熱管49の面積(伝熱面
積)は、定格負荷時最高温度Tso ’すなわち”So
 ”TTE−α(TTEニガスタービン排気温度、α:
最少終端温度差)の蒸気を最大量発生するように設計さ
れている。
The area (heat transfer area) of the heat transfer tube 49 of this waste heat recovery steam generator 8 is the maximum temperature Tso' at rated load, that is, "So
"TTE-α (TTE gas turbine exhaust temperature, α:
It is designed to generate the maximum amount of steam with a minimum terminal temperature difference).

排熱回収蒸気発生器8で熱回収された二流体ガスは、そ
れから、排ガスダクト15を経て煙突16から大気中へ
放出される。
The two-fluid gas whose heat has been recovered by the exhaust heat recovery steam generator 8 is then discharged into the atmosphere from the chimney 16 via the exhaust gas duct 15.

加を要する場合には、制御弁43にて流量を制御されな
がら、分離水管42を通して燃焼器6に投入される。し
かし、通常運転時には、分離水は管44を通して給水タ
ンク26へ回収される。
If additional water is required, the water is introduced into the combustor 6 through the separation water pipe 42 while the flow rate is controlled by the control valve 43. However, during normal operation, separated water is collected through pipe 44 to water tank 26.

他方、前述した主蒸気管21を通して供給される蒸気の
一部は蒸気管23を通して燃焼器6に投入され、また残
りの蒸気はタービン冷却蒸気供給管31を通してガスタ
ービン1の蒸気冷却部32へ供給され、冷却後タービン
冷却蒸気戻り管34を経て燃焼器投入蒸気管23へ導入
される。
On the other hand, a part of the steam supplied through the main steam pipe 21 mentioned above is input to the combustor 6 through the steam pipe 23, and the remaining steam is supplied to the steam cooling section 32 of the gas turbine 1 through the turbine cooling steam supply pipe 31. After cooling, the steam is introduced into the combustor input steam pipe 23 via the turbine cooling steam return pipe 34.

この場合、ガスタービンlの蒸気冷却部32へ供給され
る蒸気量が必要量確保されるように、タービン冷却蒸気
戻り管34を流れる蒸気の温度とタービン冷却蒸気供給
管31を流れる蒸気の温度との差が所定の温度差となる
ように、温度差制御器35により燃焼器投入蒸気制御弁
22が制御される。そして、この制御弁22と連動して
、制御弁33がタービン冷却蒸気量を制御する。
In this case, the temperature of the steam flowing through the turbine cooling steam return pipe 34 and the temperature of the steam flowing through the turbine cooling steam supply pipe 31 are adjusted so that the required amount of steam is supplied to the steam cooling section 32 of the gas turbine l. The combustor input steam control valve 22 is controlled by the temperature difference controller 35 so that the difference in temperature becomes a predetermined temperature difference. In conjunction with this control valve 22, a control valve 33 controls the amount of turbine cooling steam.

蒸気管23を通しての燃焼器6への蒸気投入は空気流路
部、燃料ノズル周囲及び内筒を通して3段この場合、図
示していないが、排ガスダクト15の途中に排ガス凝縮
器を設けて、燃焼器投入蒸気を凝縮回収し、この回収水
を水処理して排熱回収蒸気発生器8の給水として使用す
ることもできる。
Steam is introduced into the combustor 6 through the steam pipe 23 in three stages through the air flow path, around the fuel nozzle, and through the inner cylinder. It is also possible to condense and recover the steam input into the reactor, treat the recovered water, and use it as feed water for the exhaust heat recovery steam generator 8.

一方、給水タンク26には系外から給水管46を通して
水が供給され、そのタンク内水位は水位制御器47及び
水位制御弁48の手段により一定に保たれるように制御
される。
On the other hand, water is supplied to the water tank 26 from outside the system through a water supply pipe 46, and the water level in the tank is controlled to be kept constant by means of a water level controller 47 and a water level control valve 48.

この給水タンク26内の給水は、給水ポンプ14により
給水管13を通して排熱回収蒸気発生器8の伝熱管49
に供給される。その給水量は、蒸気温度制御器51及び
給水制御弁52の手段により、蒸気発生器出口蒸気の温
度が前述した最高温度となるように制御される。
The water in the water supply tank 26 is supplied to the heat transfer pipe 49 of the waste heat recovery steam generator 8 through the water supply pipe 13 by the water supply pump 14.
is supplied to The amount of water supplied is controlled by the steam temperature controller 51 and the water supply control valve 52 so that the temperature of the steam at the steam generator outlet reaches the maximum temperature described above.

低負荷時等においては、給水量は最低給水量に維持され
て、蒸気発生器出口蒸気が二相流となる場合があるが、
この二相流は気水分離器41にて蒸気と水とに分離され
、蒸気は主蒸気管21に供給される。
At times of low load, etc., the water supply amount is maintained at the minimum water supply amount, and the steam at the steam generator outlet may become a two-phase flow.
This two-phase flow is separated into steam and water by a steam separator 41, and the steam is supplied to the main steam pipe 21.

これに対し、分離水は、ガスタービン出力の増階で行わ
れ、これにより内筒の冷却、NOxの低減及び安定燃焼
が確保される。そして、燃焼器6に投入された蒸気は燃
焼ガスと一様に混合して、燃焼ガスと水蒸気との混合二
流体となって、ガスタービン1に導入される。
On the other hand, separated water is generated by increasing the gas turbine output, thereby ensuring cooling of the inner cylinder, reduction of NOx, and stable combustion. The steam input into the combustor 6 is uniformly mixed with combustion gas to become a two-fluid mixture of combustion gas and steam, which is introduced into the gas turbine 1.

なお、変形例として、タービン冷却蒸気戻り管34を、
燃焼器投入蒸気管23の途中部分に接続しないで、燃焼
器6に直接接続することもできる。
In addition, as a modified example, the turbine cooling steam return pipe 34 is
It is also possible to connect directly to the combustor 6 without connecting to the middle part of the combustor input steam pipe 23.

発明の効果 以上述べた如く、本発明によれば、排熱回収蒸気発生器
にて発生した蒸気の一部を利用して、ガスタービンの高
温部例えば1段翼を冷却するようにしているが、蒸気は
空気よりも熱容量が太き(て伝熱性能が優れ、それ故冷
却能力に優れているので、メタル温度を効果的に低減す
ることができ、よってタービン入口温度を上昇させて、
タービン排気温度が適度になるような圧力比の設計とす
ることにより、タービンプラント効率を大巾に向上させ
ることができる。
Effects of the Invention As described above, according to the present invention, a part of the steam generated in the exhaust heat recovery steam generator is used to cool the high temperature part of the gas turbine, such as the first stage blade. , steam has a larger heat capacity than air (and has better heat transfer performance and therefore better cooling capacity), so it can effectively reduce the metal temperature, thus increasing the turbine inlet temperature,
By designing the pressure ratio so that the turbine exhaust temperature is moderate, the efficiency of the turbine plant can be greatly improved.

そして、本発明によれば、このガスタービンの高温部を
冷却した後の蒸気を燃焼器に投入して、高温のタービン
作動流体とし、排熱回収蒸気発生器から燃焼器に直接投
入した蒸気と同じ仕事をさせるので、タービンプラント
効率を一層上昇させることができる。
According to the present invention, the steam after cooling the high-temperature section of the gas turbine is input into the combustor and used as a high-temperature turbine working fluid. Since the same work is done, the efficiency of the turbine plant can be further increased.

すなわち、排熱回収蒸気発生器における発生蒸気量をW
84、この蒸気発生器から燃焼器に直接投入される蒸気
量をW  タービン冷却蒸気量をSC2 胃 とすると、”St  ” ”SC+’SBとなる。
In other words, the amount of steam generated in the exhaust heat recovery steam generator is W
84. If the amount of steam directly input from the steam generator to the combustor is W and the amount of steam for cooling the turbine is SC2, then "St""SC+'SB" is obtained.

B また、燃焼器出口水蒸気のエンタルピをiSt 1蒸気
発生器出口蒸気のエンタルピを、iSG、タービン冷却
蒸気のエンタルピをIsB sタービン排気中の水蒸気
のエンタルピをiSEとすると、タービン冷却蒸気を燃
焼器に投入しない場合の蒸気の仕事効率は、次の(1)
式で表わされる。
B Also, the enthalpy of the steam at the combustor outlet is iSt, 1 the enthalpy of the steam at the steam generator outlet is iSG, and the enthalpy of the turbine cooling steam is IsB. The work efficiency of steam without input is as follows (1)
It is expressed by the formula.

一方、タービン冷却蒸気もタービン冷却後燃焼器に投入
する場合、タービン冷却蒸気はタービン冷却後タービン
入口温度まで加熱されてタービン作動流体となるので、
燃焼器投入蒸気の仕事効率は、タービン冷却後の戻り蒸
気のエンタルピをi’sBとすると、次の(2)式で表
わされる。
On the other hand, when turbine cooling steam is also input into the combustor after cooling the turbine, the turbine cooling steam is heated to the turbine inlet temperature after cooling the turbine and becomes the turbine working fluid.
The work efficiency of the steam input to the combustor is expressed by the following equation (2), where i'sB is the enthalpy of the return steam after cooling the turbine.

(1st−’St + 1SB−vsB+ (ist 
−i’SB)そして、(1)式と(2)式とを比較する
と、1st−i’sB> 0であることから、(り式〈
(2)式となる。すなわち、タービン冷却蒸気をタービ
ン冷却後燃焼器に投入することにより、タービンプラン
ト効率を改善することができる。
(1st-'St + 1SB-vsB+ (ist
-i'SB) Then, when comparing equations (1) and (2), since 1st-i'sB>0,
The equation (2) is obtained. That is, by injecting the turbine cooling steam into the combustor after cooling the turbine, the efficiency of the turbine plant can be improved.

しかも、このように排熱回収蒸気発生器にて発生した蒸
気を燃焼器に直接投入するに加えて、タービン冷却蒸気
をタービン冷却後燃焼器に投入して、燃焼器投入蒸気量
を増大することにより、空気量を減少して、空気圧縮機
の動力を減少し、したがってタービンプラント出力を増
加することができるとともに、NOxの発生量を低減す
ることができる。
Moreover, in addition to directly injecting the steam generated in the waste heat recovery steam generator into the combustor, turbine cooling steam is injected into the combustor after cooling the turbine to increase the amount of steam input into the combustor. This allows the amount of air to be reduced, reducing the power of the air compressor and thus increasing the turbine plant output, as well as reducing the amount of NOx produced.

また、前述した実施例によれば、次のような効果もある
Further, according to the above-mentioned embodiment, there are also the following effects.

すなわち、タービン冷却蒸気をタービン冷却後燃焼器に
投入する場合において、タービン冷却蒸気量を確実に供
給する必要があるが、タービン冷却蒸気の冷却前後の温
度差を監視し、これに基づき燃焼器投入蒸気量を制御す
ることにより、最適量のタービン冷却蒸気量を確保でき
、これによりタービンプラントの信頼性の向上と効率の
向上とを図ることができる。
In other words, when introducing turbine cooling steam into the combustor after cooling the turbine, it is necessary to reliably supply the amount of turbine cooling steam, but the temperature difference before and after cooling the turbine cooling steam is monitored and the combustor injection is performed based on this. By controlling the amount of steam, an optimal amount of turbine cooling steam can be ensured, thereby improving the reliability and efficiency of the turbine plant.

また、圧力比の高い設計では、タービン排気温度が低く
なるため、排熱回収蒸気発生器における発生蒸気温度が
低く、二相流となるが、この場合この発生蒸気量だけで
はタービン作動流体が不足してタービン入口温度の制御
ができなくなる。このような場合、気水分離器で蒸気か
ら分離された飽和水を燃焼器に投入することにより、空
気量を過剰とする方式に比べて高効率で大出力が得られ
る。
In addition, in a design with a high pressure ratio, the turbine exhaust temperature is low, so the temperature of the steam generated in the heat recovery steam generator is low, resulting in a two-phase flow, but in this case, the amount of steam generated is insufficient for the turbine working fluid. This makes it impossible to control the turbine inlet temperature. In such a case, by injecting saturated water separated from steam in a steam-water separator into the combustor, higher efficiency and greater output can be obtained than in a system in which the amount of air is excessive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるタービンプラントの一例を示す系
統図、第2図及び第3図は従来のタービンプラントの異
なる二例を示す系統図、第4図は図である。 ■・・ガスタービン、3・・空気圧縮機、4・・燃料供
給管、6・・燃焼器、8・・排熱回収蒸気発生器、17
・・タービン冷却・シール空気管、21・・主蒸気管、
23・・燃焼器投入蒸気管、24・・補助蒸気管、26
・・給水タンク、31・・タービン冷却蒸気供給管、3
2・・タービンの蒸気冷却部、34・・タービン冷却蒸
気戻し管、35・・温度差制御器、36・・タービン冷
却空気管、41・・気水分離器、42・・燃焼器投入分
離水管、44・・給水り(ほか1名)
FIG. 1 is a system diagram showing an example of a turbine plant according to the present invention, FIGS. 2 and 3 are system diagrams showing two different examples of conventional turbine plants, and FIG. 4 is a diagram. ■...Gas turbine, 3...Air compressor, 4...Fuel supply pipe, 6...Combustor, 8...Exhaust heat recovery steam generator, 17
...Turbine cooling/sealing air pipe, 21...Main steam pipe,
23...Combustor input steam pipe, 24...Auxiliary steam pipe, 26
... Water supply tank, 31 ... Turbine cooling steam supply pipe, 3
2... Turbine steam cooling section, 34... Turbine cooling steam return pipe, 35... Temperature difference controller, 36... Turbine cooling air pipe, 41... Steam water separator, 42... Combustor input separation water pipe , 44...Water supply (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 空気圧縮機と、この空気圧縮機にて圧縮された空気と燃
料とが導入されて燃焼する燃焼器と、この燃焼器からの
燃焼ガスで駆動するタービンと、このタービンからの排
ガスの熱を利用する排熱回収蒸気発生器と、この排熱回
収蒸気発生器にて発生した蒸気を前記燃焼器と前記ター
ビンの蒸気冷却部とへ送給する第1の蒸気流路と、前記
タービンの蒸気冷却部下流と前記第1の蒸気流路におけ
る燃焼器への蒸気送給流路とを接続する第2の蒸気流路
とを具備してなるタービンプラント。
An air compressor, a combustor into which the air and fuel compressed by the air compressor are introduced and combusted, a turbine that is driven by the combustion gas from the combustor, and the heat of the exhaust gas from the turbine is used. a first steam flow path for delivering steam generated in the exhaust heat recovery steam generator to the combustor and the steam cooling section of the turbine; A turbine plant comprising: a second steam flow path connecting a downstream portion of the steam flow path to a steam supply flow path to a combustor in the first steam flow path.
JP63224698A 1988-09-09 1988-09-09 Turbin plant Expired - Lifetime JP2544453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63224698A JP2544453B2 (en) 1988-09-09 1988-09-09 Turbin plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63224698A JP2544453B2 (en) 1988-09-09 1988-09-09 Turbin plant

Publications (2)

Publication Number Publication Date
JPH0275731A true JPH0275731A (en) 1990-03-15
JP2544453B2 JP2544453B2 (en) 1996-10-16

Family

ID=16817839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63224698A Expired - Lifetime JP2544453B2 (en) 1988-09-09 1988-09-09 Turbin plant

Country Status (1)

Country Link
JP (1) JP2544453B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396628A (en) * 1989-07-28 1991-04-22 General Electric Co <Ge> Cooling gas turbine engine by steam
JP2010077930A (en) * 2008-09-26 2010-04-08 Toyota Motor Corp Bleed type gas turbine engine
WO2020003708A1 (en) * 2018-06-29 2020-01-02 三菱日立パワーシステムズ株式会社 Combined power generation facility and operation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031365A1 (en) * 1997-12-15 1999-06-24 Hitachi, Ltd. Gas turbine for power generation, and combined power generation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506910A (en) * 1973-05-24 1975-01-24
JPS6267239A (en) * 1985-09-20 1987-03-26 Toyo Eng Corp Power generating method for gas turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506910A (en) * 1973-05-24 1975-01-24
JPS6267239A (en) * 1985-09-20 1987-03-26 Toyo Eng Corp Power generating method for gas turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396628A (en) * 1989-07-28 1991-04-22 General Electric Co <Ge> Cooling gas turbine engine by steam
JP2010077930A (en) * 2008-09-26 2010-04-08 Toyota Motor Corp Bleed type gas turbine engine
WO2020003708A1 (en) * 2018-06-29 2020-01-02 三菱日立パワーシステムズ株式会社 Combined power generation facility and operation method thereof
JP2020002895A (en) * 2018-06-29 2020-01-09 三菱日立パワーシステムズ株式会社 Combined-cycle power generation facility and operation method therefor
CN112334636A (en) * 2018-06-29 2021-02-05 三菱动力株式会社 Composite power generation facility and method for operating same
CN112334636B (en) * 2018-06-29 2022-10-28 三菱重工业株式会社 Composite power generation facility and method for operating same

Also Published As

Publication number Publication date
JP2544453B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
CA2357595C (en) Combined cycle gas turbine system
US6945052B2 (en) Methods and apparatus for starting up emission-free gas-turbine power stations
US6782703B2 (en) Apparatus for starting a combined cycle power plant
US6389797B1 (en) Gas turbine combined cycle system
US6233940B1 (en) Dual-pressure stem injection partial-regeneration-cycle gas turbine system
US4907406A (en) Combined gas turbine plant
JPH08114104A (en) Composite gas-steam turbine power plant
JPH094417A (en) Composite cycle-system
JPH0586898A (en) Halfopen cycle operation type natural gas steam turbine system
JP2002097970A (en) Compressor discharged bleed air circuit in gas turbine power generating facility and related method
JP2001271612A (en) Apparatus and method for reheating gas turbine cooling steam and high-pressure steam turbine exhaust steam in combined cycle power generating apparatus
JPH06264763A (en) Combined plant system
JP2001289058A (en) Steam injection type gas turbine device
JP4036914B2 (en) Power plant operation
JP2004504538A (en) Operating method of gas and steam combined turbine equipment and its equipment
JP3854156B2 (en) Regenerative gas turbine combined cycle power generation system
KR102485852B1 (en) Waste gas recirculation in gas and steam combined turbine plants
JPH0275731A (en) Turbine plant
JPH06323162A (en) Steam-cooled gas turbine power plant
JP3683521B2 (en) Cogeneration system operation method
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JP2002129977A (en) Gas turbine equipment
JPH09166002A (en) Combined cycle power generation plant
JPH0874518A (en) Garbage power generating system using two operating fluid gas turbine
JP2003148166A (en) Combined power plant, and closed air cooling gas turbine system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13