[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0274076A - Mos type transistor - Google Patents

Mos type transistor

Info

Publication number
JPH0274076A
JPH0274076A JP63226261A JP22626188A JPH0274076A JP H0274076 A JPH0274076 A JP H0274076A JP 63226261 A JP63226261 A JP 63226261A JP 22626188 A JP22626188 A JP 22626188A JP H0274076 A JPH0274076 A JP H0274076A
Authority
JP
Japan
Prior art keywords
gate
insulating film
transistor
offset
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63226261A
Other languages
Japanese (ja)
Other versions
JP2941816B2 (en
Inventor
Hisao Hayashi
久雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63226261A priority Critical patent/JP2941816B2/en
Publication of JPH0274076A publication Critical patent/JPH0274076A/en
Application granted granted Critical
Publication of JP2941816B2 publication Critical patent/JP2941816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:Not only to enable the improvement of a MOS type transistor of this design in breakdown strength and the reduction of a leakage current but also to make it low in resistance to an on-current by a method wherein an insulating film whose dielectric constant is higher than that of a gate insulating film is provided between a second high resistive semiconductor region and a gate electrode. CONSTITUTION:A second high resistive semiconductor region 8 (offset section) is provided between first high resistive semiconductor regions 5 and 6 under a gate electrode 4 and a low resistive semiconductor region 7a of a channel region 7, and an insulating film 9, whose dielectric constant is higher than that of a gate insulating film 3, is provided between the offset section 8 and the gate electrode 4. Therefore, when a transistor is ON, the insulating film 9 of high dielectric constant functions as a parasitic MOS and the offset section 8 changes to the same conductivity type as the source and the drain region, 5 and 6. Therefore, the resistance of the offset section 8 is made to decrease with the rise of a gate voltage, in result, an ON-current is not restricted by the resistance of the offset section 8. When the transistor is OFF, as it is of offset gate structure, the electric field of a P-N<+> junction is not intensified by a gate voltage, so that the transistor is improved in breakdown strength and a leakage current is decreased.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、MOS型トランジスタ、特にゲート位置が少
なくともドレイン領域から離れて成るいわゆるオフセッ
トゲート構造のMOS型トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a MOS type transistor, and particularly to a MOS type transistor having a so-called offset gate structure in which the gate position is separated from at least a drain region.

〔発明の概要〕[Summary of the invention]

本発明は、オフセットゲート構造のMOS型トランジス
タにおいて、ゲート電極下の部lの高抵抗半導体領域と
低抵抗半導体領域との間に第2の高抵抗半導体領域を有
し、該第2の高抵抗半導体領域と上記ゲート電極との間
にゲート絶縁膜より高MN率の絶縁膜を有するように構
成することにより、耐圧の改善及びリーク′T!L流の
低減化を図ると共にオン電流に対しての低抵抗化をも図
るようにしたものである。
The present invention provides a MOS transistor with an offset gate structure, which includes a second high-resistance semiconductor region between a high-resistance semiconductor region and a low-resistance semiconductor region in a portion l below a gate electrode, and wherein the second high-resistance semiconductor region By configuring an insulating film with a higher MN ratio than the gate insulating film between the semiconductor region and the gate electrode, breakdown voltage can be improved and leakage 'T! This is intended to reduce the L current and also to lower the resistance to on-current.

〔従来の技術〕[Conventional technology]

近時、薄膜トランジスタ等のMOS型トランジスタにお
いては、耐圧の改善及びリーク電流の低減化のために、
第3図に示すように、ゲート位置が少なくともドレイン
領域から離れて構成されたいわゆるオフセットゲート構
造が提案されている。
Recently, in MOS transistors such as thin film transistors, in order to improve breakdown voltage and reduce leakage current,
As shown in FIG. 3, a so-called offset gate structure has been proposed in which the gate position is separated from at least the drain region.

同図に示すオフセットゲート構造のMO5型トランジス
タは、Nチャンネル型’iR#トランジスタを示してお
り、例えば、SiO□絶縁基板(21)上に多結晶シリ
コン薄膜よりなる活性層(22)が形成され、この活性
層(22)上のソース領域(23)及びドレイン領域(
24)から離れた位置にSiO□からなるゲート絶縁膜
(25)及び多結晶シリコンからなるゲート電極(26
)が形成されて、全体に表面保護用の5iOt層(27
)が被着形成され、ソース領域(23)及びドレイン領
域(24)にそれぞれ例えばA2によるソース電i (
2B)及びドレインif!1(29)がオーミックに接
続されて成る。
The MO5 type transistor with an offset gate structure shown in the figure is an N-channel type 'iR# transistor, and for example, an active layer (22) made of a polycrystalline silicon thin film is formed on a SiO□ insulating substrate (21). , a source region (23) and a drain region (
A gate insulating film (25) made of SiO□ and a gate electrode (26) made of polycrystalline silicon are placed at a position away from
) is formed, and a 5iOt layer (27
) is deposited, and a source voltage i (
2B) and drain if! 1 (29) are ohmically connected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のオフセットゲート構造を有するM
OS型トランジスタにおいては、ゲートに対して、ソー
ス領域(23)、ドレイン領域(24)が重なっていな
いので、その部分(以下、単にオフセント部分と呼ぶ)
 (30)は抵抗となる。この抵抗は大きければ大きい
程、耐圧の改善やリーク電流の低減化の点では良いが、
トランジスタをオンさせた時、該抵抗がオン電流を制限
してしまうという不都合がある。
However, M with conventional offset gate structure
In an OS type transistor, the source region (23) and drain region (24) do not overlap with the gate, so that part (hereinafter simply referred to as the offset part)
(30) becomes resistance. The larger this resistance is, the better it is in terms of improving withstand voltage and reducing leakage current.
There is a disadvantage that the resistor limits the on-current when the transistor is turned on.

この両方の特性即ち、耐圧の改善、リーク電流の低減化
という特性を保ちながらオン電流の制限を抑えるという
方法はない、唯一あるのは、オフセット部分(30)の
抵抗を制御して最適値にするという方法があるが、トラ
ンジスタの作成法が非常に困難となる。
There is no way to suppress the limitation of on-current while maintaining both of these characteristics, that is, improving withstand voltage and reducing leakage current.The only way is to control the resistance of the offset part (30) to the optimum value There is a method to do this, but the method of manufacturing the transistor is extremely difficult.

本発明は、このような点に鑑み成されたもので、その目
的とするところは、簡単な構成で、耐圧の改善及びリー
ク電流の低減化という特性を保ちながらオン電流の制限
を抑えることができるMOS型トランジスタを提供する
ことにある。
The present invention has been made in view of the above points, and its purpose is to suppress the limitation of on-current while maintaining the characteristics of improving withstand voltage and reducing leakage current, with a simple configuration. The purpose of this invention is to provide a MOS type transistor that can be used.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のMOS型トランジスタは、ゲート電極(4)下
の第1の高抵抗半導体領域(ソース、ドレイン領域)(
5)及び(6)とチャンネル領域(7)における低抵抗
半導体領域(7a)との間に第2の高抵抗半導体領域(
オフセット部分)(8)を有し、オフセント部分(8)
と上記ゲート電極(4)との間にゲート絶縁MtJ (
3)より高誘電率の絶縁膜(9)を有するように構成す
る。
The MOS transistor of the present invention has a first high-resistance semiconductor region (source, drain region) under the gate electrode (4) (
5) and (6) and the low resistance semiconductor region (7a) in the channel region (7), a second high resistance semiconductor region (
offset portion) (8);
A gate insulation MtJ (
3) Constructed to have an insulating film (9) with a higher dielectric constant.

〔作 用〕[For production]

上述の本発明の構成によれば、ゲート電極(4)からオ
フセット部分(8)にかけて、ゲート絶縁膜(3)より
も高誘電率を有する膜(9)を形成したので、トランジ
スタのオン時、高誘電率絶縁膜(9)が寄生MOSとな
って、オフセット部分(8)がソース、ドレイン領域(
5)及び(6)と同じ導電型に変わる。そのため、オフ
セット部分(8)の抵抗は、ゲート電圧の上昇に伴なっ
て下がり、その結果、オン電流はオフセット部分(8)
の抵抗によって制限されなくなる。
According to the configuration of the present invention described above, since the film (9) having a higher dielectric constant than the gate insulating film (3) is formed from the gate electrode (4) to the offset portion (8), when the transistor is turned on, The high dielectric constant insulating film (9) becomes a parasitic MOS, and the offset part (8) becomes the source and drain regions (
It changes to the same conductivity type as 5) and (6). Therefore, the resistance of the offset portion (8) decreases as the gate voltage increases, and as a result, the on-current decreases in the offset portion (8).
is no longer limited by the resistance of

トランジスタのオフ時には、通常の場合、チャンネル領
域(刀と少なくともドレイン領域(6)間の接合、第1
図の例ではP−N’接合にかかる電界でリーク電流が決
まる。
When the transistor is turned off, the channel region (the junction between the blade and at least the drain region (6), the first
In the illustrated example, the leakage current is determined by the electric field applied to the PN' junction.

ところが本構成ではオフセットゲート構造であるため、
ゲート電圧によってP−N”接合の電界が強くなるとい
うことがないので、耐圧が向上し、リーク電流は低減さ
れる。
However, since this configuration has an offset gate structure,
Since the electric field at the PN'' junction does not become stronger due to the gate voltage, the withstand voltage is improved and leakage current is reduced.

C実施例〕 以下、第1図及び第2図を参照しながら本発明の詳細な
説明する。
Embodiment C] The present invention will be described in detail below with reference to FIGS. 1 and 2.

第1図は、本実施例に係るオフセットゲート構造のMO
S型トランジスタを薄膜トランジスタに適用した例を示
す構成図である。
FIG. 1 shows an MO of an offset gate structure according to this embodiment.
FIG. 2 is a configuration diagram showing an example in which an S-type transistor is applied to a thin film transistor.

この図において、(1)は5i02から成る絶縁基板、
(2)は多結晶シリコンから成る活性層、(3)はSi
O!から成るゲート絶縁膜、(4)は多結晶シリコンか
ら成るゲート電極であり、上記活性層(2)において、
左右に例えばN型の不純物がイオン注入されて成るソー
ス領域(5)及びドレイン領域(6)を有し、ゲート電
極(4)下にはチャンネル領域(7)を有すると共に、
該チャンネル領域(7)の低抵抗領域(7a)とソース
In this figure, (1) is an insulating substrate made of 5i02;
(2) is an active layer made of polycrystalline silicon, (3) is a Si
O! (4) is a gate electrode made of polycrystalline silicon, and in the active layer (2),
It has a source region (5) and a drain region (6) in which, for example, N-type impurities are ion-implanted on the left and right sides, and a channel region (7) under the gate electrode (4).
the low resistance region (7a) of the channel region (7) and the source.

ドレイン領域(5)及び(6)との間に、高抵抗領域で
あるオフセット部分(8)を有する。
An offset portion (8), which is a high resistance region, is provided between the drain regions (5) and (6).

そして、ゲート電極(4)とオフセット部分(8)にか
けてゲート絶縁III(3)よりも高誘電率を有する膜
例えばTaxes膜によるサイドウオール部(9)が構
成されている。そして、全体に表面保護用のSiO2層
(10)が被着形成され、ソース領域(5)及びドレイ
ン領域(6)にそれぞれ例えばAlによるソース電極(
11)及びドレイン電極(12)がオーミックに接続さ
れて構成されている。
A sidewall portion (9) is formed between the gate electrode (4) and the offset portion (8) by a film having a higher dielectric constant than the gate insulation III (3), for example, a Taxes film. Then, a SiO2 layer (10) for surface protection is deposited over the entire surface, and source electrodes (made of Al, for example) are formed on the source region (5) and drain region (6), respectively.
11) and a drain electrode (12) are ohmically connected.

尚、後述より明らかなようにTaxes膜によるサイド
ウオール部(9)での寄生MOSの条件としては、ゲー
ト部でのゲート容量より寄生MOSの容量(単位面積当
たりの)を少なくともオフセット部分(8)の一部で小
さくなるような条件とする。
As will be clear from the description below, the conditions for the parasitic MOS in the sidewall part (9) by the Taxes film are such that the capacitance (per unit area) of the parasitic MOS is at least offset from the gate capacitance in the gate part (8). The condition is such that it becomes smaller in some part.

次に、本実施例に係るMOS型トランジスタのオフ時及
びオン時における作用を説明する。
Next, the operation of the MOS transistor according to this embodiment when it is off and on will be explained.

トランジスタのオフ時は、チャンネル領域(7)と少な
くともドレイン領域(6)間の接合、図示の例ではP−
N”接合(8a)にかかる電界でリーク電流が決まる。
When the transistor is off, the junction between the channel region (7) and at least the drain region (6), in the illustrated example P-
The leakage current is determined by the electric field applied to the N'' junction (8a).

ところが、本実施例ではオフセントゲート構造にしであ
るのでゲート電圧によってP−N’横接合8a)の電界
が強くなるということはない(いわゆるオフセットゲー
ト構造による効果)。ただし、Taxes DIによる
サイドウオール部(9)が寄生MOSになっているので
、ここの容置が大きいと上記のオフセットゲート構造に
よる効果がうすれてくる。即ち、マイナス電界をゲート
電極(4)にかけたときは、オフセット部分(8)が図
示の例ではP゛化し、それに伴ないオフセント部分(8
)と少なくともドレイン領域(5)とのP’−N’横接
合8a)にかかる電界が大きくなってリーク電流が生じ
る。しかし、サイドウオール部(9)は断面略三角状に
形成されており、その長辺部分(9a)の容量が小さく
なるため、このサイドウオール部(9)における寄生M
OSの条件が、上述の条件を満足することになり、P”
−N’横接合8a)のリーク電流は非常に小規模のもの
となり、オフセットゲート構造の特徴である耐圧の改善
及びリーク電流の低減化に影響を及ぼすこ出はない。
However, since this embodiment uses an offset gate structure, the electric field at the PN' lateral junction 8a) does not become stronger due to the gate voltage (an effect due to the so-called offset gate structure). However, since the sidewall portion (9) formed by the Taxes DI is a parasitic MOS, if the space here is large, the effect of the offset gate structure described above will be diminished. That is, when a negative electric field is applied to the gate electrode (4), the offset portion (8) changes to P in the illustrated example, and the offset portion (8) changes accordingly.
) and at least the drain region (5), the electric field applied to the P'-N' lateral junction 8a) increases and a leakage current occurs. However, the sidewall portion (9) is formed to have a substantially triangular cross section, and the capacitance of its long side portion (9a) is small, so the parasitic M in this sidewall portion (9)
The OS conditions satisfy the above conditions, and P”
The leakage current of the -N' lateral junction 8a) becomes very small, and does not affect the improvement of breakdown voltage and reduction of leakage current, which are the characteristics of the offset gate structure.

逆にオン時即ち、プラス電界をゲート電極(4)にかけ
たときは、サイドウオール部(9)が寄生MO5となっ
てオフセット部分(8)が図示の例ではN型に変化する
。そのため、ゲート電圧の上昇と共にオフセント部分(
8)の抵抗が下がり、オン電流に対するM限は生じなく
なる。
Conversely, when it is on, that is, when a positive electric field is applied to the gate electrode (4), the sidewall portion (9) becomes a parasitic MO5, and the offset portion (8) changes to N type in the illustrated example. Therefore, as the gate voltage increases, the offset part (
8) is reduced, and the M limit on the on-current no longer occurs.

尚、本例ではTazO@の高誘電率膜によるサイドウオ
ール部(9)を断面略三角状に形成するようにしたが、
第2図に示すように、ゲート電極(4)上よりオフセッ
ト部分(8)までを被覆するようにTa205による高
誘電率膜(13)を形成しても良い、またTa20B膜
の変わりに5iJa膜を用いても良いし、5rxNa膜
5iOzlHIの多Jii構造で構成してもよい。
In this example, the sidewall portion (9) made of a high dielectric constant film of TazO@ is formed to have a substantially triangular cross section.
As shown in FIG. 2, a high dielectric constant film (13) of Ta205 may be formed to cover the gate electrode (4) up to the offset portion (8), or a 5iJa film may be used instead of the Ta20B film. Alternatively, a multi-Jii structure of 5rxNa film 5iOzlHI may be used.

また、本例ではNチャンネルの薄膜トランジスタを対象
としたが、もちろんPチャンネルの薄膜トランジスタに
も応用することは可能であり、通常のMOS型トランジ
スタにも適用できる。
Furthermore, although this example deals with N-channel thin film transistors, it is of course possible to apply the present invention to P-channel thin film transistors, and also to ordinary MOS type transistors.

成図、第3図は従来例を示す構成図である。FIG. 3 is a configuration diagram showing a conventional example.

(1)は絶縁基板、(2)は活性層、(3)はゲート絶
縁膜、(4)はゲート電極、(5)はソース領域、(6
)はドレイン領域、(7)はチャンネル領域、(7a)
は低抵抗電域、(8)はオフセット部分、(9)はサイ
ドウオール部、(10)はSiO□層、(11)はソー
スを極、(12)はドレイン電極である。
(1) is an insulating substrate, (2) is an active layer, (3) is a gate insulating film, (4) is a gate electrode, (5) is a source region, and (6) is a gate insulating film.
) is the drain region, (7) is the channel region, (7a)
is a low resistance region, (8) is an offset portion, (9) is a sidewall portion, (10) is a SiO□ layer, (11) is a source electrode, and (12) is a drain electrode.

〔発明の効果〕〔Effect of the invention〕

本発明に係るMOS型トランジスタは、ゲートを掻上の
第1の高抵抗半導体領域と低抵抗半導体領域との間に第
2の高抵抗半導体領域を有し、該第2の高抵抗半導体領
域と上記ゲーhi極との間にゲート絶縁膜より高誘電率
の絶縁膜を有するように構成したので、耐圧の改善及び
リーク電流の低減化が図れると共に、オンtaに対して
の低抵抗化を図ることもできる。
The MOS transistor according to the present invention has a second high-resistance semiconductor region between the first high-resistance semiconductor region and the low-resistance semiconductor region above which the gate is raised, and the second high-resistance semiconductor region and the second high-resistance semiconductor region. Since it is configured to have an insulating film with a higher dielectric constant than the gate insulating film between the gate electrode and the gate electrode, it is possible to improve the withstand voltage and reduce leakage current, and also to reduce the resistance to on-ta. You can also do that.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 ゲート電極下の第1の高抵抗半導体領域と低抵抗半導体
領域との間に第2の高抵抗半導体領域を有し、 該第2の高抵抗半導体領域と上記ゲート電極との間にゲ
ート絶縁膜より高誘電率の絶縁膜を有することを特徴と
するMOS型トランジスタ。
[Claims] A second high-resistance semiconductor region is provided between the first high-resistance semiconductor region and the low-resistance semiconductor region under the gate electrode, and the second high-resistance semiconductor region and the gate electrode are connected to each other. A MOS transistor characterized by having an insulating film with a higher dielectric constant than a gate insulating film between the gate insulating films.
JP63226261A 1988-09-09 1988-09-09 MOS type transistor Expired - Fee Related JP2941816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63226261A JP2941816B2 (en) 1988-09-09 1988-09-09 MOS type transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226261A JP2941816B2 (en) 1988-09-09 1988-09-09 MOS type transistor

Publications (2)

Publication Number Publication Date
JPH0274076A true JPH0274076A (en) 1990-03-14
JP2941816B2 JP2941816B2 (en) 1999-08-30

Family

ID=16842430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226261A Expired - Fee Related JP2941816B2 (en) 1988-09-09 1988-09-09 MOS type transistor

Country Status (1)

Country Link
JP (1) JP2941816B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000870A1 (en) * 1996-06-28 1998-01-08 Seiko Epson Corporation Thin film transistor, method of its manufacture and circuit and liquid crystal display using the thin film transistor
US6677609B2 (en) 1996-06-28 2004-01-13 Seiko Epson Corporation Thin film transistor, manufacturing method thereof, and circuit and liquid crystal display device using the thin film transistor
US7195960B2 (en) 1996-06-28 2007-03-27 Seiko Epson Corporation Thin film transistor, manufacturing method thereof, and circuit and liquid crystal display device using the thin film transistor
US7208384B2 (en) 2003-12-31 2007-04-24 Dongbu Electronics Co., Ltd. Transistors and manufacturing methods thereof
JP2012204595A (en) * 2011-03-25 2012-10-22 Toshiba Corp Field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261174A (en) * 1986-05-08 1987-11-13 Matsushita Electronics Corp Manufacture of semiconductor device
JPS63318779A (en) * 1987-06-22 1988-12-27 Sanyo Electric Co Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261174A (en) * 1986-05-08 1987-11-13 Matsushita Electronics Corp Manufacture of semiconductor device
JPS63318779A (en) * 1987-06-22 1988-12-27 Sanyo Electric Co Ltd Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000870A1 (en) * 1996-06-28 1998-01-08 Seiko Epson Corporation Thin film transistor, method of its manufacture and circuit and liquid crystal display using the thin film transistor
US6084248A (en) * 1996-06-28 2000-07-04 Seiko Epson Corporation Thin film transistor, manufacturing method thereof, and circuit and liquid crystal display device using the thin film transistor
US6333520B1 (en) 1996-06-28 2001-12-25 Seiko Epson Corporation Thin film transistor, manufacturing method thereof, and circuit and liquid crystal display device using the thin film transistor
US6677609B2 (en) 1996-06-28 2004-01-13 Seiko Epson Corporation Thin film transistor, manufacturing method thereof, and circuit and liquid crystal display device using the thin film transistor
US7195960B2 (en) 1996-06-28 2007-03-27 Seiko Epson Corporation Thin film transistor, manufacturing method thereof, and circuit and liquid crystal display device using the thin film transistor
US7208384B2 (en) 2003-12-31 2007-04-24 Dongbu Electronics Co., Ltd. Transistors and manufacturing methods thereof
US7446377B2 (en) 2003-12-31 2008-11-04 Dongbu Electronics Co., Ltd. Transistors and manufacturing methods thereof
JP2012204595A (en) * 2011-03-25 2012-10-22 Toshiba Corp Field effect transistor

Also Published As

Publication number Publication date
JP2941816B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JPH04241466A (en) Field effect type transistor
US6642591B2 (en) Field-effect transistor
US20130178012A1 (en) Method for manufacturing a gate-control diode semiconductor device
JPH07131007A (en) Semiconductor device
JPH0274076A (en) Mos type transistor
JPH04216674A (en) Horizontal-type mos control-type thyristor
JP3008485B2 (en) Thin film transistor
US20030006467A1 (en) Lateral MOS power transistor
JPH11233786A (en) High-withstand voltage thin film transistor and its manufacture
JP3121676B2 (en) Thin film transistor and static RAM using thin film transistor
KR100540404B1 (en) Semiconductor device
KR100295450B1 (en) Thin film transistor
US20040070031A1 (en) Soi mosfet device having second gate electrodes for threshold voltage control
JPH11214696A (en) Thin-film transistor and its manufacture
JPH04125970A (en) Double-gate high-breakdown strength thin film transistor
JPH04162477A (en) Thin film transistor
JPH0279474A (en) Mos transistor
JPH04364074A (en) Insulated gate field effect transistor
KR101420967B1 (en) Inverter used for light emitting element driving circuit and method for manufacturing the same
JPH08321602A (en) Mis semiconductor device and controlling method thereof
WO2022052045A1 (en) Negative-capacitance junction-less nanowire field effect transistor and manufacturing method therefor
JPH02102575A (en) Semiconductor device
JPS6027193B2 (en) semiconductor circuit device
JPS61228671A (en) Thin film transistor
JPH0697442A (en) Thin film transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees