JPH0274902A - Diffraction grating forming device - Google Patents
Diffraction grating forming deviceInfo
- Publication number
- JPH0274902A JPH0274902A JP22668288A JP22668288A JPH0274902A JP H0274902 A JPH0274902 A JP H0274902A JP 22668288 A JP22668288 A JP 22668288A JP 22668288 A JP22668288 A JP 22668288A JP H0274902 A JPH0274902 A JP H0274902A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- reflected light
- light
- half mirror
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001678 irradiating effect Effects 0.000 claims abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 206010041662 Splinter Diseases 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は回折格子作成装置に関し、特にレーザ光の干渉
により試料上に回折格子を作成する装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a diffraction grating production device, and more particularly to a device for producing a diffraction grating on a sample by interference of laser light.
近年2分布帰還型半導体レーザを製作する方法として、
レーザ光の干渉縞を半導体上に照射して回折格子を作る
方法が採用され、装置化がなされ−Cいる。この種の装
置の一般的構成例を第3図に示す。In recent years, as a method for manufacturing a two-distribution feedback semiconductor laser,
A method of creating a diffraction grating by irradiating interference fringes of laser light onto a semiconductor has been adopted and has been made into an apparatus. An example of the general configuration of this type of device is shown in FIG.
第3図において、1はレーザ光源で、これから出射され
たレーザ光はミラー2.3で折り返されてビームスプリ
ッタ4に入射する。通常コのビームスプリッタ4はレー
ザ光の50%を反射し。In FIG. 3, reference numeral 1 denotes a laser light source, and the laser light emitted from it is reflected by a mirror 2.3 and enters a beam splitter 4. Typically, the beam splitter 4 reflects 50% of the laser beam.
50チを透過させるようにできている。反射光はミラー
5で折り返されてレンズ8によりビンホー〃9の位置で
一度集光され、再びレンズ10でコリメートされる。こ
こで、ピンホール9はレーザ光のモードをクリーニング
するためのスペーシャルフィルタとして働く、このコリ
メートされたビームはミラー11で反射されて試料12
に照射される。一方、透過光はミラー6.7により折り
返されて、上記と同様にレンズでコリメートされた後、
ミラー11で試料12に照射される。この2つのビーム
は試料上で干渉して、干渉縞を作る。It is designed to transmit 50 inches. The reflected light is reflected by the mirror 5, once focused by the lens 8 at the position of the bin ho 9, and then collimated by the lens 10 again. Here, the pinhole 9 works as a spatial filter to clean the mode of the laser beam, and this collimated beam is reflected by the mirror 11 and is placed on the sample 12.
is irradiated. On the other hand, the transmitted light is reflected by the mirror 6.7, collimated by the lens in the same way as above, and then
The sample 12 is irradiated by the mirror 11. These two beams interfere on the sample, creating interference fringes.
この図では、干渉縞は紙面に垂直な方向に生じる。In this figure, the interference fringes occur in a direction perpendicular to the plane of the paper.
Δ
またこの干渉縞の周期lは、第4図に示すようにレーデ
光の入射角θ、試料の回転角φ及びレーザ光の波長λと
して
人
J=λ/〔2部φS石θ〕
で与えられる。Δ Also, the period l of this interference fringe is given by J = λ/[2 parts φS stone θ] where the incident angle θ of the Rede light, the rotation angle φ of the sample, and the wavelength λ of the laser light are as shown in Fig. 4. It will be done.
実際にこの装置により回折格子を作成するには。How to actually create a diffraction grating using this device.
あらかじめフォトレジストを塗布した試料をセットして
、レーザ光を照射した後、この試料を現像。A sample coated with photoresist is set in advance, irradiated with laser light, and then developed.
エツチングすることによ、!7なされる。通常レーデ光
源としては、 ArレーザやHe−Cdレーザ等が用い
られ1回折格子の周期は所望の半導体レーザの発振波長
に応じて2000X近傍で用いられる。周期を変えるに
は入射角θを変えると同時に試料の位置を変えてなされ
る。By etching! 7 will be done. Typically, an Ar laser, a He-Cd laser, or the like is used as a radar light source, and the period of one diffraction grating is around 2000X depending on the desired oscillation wavelength of the semiconductor laser. The period can be changed by changing the incident angle θ and at the same time changing the position of the sample.
ところで、この種の装置を使う場合に重要なことは、第
5図に示すように試料の基準面に対して回折格子12a
を平行に作成する必要があることである。通常、半導体
ル−ザ用の試料の場合、この基準面はいわゆる弁開面で
あシ、この第5図において弁開面12b、12cは試料
の両側面となっている。そこで、この種の装置では弁開
面を垂直にするための機構が設けである。By the way, what is important when using this type of device is that the diffraction grating 12a is aligned with respect to the reference plane of the sample as shown in FIG.
need to be created in parallel. Normally, in the case of a sample for a semiconductor laser, this reference plane is a so-called valve opening plane, and in FIG. 5, the valve opening planes 12b and 12c are both sides of the sample. Therefore, in this type of device, a mechanism is provided to make the valve opening plane vertical.
これは、第3図に示すように、H@−Neレーザ光源1
3とハーフミラ−14,フォトディテクタ15及び指示
計16とからなっている。He−Neレーザ光はハーフ
ミラ−14で反射されて試料12の襞間面に入射する。As shown in FIG. 3, the H@-Ne laser light source 1
3, a half mirror 14, a photodetector 15, and an indicator 16. The He--Ne laser beam is reflected by the half mirror 14 and enters the interfold surface of the sample 12.
この入射光の内、弁開面で反射されたビームはハーフミ
ラ−14を透過してフォトディテクタ15に入射する。Of this incident light, the beam reflected by the valve opening surface passes through the half mirror 14 and enters the photodetector 15.
ディテクタ。Detector.
15の出力は指示計16に入力されて1反射光量に応じ
た値を指示する。ディテクタ15が普通のフォトダイオ
ードであれば、アパーチャ17等によりビームを制限す
る必要がある。この方法では指示計が最大に振れた時、
弁開面が垂直となるようにHe−Neレーザ光の光軸を
調整しておく。The output of 15 is input to an indicator 16 to indicate a value corresponding to one amount of reflected light. If the detector 15 is an ordinary photodiode, it is necessary to limit the beam with an aperture 17 or the like. With this method, when the indicator swings to the maximum,
The optical axis of the He-Ne laser beam is adjusted so that the valve opening plane is perpendicular.
また、ディテクタとして分割ディテクタを使用した場合
、指示計は零点を中心にしてプラス、マイナスに振れる
構成とし、零点で弁開面が垂直となるよう光軸調整がな
されている。従って、試料台(図示せず)にセットされ
た試料は、まず、指示計が最大あるいは零点となるよう
傾き調整機構(図示せず)によシ傾きを調整して、弁開
面が垂直となるように調整される。When a split detector is used as a detector, the indicator is configured to swing in positive and negative directions around the zero point, and the optical axis is adjusted so that the valve opening plane is vertical at the zero point. Therefore, the sample set on the sample stage (not shown) must first be tilted using a tilt adjustment mechanism (not shown) so that the indicator is at the maximum or zero point, and the valve opening plane is vertical. It will be adjusted so that
上述した従来の回折格子作成装置では、試料の片方の側
面にHe−Neレーザ光を当て、その反射光を検出する
ことにより弁開面を垂直に調整することが可能であるが
、実際の試料はフォトレジストが塗布されており、側面
にもこのレジストが付着していたシするので2反射光量
がばらついて極端な場合検出不能となる。このような場
合は1通常再度試料を180°回転してセットし1反対
側の弁開面を測定面として反射光の検出を行なう。In the conventional diffraction grating production apparatus described above, it is possible to vertically adjust the valve opening plane by shining a He-Ne laser beam on one side of the sample and detecting the reflected light. is coated with photoresist, and since this resist is also adhered to the side surfaces, the two reflected light amounts vary, and in extreme cases, detection becomes impossible. In such a case, the sample is usually rotated 180 degrees and set again, and the reflected light is detected using the valve opening surface on the opposite side as the measurement surface.
このように、従来装置では弁開面検出用のHe4レーザ
光が試料の片側面に当たる構成となっているので2片方
の面で反射光量が不足した場合1反対側の弁開面が測定
面となるように試料をセットし直さなければならず、操
作が煩雑であるという課題を有するばかシでなく、再セ
ットの時試料を落としたシ、レジストを傷つけたシする
危険性がある。In this way, the conventional device is configured so that the He4 laser beam for detecting the valve opening surface hits one side of the sample, so if the amount of reflected light is insufficient on one side, the valve opening surface on the opposite side becomes the measurement surface. The sample has to be reset to ensure that the sample is correct, which is not only a problem in that the operation is complicated, but also there is a risk of dropping the sample or damaging the resist when resetting.
本発明は従来のもののこのような課題を解決しようとす
るもので8片方の面この反射光量が不足した場合試料を
セントし直すことを必要としない回折格子作成装置を提
供するものである。The present invention is an attempt to solve the above-mentioned problems of the conventional apparatus, and provides a diffraction grating producing apparatus that does not require re-centering the sample when the amount of reflected light on one side is insufficient.
本発明の回折格子作成装置は、試料の両側面にレーザ光
を照射し1強い反射光の得られる側面で試料の傾き角を
調整できるようにしたことを特徴とする。The diffraction grating producing apparatus of the present invention is characterized in that both sides of the sample are irradiated with laser light, and the inclination angle of the sample can be adjusted using the side from which strong reflected light is obtained.
次に8本発明について図面を参照して説明する。 Next, eight aspects of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.
1はレーザ光源で、これから出射されたレーザ光はミラ
ー2,3で折シ返されてビームスプリッタ4に入射する
。ビームスプリッタ4で反射されたレーザ光はミラー5
で折り返されてレンズ8によりピンホール9の位置で一
度集光され、再びレンズ10でコリメートされる。この
コリメートされたビームはミラー11で反射されてレジ
ストを塗布した試料12に照射される。Reference numeral 1 denotes a laser light source, and the laser light emitted from the source is reflected by mirrors 2 and 3 and enters a beam splitter 4. The laser beam reflected by the beam splitter 4 passes through the mirror 5
The light is turned back by the lens 8, focused once at the position of the pinhole 9, and then collimated again by the lens 10. This collimated beam is reflected by a mirror 11 and irradiated onto a sample 12 coated with resist.
一方、ビームスプリンタ4を透過したレーザビームはミ
ラー6.7で折夛返されて、上記と同じようにレンズ1
0でコリメートされた後、試料12に照射される。On the other hand, the laser beam that has passed through the beam splinter 4 is reflected by the mirror 6.7 and is reflected by the lens 1 in the same way as above.
After being collimated at zero, the sample 12 is irradiated.
これら2つのビームは試料上で干渉して干渉縞を生じる
。この干渉縞の方向は試料の基準面°と平行にする必要
がある。通常分布帰還型半導体レーザ用試料の場合、臂
開面と呼ばれる側面が基準面となり、干渉縞をこの臂開
面に平行に作る必要がある。本装置では、干渉縞は紙面
に垂直方向にできるので、臂開面を紙面垂直方向に合わ
せなければならない。These two beams interfere on the sample, producing interference fringes. The direction of this interference fringe must be parallel to the reference plane of the sample. In the case of a sample for a normal distributed feedback semiconductor laser, a side surface called the arm opening plane serves as a reference plane, and it is necessary to create interference fringes parallel to this arm opening plane. In this device, the interference fringes are formed in a direction perpendicular to the plane of the paper, so the arm opening plane must be aligned in the direction perpendicular to the plane of the paper.
このため1本発明ではHe−Neレーザ光を試料側面に
当て、その反射光を検出することによ多試料の傾き角を
調整できるようになっている。このための光学系につき
以下に説明する。For this reason, in the present invention, the tilt angle of the sample can be adjusted by shining a He--Ne laser beam onto the side surface of the sample and detecting the reflected light. An optical system for this purpose will be explained below.
H6−Neレーザ光源から出射されたレーザビームはハ
ーフミラ−18によシ反射光と透過光に分割され2反射
光はシャッタ20が開いているとミラー21.ハーフミ
ラ−22で折シ返されて試料側面に入射する。この側面
からの反射光はノ・−フミラー22を透過してアパーチ
ャ23を通過した後。The laser beam emitted from the H6-Ne laser light source is split into a reflected light and a transmitted light by a half mirror 18, and when the shutter 20 is open, the two reflected lights are reflected by a mirror 21. The light is reflected by the half mirror 22 and enters the side surface of the sample. The reflected light from this side surface passes through the nof mirror 22 and passes through the aperture 23 .
フォトディテクタ24に入射するようになっている。The light is made incident on the photodetector 24.
一方、上記ノ・−フミラー18を透過したレーザビーム
は、シャッタ19が開いていレバ、ノ・−フミラー14
で反射されて試料の反射側の側面に入射するようになっ
ており、ここからの反射光は。On the other hand, when the shutter 19 is open, the laser beam that has passed through the top mirror 18 passes through the lever and the top mirror 14.
The reflected light from here is reflected by the sample and enters the reflective side of the sample.
ハーフミラ−14を透過してア/<?−チャ17を通過
した後、フォトディテクタ15に入射するようになって
いる。Transparent through half mirror 14 a/<? - After passing through the channel 17, the light enters the photodetector 15.
シャッタ20.19は操作卓からの指令によって随時O
N、OFFでき、それと同期して指示計16は各々に対
応したフォトディテクタの出力を表示するようになって
いる。このようにすれば1片方の側面からの反射光量が
弱い場合、即座に他方の側面検出に切換えることができ
、どちらか反射光量の強い方で反射光検出と傾き調整を
行なうことができる。Shutters 20 and 19 can be turned on at any time by commands from the console.
N and OFF, and in synchronization with this, the indicator 16 displays the output of the corresponding photodetector. In this way, when the amount of reflected light from one side is weak, detection can be immediately switched to the other side, and reflected light detection and tilt adjustment can be performed using whichever side has the stronger amount of reflected light.
ここで、He−Neレーザは2 mW程度のもので、ビ
ーム径は約1節程度であるが、半導体試料の厚みは0.
51程度と薄く、また、レジストの付着により反射率が
低下しているため、ディテクタはピンフォトダイオード
のような高感度のものを使用した方が良い。また、試料
とディテクタの距離は離した方が傾き角の検出精度が高
くなることは言うまでも無い。また、アパーチャ”の開
口幅は上記距離が1m程度の時、0.5〜1m程度であ
れば検出感度もそれほど低下しないことが実験によシ確
かめられた。Here, the He-Ne laser has a power of about 2 mW and a beam diameter of about 1 node, but the thickness of the semiconductor sample is 0.5 mW.
Since it is thin at about 51 mm, and the reflectance is reduced due to the adhesion of resist, it is better to use a highly sensitive detector such as a pin photodiode. Furthermore, it goes without saying that the detection accuracy of the inclination angle will be higher if the distance between the sample and the detector is increased. Further, it has been experimentally confirmed that if the opening width of the aperture is about 0.5 to 1 m when the above-mentioned distance is about 1 m, the detection sensitivity will not decrease so much.
第2図は本発明の第2の実施例のブロック図である。本
実施例ではHe−Neレーザ光の光路を可動ミラー25
により切換えて、試料の両側面に゛入射させるように構
成されている。これによると、第1の実施例よりハーフ
ミラ−が1個少なくて済むため、試料に到達するHe−
Neレーザ光のノ?ワーロスを少なくすることができ1
反射光検出のs7へを上げることができるという利点を
有する。その他の構成は第1の実施例と同様である。FIG. 2 is a block diagram of a second embodiment of the invention. In this embodiment, the optical path of the He-Ne laser beam is
The structure is such that the light is incident on both sides of the sample. According to this, since the number of half mirrors is one less than that of the first embodiment, He-
Ne laser light? It is possible to reduce war loss1
This has the advantage that reflected light detection can be increased to s7. The other configurations are similar to the first embodiment.
以上説明したように本発明は、試料の両側面にレーザ光
を照射できるようにし、そこからの反射光をフォトディ
テクタで各々随意に検出できるように構成しているため
1片方の側面からの反射光が弱い場合、試料をセットし
直すことなく、他方の側面の反射光検出に切換えること
ができ、試料の傾き角調整が容易、迅速に行なえるばか
りでなく、従来装置のように、試料をセットし直す際に
試料を落としたυ、レジストを島つけたりする危険性を
無くすことができる効果がある。As explained above, the present invention is configured so that both sides of a sample can be irradiated with a laser beam, and the reflected light from there can be detected at will with a photodetector. If the light is weak, you can switch to detecting the reflected light from the other side without having to reset the sample. This not only allows you to easily and quickly adjust the tilt angle of the sample, but also allows you to easily and quickly adjust the sample tilt angle without having to set the sample again. This has the effect of eliminating the risk of dropping the sample or leaving islands on the resist when redoing.
第1図は本発明の第1の実施例を示すブロック図、第2
図は第2の実施例を示すブロック図、第3図は従来装置
の一般的構成例を示すブロック図。
第4図は干渉縞の周期と入射ビーム角度との関係を示す
ための図、第5図は回折格子と臂開面の関係を示すため
の図である。
記号の説明:1・・・レーザ光源、2.3・・・ミラー
。
4・・・ビームスプリッタ、5,6.7・・・ミラー、
8゜10・・・レンズ、9・・・ピンホール、11・・
・可動ミラー、12−・・試料、13・・・He−Ne
レーザ光源、14゜18.22・・・ハーフミラ−,1
5・・・フォトディテクタ、16・・・指示計、17・
・・アパーチャ、19゜20・・・シャッタ、23・・
・アパーチャ、24・・・フォトディテクタ。
第2図FIG. 1 is a block diagram showing a first embodiment of the present invention;
The figure is a block diagram showing a second embodiment, and FIG. 3 is a block diagram showing a general configuration example of a conventional device. FIG. 4 is a diagram showing the relationship between the period of interference fringes and the incident beam angle, and FIG. 5 is a diagram showing the relationship between the diffraction grating and the arm opening plane. Explanation of symbols: 1...Laser light source, 2.3...Mirror. 4... Beam splitter, 5, 6.7... Mirror,
8゜10...Lens, 9...Pinhole, 11...
・Movable mirror, 12-...sample, 13...He-Ne
Laser light source, 14°18.22...half mirror, 1
5... Photodetector, 16... Indicator, 17.
...Aperture, 19°20...Shutter, 23...
・Aperture, 24...Photodetector. Figure 2
Claims (1)
において、試料の両側面にレーザ光を照射し、強い反射
光の得られる側面で試料の傾き角を調整できるようにし
たことを特徴とする回折格子作成装置。1. A device that uses laser light to create a diffraction grating on a sample, which is characterized by irradiating both sides of the sample with laser light so that the tilt angle of the sample can be adjusted using the side that receives strong reflected light. Diffraction grating creation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22668288A JPH0274902A (en) | 1988-09-12 | 1988-09-12 | Diffraction grating forming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22668288A JPH0274902A (en) | 1988-09-12 | 1988-09-12 | Diffraction grating forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0274902A true JPH0274902A (en) | 1990-03-14 |
Family
ID=16849003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22668288A Pending JPH0274902A (en) | 1988-09-12 | 1988-09-12 | Diffraction grating forming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0274902A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6269208B1 (en) * | 1998-10-30 | 2001-07-31 | Corning Incorporated | Wavelength tuning of photo-induced gratings |
-
1988
- 1988-09-12 JP JP22668288A patent/JPH0274902A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6269208B1 (en) * | 1998-10-30 | 2001-07-31 | Corning Incorporated | Wavelength tuning of photo-induced gratings |
EP1123520A1 (en) * | 1998-10-30 | 2001-08-16 | Corning Incorporated | Wavelength tuning of photo-induced gratings |
AU761179B2 (en) * | 1998-10-30 | 2003-05-29 | Corning Incorporated | Wavelength tuning of photo-induced gratings |
EP1123520A4 (en) * | 1998-10-30 | 2006-04-12 | Corning Inc | Wavelength tuning of photo-induced gratings |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0397388B1 (en) | Method and apparatus for measuring thickness of thin films | |
EP0961914B1 (en) | Interferometer system with two wavelengths, and lithographic apparatus provided with such a system | |
JPH0363001B2 (en) | ||
JPS63275912A (en) | Detecting device of surface displacement | |
JP2001507117A (en) | Laser beam splitter producing multiple parallel beams | |
JPH0274902A (en) | Diffraction grating forming device | |
JPH0517528B2 (en) | ||
JPH07294231A (en) | Optical surface roughness sensor | |
JP2560471B2 (en) | Encoder with safety mechanism | |
JP2654366B2 (en) | Micro polarimeter and micro polarimeter system | |
SU1058875A1 (en) | Laser profilograph | |
JPH0510733A (en) | Three-dimensional shape measuring apparatus | |
JPH04130239A (en) | Apparatus for measuring outward position and inward position of dynamic surface | |
JPS5983116A (en) | Adjustment device for optical system | |
KR0135859B1 (en) | Optical head | |
JPH11325848A (en) | Aspherical surface shape measurement device | |
JP2600783B2 (en) | Optical device | |
JPS63172905A (en) | Method and device for separating diffracted light | |
JPH0652165B2 (en) | Interferometer | |
JPH01284716A (en) | Encoder | |
JPH0726648Y2 (en) | Displacement measuring device | |
JPH109955A (en) | Spectroscope | |
JPS6015828A (en) | Pickup of optical recording device | |
JPH10260007A (en) | Relative position detecting device | |
JPS5936337A (en) | Optical head |