JPH0270036A - Wear-resistant aluminum alloy material - Google Patents
Wear-resistant aluminum alloy materialInfo
- Publication number
- JPH0270036A JPH0270036A JP21978288A JP21978288A JPH0270036A JP H0270036 A JPH0270036 A JP H0270036A JP 21978288 A JP21978288 A JP 21978288A JP 21978288 A JP21978288 A JP 21978288A JP H0270036 A JPH0270036 A JP H0270036A
- Authority
- JP
- Japan
- Prior art keywords
- alloy material
- wear
- aluminum alloy
- content
- resistant aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 34
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 26
- 239000011159 matrix material Substances 0.000 claims abstract description 13
- 230000001050 lubricating effect Effects 0.000 claims abstract description 11
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 7
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 6
- 229910052718 tin Inorganic materials 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910052745 lead Inorganic materials 0.000 claims abstract description 5
- 229910021364 Al-Si alloy Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 239000011856 silicon-based particle Substances 0.000 claims description 7
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 101100069231 Caenorhabditis elegans gkow-1 gene Proteins 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 15
- 229910045601 alloy Inorganic materials 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 7
- 229910052684 Cerium Inorganic materials 0.000 abstract description 5
- 229910001632 barium fluoride Inorganic materials 0.000 abstract description 5
- 238000002485 combustion reaction Methods 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 abstract description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 abstract description 2
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 229910052961 molybdenite Inorganic materials 0.000 abstract description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 229910052721 tungsten Inorganic materials 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 229910052726 zirconium Inorganic materials 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018523 Al—S Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は耐摩耗性アルミニウム合金材に関し、さらに詳
しくは内燃機関などの摺動部材として好適な自己潤滑性
に優れる耐摩耗性アルミニウム合金材に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a wear-resistant aluminum alloy material, and more particularly to a wear-resistant aluminum alloy material with excellent self-lubricating properties suitable for sliding members of internal combustion engines, etc. .
(従来の技術)
内燃機関のシリンターフロック、シリンターライナー、
ピストン、ロッカーアーム等の材料およびコンプレッサ
ーのベーン、VTRシリンター等においては摺動部にお
りる[耐摩耗性、耐熱性、低熱膨張・(になどの特性か
要求され′Cおり、従来これら摺動部材としては、Fe
合金もしくはCu合金等か用いられているか、近年、摺
動部材の軽量化、熱伝導性、耐食性、コスト等の理由に
より材料のアルミニウム合金化か進められている。耐摩
耗性アルミニウム合金としてはAl−Si系合金かその
代表である。(Prior art) Internal combustion engine cylinder flock, cylinder liner,
Materials for pistons, rocker arms, etc., compressor vanes, VTR cylinders, etc. are used in sliding parts. As a member, Fe
Aluminum alloys or Cu alloys have been used, but in recent years, aluminum alloys have been used as materials for reasons such as weight reduction, thermal conductivity, corrosion resistance, and cost of sliding members. Examples of wear-resistant aluminum alloys include Al-Si alloys or representative thereof.
(発明か解決しようとする課題)
しかしなから、この種A!Q−Si系合金材を従来の溶
解、鋳造法を用いて製造すると、Si添加量か多いほと
耐摩耗性は向上するか、Si添加量の増大とともにSi
粒子の粗大化等により強度、伸ひ、靭性笠の特性か著し
く低ドし、また加工性も低ドするという問題か生した。(Invention or problem to be solved) However, this type A! When Q-Si alloy materials are manufactured using conventional melting and casting methods, wear resistance improves as the amount of Si added increases, or as the amount of Si added increases, the wear resistance increases.
Due to the coarsening of the particles, the strength, elongation, and toughness of the cap were significantly lowered, and the processability was also lowered.
−・方、粉末冶金D、を用いてSi等の硬質粒子を均一
に分散させることによる改善か行われているか、潤滑油
か使えないような過酷な乾式条件下ては焼料を起すとい
う問題かあった。- On the other hand, is there any improvement by uniformly dispersing hard particles such as Si using powder metallurgy D?The problem is that sintering occurs under harsh dry conditions where lubricating oil cannot be used. There was.
したかって、本発明の1」的は切削加工性に優れ、かつ
過酷な乾式条件下ても焼付を起さない自己潤滑性に優れ
る耐摩耗性アルミニウム合金相な提供することにある。Therefore, one object of the present invention is to provide a wear-resistant aluminum alloy phase which has excellent machinability and self-lubricating properties that do not cause seizure even under severe dry conditions.
(課題を解決するだめの手段)
本発明者らは]−記の課題を解決すべく鋭意研究な統り
た結果、所定の元素を所定量含有させたA I −S
i系合金溶湯を急冷凝固粉末とし、これを用いた最大S
i粒子径か20pm以ドの合金マトリックス(母材)中
に固体潤滑材を所定量均一分散させることにより目的か
達成されることを見出した。本発明はこの知見に基づい
て完成されたものである。(Means for Solving the Problems) The inventors of the present invention have conducted extensive research to solve the problems described below, and as a result, A-I-S containing a predetermined amount of a predetermined element.
Maximum S
It has been found that the objective can be achieved by uniformly dispersing a predetermined amount of a solid lubricant in an alloy matrix (base material) having a particle size of 20 pm or less. The present invention was completed based on this knowledge.
すなわち本発明は、(1)Si 5〜35重量%(以
下単に%と記す)、Cu0.5〜10%、Mg0.2〜
5%を含み、W0.1〜5%、Co011〜8%、Ce
0.1〜5%のうち1種または2種以上を合計量て10
%を越えない量含有し、かつ最大Si粒子径か20gm
以丁であるA文−8I系合金のマトリックス中に潤滑成
分としてpb、Sn、In、Bi、Sb、C,MoS2
.WS2、CaF 、BaF2.LiFのうち1種ま
たは2種以1.を合計量て2〜20体積%含むことを特
徴とする耐摩耗性アルミニウム合金材(以下、第1発明
という)、および
(2)Si5〜35%、Cu [1,5〜Il1%、
Mg0.2〜5%を含み、W0.]〜5%、Co0.]
〜8%、Ce[]、I〜5%のうち1種または2種以上
およびFe[]、]−8%、N j 0.3〜8%、
Cr0.1〜5%、M n 0.2〜5%、Zr0.1
〜5%、V[]、11〜5%Ti0.1〜5%のうち1
種または2種以」−を合泪量て10%を越えない量含有
し、かつ最大Si粒子径か20gm以下であるAl−S
i系合金のマ)ヘリックス中に潤滑成分としてpb、S
n、I n、B 1.Sb、C,MoS 、WS2、
CaF 、BaF2.LiFのうち1種または2種以
−14を合計(社)で2〜20体精%含むことを特徴と
する耐摩耗性アルミニウム合金材(以下、第2発明とい
う)を提供するものである。That is, the present invention provides (1) 5 to 35% by weight of Si (hereinafter simply referred to as %), 0.5 to 10% of Cu, and 0.2 to 35% of Mg.
Contains 5%, W0.1~5%, Co011~8%, Ce
Total amount of one or more types from 0.1 to 5% is 10
%, and the maximum Si particle size is 20 gm.
PB, Sn, In, Bi, Sb, C, MoS2 as lubricating components in the matrix of the A-8I alloy
.. WS2, CaF, BaF2. One or more types of LiF1. A wear-resistant aluminum alloy material (hereinafter referred to as the first invention) characterized by containing a total amount of 2 to 20% by volume, and (2) 5 to 35% of Si, 1% of Cu [1,5 to 1% of Il,
Contains Mg0.2-5%, W0. ]~5%, Co0. ]
~8%, Ce[], one or more of I~5% and Fe[], ]-8%, Nj 0.3~8%,
Cr0.1-5%, Mn 0.2-5%, Zr0.1
~5%, V [], 1 of 11~5% Ti0.1~5%
Al-S containing a species or two or more species in an amount not exceeding 10% in total and having a maximum Si particle size of 20 gm or less
PB and S as lubricating components in the helix of the i-based alloy.
n, I n, B 1. Sb, C, MoS, WS2,
CaF, BaF2. The object of the present invention is to provide a wear-resistant aluminum alloy material (hereinafter referred to as the second invention) characterized in that it contains one or more of LiF-14 in a total amount of 2 to 20% by mass.
本発明(第1発明及び第2発明をいう。以下同様)の耐
摩耗性アルミニウム合金化に含有される元素の作用およ
びその含有量、ならびに最大81粒子径を限定した理由
は次の通りである。The effects and contents of the elements contained in the wear-resistant aluminum alloy of the present invention (referring to the first invention and the second invention; the same shall apply hereinafter) and the reasons for limiting the maximum particle size of 81 are as follows. .
Si含有量は5〜35%とする。Slは急冷凝固法によ
り硬質粒子として組織中に均一に分散し、耐摩耗性を向
]二さゼる。Si含有量か5%未満てはSi粒子量か少
なく耐摩耗性の効果か1”分てない。Si含有量か35
%を越えると初晶Siが粗大化して靭性および切削加−
■二性の劣化を招く。The Si content is 5 to 35%. Sl is uniformly dispersed in the structure as hard particles by the rapid solidification method and improves wear resistance. If the Si content is less than 5%, the amount of Si particles is small and it is not clear whether the wear resistance effect is 1".Is the Si content 35
%, the primary Si becomes coarse and the toughness and cutting workability deteriorate.
■Causes deterioration of duality.
Cu含有量は0.5〜lO%とする。CuはAl中に固
溶するとともにMgと共存することで時効析出し、常温
および高温強度を高め、ざらに制摩耗性の向上に寄り、
する。Cu含有量か0.5%未満てはその効果が不十分
である。Cu含有値か10%を越えると効果か飽和する
とともにその耐食性か低下する。The Cu content is 0.5 to 10%. Cu is dissolved in Al and coexists with Mg to precipitate with aging, increasing the strength at room temperature and high temperature, and roughly improving the wear resistance.
do. If the Cu content is less than 0.5%, the effect is insufficient. When the Cu content exceeds 10%, the effect becomes saturated and the corrosion resistance decreases.
Mg含有量は0.2〜5%とする。MgはAl中に固溶
するとともにCuと共存することで時効析出し、常温お
よび高温強度を高め、さらに1m[耗性の向上に寄与す
る。Mg含有量か0.2%未満てはその効果か不十分で
ある。Mg含有量か5%を越えると材料の延性が低下し
加工性を劣化させる。Mg content shall be 0.2-5%. Mg forms a solid solution in Al and coexists with Cu, thereby precipitating during aging, increasing the strength at room temperature and high temperature, and further contributing to improving wear resistance by 1 m. If the Mg content is less than 0.2%, the effect is insufficient. If the Mg content exceeds 5%, the ductility of the material decreases and the workability deteriorates.
W含有量は0.1〜5%、Ce含有量は0.1〜8%、
Ce含有量は0.1〜5%とする。W content is 0.1 to 5%, Ce content is 0.1 to 8%,
Ce content shall be 0.1 to 5%.
W、Co、Ceは微細な化合物としてマトリックス1身
こ分散しその強度を高める効果がある。その効果は、そ
れぞれの含有量かその下限未満ては不十分である。それ
ぞれの含有量かその上限を越えるとその効果は飽和する
とともに化合物か粗大化しかえって靭性の低下を引き起
こす。W, Co, and Ce are dispersed in the matrix as fine compounds and have the effect of increasing the strength of the matrix. The effect is insufficient when the respective contents are at or below their lower limits. If each content exceeds its upper limit, the effect will be saturated and the compound will become coarser, resulting in a decrease in toughness.
第2発明においてFe含有量は0.1〜8%、N】含有
量は0.3〜8%、Cr含有量はo、i〜5%、Mn含
有値は0.2〜5%、Zr含有量は0.1〜5%、■含
有量は0.1〜5%、Ti含有量は0.1〜5%とする
。In the second invention, the Fe content is 0.1 to 8%, the N content is 0.3 to 8%, the Cr content is o, i to 5%, the Mn content is 0.2 to 5%, and the Zr content is 0.1 to 8%. The content is 0.1 to 5%, the content is 0.1 to 5%, and the Ti content is 0.1 to 5%.
Fe、Ni、Cr、Mn、Zr、■、Tiの元素はいず
れもマトリックスの強度を高める効果かあり、さらにそ
の耐摩耗性を向上させる働きかある。これら元素のそれ
ぞれの含有量かその下限未満ではその効果か不十分であ
る。また含有量かそれぞれその上限を越えると効果は飽
和する。The elements Fe, Ni, Cr, Mn, Zr, ■, and Ti all have the effect of increasing the strength of the matrix, and also have the function of improving its wear resistance. If the content of each of these elements is less than its lower limit, the effect will be insufficient. Moreover, if the content exceeds the respective upper limit, the effect will be saturated.
また、Si、Cu、Mgを除く他の元素の含有量は合計
量で10%を越えない量とする。合計含有量が10%を
越えるとその効果は飽和するとともに軽量化か損なわれ
る。Further, the total content of other elements other than Si, Cu, and Mg shall not exceed 10%. If the total content exceeds 10%, the effect will be saturated and the weight reduction will be lost.
本発明の耐摩耗性アルミニウム合金材中に」−記の元素
のほかにBe、B、Na、Ca等の不可避的不純物か0
.5〜500ppm含まれていてもその特性になんら影
響を与えない。In addition to the elements listed above, there are no inevitable impurities such as Be, B, Na, and Ca in the wear-resistant aluminum alloy material of the present invention.
.. Even if it is contained in an amount of 5 to 500 ppm, its properties are not affected in any way.
本発明の耐摩耗性アルミニウム合金材中の最大Si粒子
径は20pm以下とする。Si粒子径か20gmを越え
ると切削加工性が著しく低下し、切削時のハイドの損耗
が大きくなる。The maximum Si particle diameter in the wear-resistant aluminum alloy material of the present invention is 20 pm or less. If the Si particle size exceeds 20 gm, the machinability will be significantly reduced and the wear of the hide during cutting will increase.
本発明の耐摩耗性アルミニウム合金材は上記組成及びS
i粒子径を有するA!;L−Si系合金のマトリックス
中に潤滑成分としてPb、Sn、In、B i、Sb、
C,MoS、、、WS2.CaF2、BaF2、LIF
を1種または2種以上合計量で2〜20体積%含有する
。これら潤滑成分はマトリックス中に均一に分散させる
ことにより優れた潤滑特性を示す。その効果は2体積%
未満ては十分てはなく、20体積%を越えると強度の低
下か著しくなる。The wear-resistant aluminum alloy material of the present invention has the above composition and S
A with i particle size! ; Pb, Sn, In, Bi, Sb, as lubricating components in the matrix of L-Si alloy;
C,MoS,,WS2. CaF2, BaF2, LIF
Contains one or more types in a total amount of 2 to 20% by volume. These lubricating components exhibit excellent lubricating properties when uniformly dispersed in the matrix. The effect is 2% by volume
If it is less than 20% by volume, it is not sufficient, and if it exceeds 20% by volume, the strength will drop significantly.
次に本発明の耐摩耗性アルミニウム合金材の製造方法に
ついて説明する。Next, a method for manufacturing the wear-resistant aluminum alloy material of the present invention will be explained.
本発明の耐摩耗性アルミニウム合金材は例えば上記組成
を有するAl−Si系合金を粉末化し、これに潤滑成分
を均一分散配合して成形することにより製造することか
てきる。The wear-resistant aluminum alloy material of the present invention can be produced, for example, by pulverizing an Al--Si alloy having the above-mentioned composition, blending a lubricating component into the powder and uniformly dispersing it, and then molding the powder.
本発明のアルミニウム合金材の製造に用いられるA文−
Si系合金粉末は溶湯から急冷凝固粉末とされたものか
好ましい。ここて用いられる急冷凝固粉末とは、フレー
ク状、リボン状、粉末状、いずれてもよく、またその製
造方法は、回転円盤法、急冷ロール法、ガスア1〜マイ
ズ法、いずれの方法てもよいか、Si粒子やマトリック
スを強化する化合物を均一に分散させるためには102
°C/ s e c以上の冷却速度か得られる方法か好
ましい。A pattern used for manufacturing the aluminum alloy material of the present invention -
Preferably, the Si-based alloy powder is one that is rapidly solidified from a molten metal. The rapidly solidified powder used here may be in the form of flakes, ribbons, or powder, and its manufacturing method may be any of the rotating disk method, the rapid cooling roll method, and the gas atomization method. 102 to uniformly disperse the Si particles and the compound that strengthens the matrix.
A method that can obtain a cooling rate of at least °C/sec is preferred.
固体潤滑成分をマトリックス中に均一に分散させるため
にアトライター等により合金粉末と潤滑成分を十分混ぜ
合わすことが好ましい。In order to uniformly disperse the solid lubricant component in the matrix, it is preferable to thoroughly mix the alloy powder and the lubricant component using an attritor or the like.
潤滑成分としてPb、Sn等の低融点金属を使用する場
合はこれらをマトリックス合金溶湯に溶解し急冷凝固粉
末とすることにより均一に分散させることかできる。ま
た、In、Bi、Sb、C1MoS2.WS2.CaF
2.BaF2.LiF等の粉末を使用する場合は表面メ
ツキ処理などマトリックス合金と十分密着てきるような
処理を施すことがより一層好ましい。When low melting point metals such as Pb and Sn are used as lubricating components, they can be uniformly dispersed by melting them into a molten matrix alloy and forming rapidly solidified powders. Moreover, In, Bi, Sb, C1MoS2. WS2. CaF
2. BaF2. When using powder such as LiF, it is even more preferable to perform a treatment such as surface plating treatment to ensure sufficient adhesion to the matrix alloy.
潤滑成分を配合した合金粉末の成形加工は通常のアルミ
ニウム粉末冶金合金製造方法に準じて行うととかてきる
。It is said that the molding process of the alloy powder mixed with the lubricating component is carried out according to the usual aluminum powder metallurgy manufacturing method.
(実施例) 次に本発明を実施例に基づいてさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.
実施例
ばしめに第1表に示ずA−′−Eの化学組成を有するア
ルミニウム合金について合金溶湯からArカスア1〜マ
イズ法により急冷速度10〜10’°C/ s e c
として粉末を製造した。この合金粉末を71〜ソツクス
とし第2表に示す固体潤滑材をそれぞれの割合で配合し
、アトライターを用いて十分混ぜ合わせた後、冷間圧縮
成形により直径100mmφ、長さ200 m mて密
度比80%の冷間成形体とした。これを脱ガスコンテナ
のアルミニウム缶に封缶した後、400°Cて過熱真空
脱ガスを行ない、400°Cにおいて真密度まで熱間プ
レス成形をした後に、脱ガスコンテナを外削・除去し直
径80mmφ、長さ150mmのビレットとし1じ。さ
らに400°Cて熱間押出を行い直径30mmφの押出
棒を作製し、本発明合金材試料No。For example, an aluminum alloy not shown in Table 1 and having a chemical composition of A-'-E was quenched at a rate of 10 to 10'C/sec from a molten alloy by the Ar casing method.
A powder was manufactured as follows. This alloy powder was used as 71 to sox, and the solid lubricants shown in Table 2 were mixed in the respective proportions, thoroughly mixed using an attritor, and then cold compression molded to a diameter of 100 mmφ and a length of 200 mm. A cold-formed product with a ratio of 80% was obtained. After sealing this in an aluminum can of a degassing container, superheating vacuum degassing was performed at 400°C, hot press forming was performed at 400°C to true density, and the degassing container was externally cut and removed. One billet with 80mmφ and 150mm length. Further, hot extrusion was carried out at 400°C to produce an extruded rod with a diameter of 30 mmφ, which was prepared as Invention Alloy Material Sample No.
1〜lOを11すだ。1 to 11 O.
次に第1表に示ずF、Gの化学組成を有するアルミニウ
ム合金について冷却速度208C/secの金型鋳造を
行ない切削加工し直径80mmφ、長さ1.50mmの
ビレッ1〜を作製した後これを400°Cで押出30m
mφの押出棒とし、比較例合金相試料No、11.12
を得た。Next, an aluminum alloy having chemical compositions F and G not shown in Table 1 was mold-cast at a cooling rate of 208 C/sec and cut to produce billets 1~ with a diameter of 80 mmφ and a length of 1.50 mm. extruded for 30 m at 400°C
mφ extruded rod, comparative example alloy phase sample No. 11.12
I got it.
得られたアルミニウム合金材押出杯試利について最大S
i粒子径を光学顕微鏡を用いて測定した。また、・大越
式摩耗試験機による摩耗試験およびビン−ディスク方式
の続刊試験を行っ′C焼続刊生曲の面圧をM2O定した
。また、旋盤を用い切削試験を行い切削前T性を評価し
た。これらの結果をp53表に示す。Maximum S for the obtained aluminum alloy material extrusion cup sample
i particle diameter was measured using an optical microscope. In addition, a wear test using an Okoshi type abrasion tester and a bottle-disk type follow-up test were carried out to determine the surface pressure of the C-fired work piece (M2O). In addition, a cutting test was conducted using a lathe to evaluate the T properties before cutting. These results are shown in Table p53.
第3表の結果から明らかなように、本発明合金材(試料
No、1〜10)はいずれも、比摩耗是か少なく耐摩耗
性に優れ、焼イζノ発生時の面圧か大きく耐焼付性に優
れ、また切削加工性に優れている。As is clear from the results in Table 3, all of the alloy materials of the present invention (sample Nos. 1 to 10) have low specific wear and excellent wear resistance, and have high resistance to surface pressure when scorching occurs. Excellent seizability and machinability.
(発明の効果)
本発明によれば切削加工性とともに耐焼付性、耐摩耗性
に優れたアルミニウム合金材が得られる。このように本
発明の耐摩耗性アルミニウム合金材は過酷な乾式条件下
ても焼付を起こさない自己潤滑性に優れる耐摩耗性を有
しており、特に白焼機関などの摺動部材の軽量化に効果
を奏する。(Effects of the Invention) According to the present invention, an aluminum alloy material having excellent cutting workability, seizure resistance, and wear resistance can be obtained. In this way, the wear-resistant aluminum alloy material of the present invention has excellent wear resistance with self-lubricating properties that do not cause seizure even under harsh dry conditions, and is particularly useful for reducing the weight of sliding parts such as white-burning engines. be effective.
Claims (2)
2〜5%を含み、W0.1〜5%、Co0.1〜8%、
Ce0.1〜5%のうち1種または2種以上を合計量で
10%を越えない量(以上重量%)含有し、かつ最大S
i粒子径が20μm以下であるAl−Si系合金のマト
リックス中に潤滑成分としてPb、Sn、In、Bi、
Sb、C、MoS_2WS_2、CaF_2、BaF_
2、LiFのうち1種または2種以上を合計量で2〜2
0体積%含むことを特徴とする耐摩耗性アルミニウム合
金材。(1) Si5-35%, Cu0.5-10%, Mg0.
Contains 2-5%, W0.1-5%, Co0.1-8%,
Contains one or more of Ce0.1 to 5% in a total amount not exceeding 10% (or more by weight), and has a maximum S
Pb, Sn, In, Bi,
Sb, C, MoS_2WS_2, CaF_2, BaF_
2. One or more types of LiF in a total amount of 2 to 2
A wear-resistant aluminum alloy material characterized by containing 0% by volume.
2〜5%を含み、W0.1〜5%、Co0.1〜8%、
Ce0.1〜5%のうち1種または2種以上およびFe
0.1〜8%、Ni0.3〜8%、Cr0.1〜5%、
Mn0.2〜5%、Zr0.1〜5%、V0.1〜5%
、Ti0.1〜5%のうち1種または2種以上を合計量
で10%を越えない量(以上重量%)含有し、かつ最大
Si粒子径が20μm以下であるAl−Si系合金のマ
トリックス中に潤滑成分としてPb、Sn、In、Bi
、Sb、C、MoS_2、WS_2、CaF_2、Ba
F_2、LiFのうち1種または2種以上を合計量で2
〜20体積%含むことを特徴とする耐摩耗性アルミニウ
ム合金材。(2) Si5-35%, Cu0.5-10%, Mg0.
Contains 2-5%, W0.1-5%, Co0.1-8%,
One or more of Ce0.1-5% and Fe
0.1-8%, Ni0.3-8%, Cr0.1-5%,
Mn0.2-5%, Zr0.1-5%, V0.1-5%
, a matrix of an Al-Si alloy containing one or more of Ti0.1 to 5% in a total amount not exceeding 10% (or more by weight) and having a maximum Si particle size of 20 μm or less Pb, Sn, In, Bi as lubricating components
, Sb, C, MoS_2, WS_2, CaF_2, Ba
The total amount of one or more of F_2 and LiF is 2
A wear-resistant aluminum alloy material characterized by containing ~20% by volume.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21978288A JPH0270036A (en) | 1988-09-02 | 1988-09-02 | Wear-resistant aluminum alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21978288A JPH0270036A (en) | 1988-09-02 | 1988-09-02 | Wear-resistant aluminum alloy material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0270036A true JPH0270036A (en) | 1990-03-08 |
Family
ID=16740922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21978288A Pending JPH0270036A (en) | 1988-09-02 | 1988-09-02 | Wear-resistant aluminum alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0270036A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090497A (en) * | 1997-02-28 | 2000-07-18 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Wear-resistant coated member |
CN104388758A (en) * | 2014-10-24 | 2015-03-04 | 苏州莱特复合材料有限公司 | Self-lubrication material for aluminum base solid of powder metallurgy |
CN104894416A (en) * | 2015-06-23 | 2015-09-09 | 东北大学 | Method for improving surface cracks of aluminum-silicon alloy by using rare-earth element |
CN106381426A (en) * | 2016-09-23 | 2017-02-08 | 兰州理工大学 | Novel damping wear-resisting hypereutectic aluminum-silicon alloy preparing method based on rare earth cerium modification |
CN107130152A (en) * | 2017-06-06 | 2017-09-05 | 合肥饰界金属制品有限公司 | High toughness Al-alloy material and preparation method thereof |
RU2661525C1 (en) * | 2017-04-18 | 2018-07-17 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Aluminium-based alloy |
RU2688039C1 (en) * | 2017-12-28 | 2019-05-17 | Акционерное общество "Объединенная компания РУСАЛ Уральский Алюминий" (АО "РУСАЛ Урал") | Aluminum material for additive technologies |
CN112063901A (en) * | 2020-09-09 | 2020-12-11 | 南昌工程学院 | High-strength wear-resistant self-lubricating bearing high-temperature composite material and preparation method thereof |
-
1988
- 1988-09-02 JP JP21978288A patent/JPH0270036A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090497A (en) * | 1997-02-28 | 2000-07-18 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Wear-resistant coated member |
CN104388758A (en) * | 2014-10-24 | 2015-03-04 | 苏州莱特复合材料有限公司 | Self-lubrication material for aluminum base solid of powder metallurgy |
CN104894416A (en) * | 2015-06-23 | 2015-09-09 | 东北大学 | Method for improving surface cracks of aluminum-silicon alloy by using rare-earth element |
CN106381426A (en) * | 2016-09-23 | 2017-02-08 | 兰州理工大学 | Novel damping wear-resisting hypereutectic aluminum-silicon alloy preparing method based on rare earth cerium modification |
RU2661525C1 (en) * | 2017-04-18 | 2018-07-17 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Aluminium-based alloy |
CN107130152A (en) * | 2017-06-06 | 2017-09-05 | 合肥饰界金属制品有限公司 | High toughness Al-alloy material and preparation method thereof |
CN107130152B (en) * | 2017-06-06 | 2019-07-19 | 合肥饰界金属制品有限公司 | High toughness Al-alloy material and preparation method thereof |
RU2688039C1 (en) * | 2017-12-28 | 2019-05-17 | Акционерное общество "Объединенная компания РУСАЛ Уральский Алюминий" (АО "РУСАЛ Урал") | Aluminum material for additive technologies |
CN112063901A (en) * | 2020-09-09 | 2020-12-11 | 南昌工程学院 | High-strength wear-resistant self-lubricating bearing high-temperature composite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0100470B1 (en) | Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom | |
JP2738999B2 (en) | High wear-resistant aluminum bronze casting alloy, sliding member using the alloy | |
JP3173452B2 (en) | Wear-resistant covering member and method of manufacturing the same | |
US6037067A (en) | High temperature abrasion resistant copper alloy | |
JPH0270036A (en) | Wear-resistant aluminum alloy material | |
JPH0551684A (en) | Aluminum alloy with high strength and wear resistance and working method therefor | |
JPH0120215B2 (en) | ||
US4537161A (en) | Inserts for pistons of diesel engines of aluminum-silicon alloys having an improved thermal resistance and machinability | |
US5344507A (en) | Wear-resistant aluminum alloy and method for working thereof | |
JPH029099B2 (en) | ||
JPH0261023A (en) | Heat-resistant and wear-resistant aluminum alloy material and its manufacture | |
JP2556114B2 (en) | High strength and high toughness Cu-based sintered alloy with excellent wear resistance | |
JPS6086237A (en) | Cu-alloy for slide member | |
JPH0261021A (en) | Heat-resistant and wear-resistant aluminum alloy material and its manufacture | |
JPH0261024A (en) | Heat-resistant and wear-resistant aluminum alloy material and its manufacture | |
JP2697171B2 (en) | Copper-based sintered alloy with excellent wear resistance at high temperatures | |
JPH0270037A (en) | Wear-resistant aluminum alloy material | |
JPH01159345A (en) | Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture | |
JP2745699B2 (en) | Copper-based sintered alloy with excellent wear resistance at high temperatures | |
JPH03264639A (en) | Al alloy product having high strength at high temperature | |
JPH10298684A (en) | Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance | |
JPH0121856B2 (en) | ||
JPS61257450A (en) | Heat resistant aluminum alloy | |
JP2556113B2 (en) | High strength and high toughness Cu-based sintered alloy with excellent wear resistance | |
JPS62149840A (en) | High strength, heat and wear resistant al alloy |