[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0270036A - Wear-resistant aluminum alloy material - Google Patents

Wear-resistant aluminum alloy material

Info

Publication number
JPH0270036A
JPH0270036A JP21978288A JP21978288A JPH0270036A JP H0270036 A JPH0270036 A JP H0270036A JP 21978288 A JP21978288 A JP 21978288A JP 21978288 A JP21978288 A JP 21978288A JP H0270036 A JPH0270036 A JP H0270036A
Authority
JP
Japan
Prior art keywords
alloy material
wear
aluminum alloy
content
resistant aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21978288A
Other languages
Japanese (ja)
Inventor
Minoru Hayashi
稔 林
Hidemiki Matsumoto
松本 英幹
Yoshisuke Asada
浅田 喜介
Shigenori Asami
浅見 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP21978288A priority Critical patent/JPH0270036A/en
Publication of JPH0270036A publication Critical patent/JPH0270036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To prevent the seizure of the title aluminum alloy material under severe dry conditions by regulating the maximum Si grain diameter to a prescribed value or below and dispersing specific amounts of lubricating components in an Al-Si alloy material having a specific composition. CONSTITUTION:A wear-resistant Al alloy material has a composition consisting of, by weight, 5-35% Si, 0.5-10% Cu, 0.2-5% Mg, <=10%, in total, of one or more kinds among 0.1.5% W, 0.1-8% CO, and 0.1-5% Ce, and the balance Al. Further, the maximum Si grain diameter is regulated to <=20mum. As lubricating components, 2-20vol.%, in total, of one or more kinds among Pb, Sn, ln, Bi, Sb, C, MoS2, WS2; CaF2, BaF2, and LiF are uniformly dispersed into the above alloy matrix. Moreover, if necessary, <=10%, in total, of one or more kinds among 0.1-8% Fe, 0.3-8% Ni, 0.1-5% Cr, 0.2-5% Mn, 0.1-5% Zr, 0.1-5% V, and 0.1-5% Ti are incorporated. This wear-resistant Al alloy material has superior self-lubricity and produces the effect of lightening the weight of sliding member for internal combustion engine, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐摩耗性アルミニウム合金材に関し、さらに詳
しくは内燃機関などの摺動部材として好適な自己潤滑性
に優れる耐摩耗性アルミニウム合金材に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a wear-resistant aluminum alloy material, and more particularly to a wear-resistant aluminum alloy material with excellent self-lubricating properties suitable for sliding members of internal combustion engines, etc. .

(従来の技術) 内燃機関のシリンターフロック、シリンターライナー、
ピストン、ロッカーアーム等の材料およびコンプレッサ
ーのベーン、VTRシリンター等においては摺動部にお
りる[耐摩耗性、耐熱性、低熱膨張・(になどの特性か
要求され′Cおり、従来これら摺動部材としては、Fe
合金もしくはCu合金等か用いられているか、近年、摺
動部材の軽量化、熱伝導性、耐食性、コスト等の理由に
より材料のアルミニウム合金化か進められている。耐摩
耗性アルミニウム合金としてはAl−Si系合金かその
代表である。
(Prior art) Internal combustion engine cylinder flock, cylinder liner,
Materials for pistons, rocker arms, etc., compressor vanes, VTR cylinders, etc. are used in sliding parts. As a member, Fe
Aluminum alloys or Cu alloys have been used, but in recent years, aluminum alloys have been used as materials for reasons such as weight reduction, thermal conductivity, corrosion resistance, and cost of sliding members. Examples of wear-resistant aluminum alloys include Al-Si alloys or representative thereof.

(発明か解決しようとする課題) しかしなから、この種A!Q−Si系合金材を従来の溶
解、鋳造法を用いて製造すると、Si添加量か多いほと
耐摩耗性は向上するか、Si添加量の増大とともにSi
粒子の粗大化等により強度、伸ひ、靭性笠の特性か著し
く低ドし、また加工性も低ドするという問題か生した。
(Invention or problem to be solved) However, this type A! When Q-Si alloy materials are manufactured using conventional melting and casting methods, wear resistance improves as the amount of Si added increases, or as the amount of Si added increases, the wear resistance increases.
Due to the coarsening of the particles, the strength, elongation, and toughness of the cap were significantly lowered, and the processability was also lowered.

−・方、粉末冶金D、を用いてSi等の硬質粒子を均一
に分散させることによる改善か行われているか、潤滑油
か使えないような過酷な乾式条件下ては焼料を起すとい
う問題かあった。
- On the other hand, is there any improvement by uniformly dispersing hard particles such as Si using powder metallurgy D?The problem is that sintering occurs under harsh dry conditions where lubricating oil cannot be used. There was.

したかって、本発明の1」的は切削加工性に優れ、かつ
過酷な乾式条件下ても焼付を起さない自己潤滑性に優れ
る耐摩耗性アルミニウム合金相な提供することにある。
Therefore, one object of the present invention is to provide a wear-resistant aluminum alloy phase which has excellent machinability and self-lubricating properties that do not cause seizure even under severe dry conditions.

(課題を解決するだめの手段) 本発明者らは]−記の課題を解決すべく鋭意研究な統り
た結果、所定の元素を所定量含有させたA I −S 
i系合金溶湯を急冷凝固粉末とし、これを用いた最大S
i粒子径か20pm以ドの合金マトリックス(母材)中
に固体潤滑材を所定量均一分散させることにより目的か
達成されることを見出した。本発明はこの知見に基づい
て完成されたものである。
(Means for Solving the Problems) The inventors of the present invention have conducted extensive research to solve the problems described below, and as a result, A-I-S containing a predetermined amount of a predetermined element.
Maximum S
It has been found that the objective can be achieved by uniformly dispersing a predetermined amount of a solid lubricant in an alloy matrix (base material) having a particle size of 20 pm or less. The present invention was completed based on this knowledge.

すなわち本発明は、(1)Si  5〜35重量%(以
下単に%と記す)、Cu0.5〜10%、Mg0.2〜
5%を含み、W0.1〜5%、Co011〜8%、Ce
0.1〜5%のうち1種または2種以上を合計量て10
%を越えない量含有し、かつ最大Si粒子径か20gm
以丁であるA文−8I系合金のマトリックス中に潤滑成
分としてpb、Sn、In、Bi、Sb、C,MoS2
.WS2、CaF  、BaF2.LiFのうち1種ま
たは2種以1.を合計量て2〜20体積%含むことを特
徴とする耐摩耗性アルミニウム合金材(以下、第1発明
という)、および (2)Si5〜35%、Cu  [1,5〜Il1%、
Mg0.2〜5%を含み、W0.]〜5%、Co0.]
〜8%、Ce[]、I〜5%のうち1種または2種以上
およびFe[]、]−8%、N j  0.3〜8%、
Cr0.1〜5%、M n 0.2〜5%、Zr0.1
〜5%、V[]、11〜5%Ti0.1〜5%のうち1
種または2種以」−を合泪量て10%を越えない量含有
し、かつ最大Si粒子径か20gm以下であるAl−S
i系合金のマ)ヘリックス中に潤滑成分としてpb、S
n、I n、B 1.Sb、C,MoS  、WS2、
CaF  、BaF2.LiFのうち1種または2種以
−14を合計(社)で2〜20体精%含むことを特徴と
する耐摩耗性アルミニウム合金材(以下、第2発明とい
う)を提供するものである。
That is, the present invention provides (1) 5 to 35% by weight of Si (hereinafter simply referred to as %), 0.5 to 10% of Cu, and 0.2 to 35% of Mg.
Contains 5%, W0.1~5%, Co011~8%, Ce
Total amount of one or more types from 0.1 to 5% is 10
%, and the maximum Si particle size is 20 gm.
PB, Sn, In, Bi, Sb, C, MoS2 as lubricating components in the matrix of the A-8I alloy
.. WS2, CaF, BaF2. One or more types of LiF1. A wear-resistant aluminum alloy material (hereinafter referred to as the first invention) characterized by containing a total amount of 2 to 20% by volume, and (2) 5 to 35% of Si, 1% of Cu [1,5 to 1% of Il,
Contains Mg0.2-5%, W0. ]~5%, Co0. ]
~8%, Ce[], one or more of I~5% and Fe[], ]-8%, Nj 0.3~8%,
Cr0.1-5%, Mn 0.2-5%, Zr0.1
~5%, V [], 1 of 11~5% Ti0.1~5%
Al-S containing a species or two or more species in an amount not exceeding 10% in total and having a maximum Si particle size of 20 gm or less
PB and S as lubricating components in the helix of the i-based alloy.
n, I n, B 1. Sb, C, MoS, WS2,
CaF, BaF2. The object of the present invention is to provide a wear-resistant aluminum alloy material (hereinafter referred to as the second invention) characterized in that it contains one or more of LiF-14 in a total amount of 2 to 20% by mass.

本発明(第1発明及び第2発明をいう。以下同様)の耐
摩耗性アルミニウム合金化に含有される元素の作用およ
びその含有量、ならびに最大81粒子径を限定した理由
は次の通りである。
The effects and contents of the elements contained in the wear-resistant aluminum alloy of the present invention (referring to the first invention and the second invention; the same shall apply hereinafter) and the reasons for limiting the maximum particle size of 81 are as follows. .

Si含有量は5〜35%とする。Slは急冷凝固法によ
り硬質粒子として組織中に均一に分散し、耐摩耗性を向
]二さゼる。Si含有量か5%未満てはSi粒子量か少
なく耐摩耗性の効果か1”分てない。Si含有量か35
%を越えると初晶Siが粗大化して靭性および切削加−
■二性の劣化を招く。
The Si content is 5 to 35%. Sl is uniformly dispersed in the structure as hard particles by the rapid solidification method and improves wear resistance. If the Si content is less than 5%, the amount of Si particles is small and it is not clear whether the wear resistance effect is 1".Is the Si content 35
%, the primary Si becomes coarse and the toughness and cutting workability deteriorate.
■Causes deterioration of duality.

Cu含有量は0.5〜lO%とする。CuはAl中に固
溶するとともにMgと共存することで時効析出し、常温
および高温強度を高め、ざらに制摩耗性の向上に寄り、
する。Cu含有量か0.5%未満てはその効果が不十分
である。Cu含有値か10%を越えると効果か飽和する
とともにその耐食性か低下する。
The Cu content is 0.5 to 10%. Cu is dissolved in Al and coexists with Mg to precipitate with aging, increasing the strength at room temperature and high temperature, and roughly improving the wear resistance.
do. If the Cu content is less than 0.5%, the effect is insufficient. When the Cu content exceeds 10%, the effect becomes saturated and the corrosion resistance decreases.

Mg含有量は0.2〜5%とする。MgはAl中に固溶
するとともにCuと共存することで時効析出し、常温お
よび高温強度を高め、さらに1m[耗性の向上に寄与す
る。Mg含有量か0.2%未満てはその効果か不十分で
ある。Mg含有量か5%を越えると材料の延性が低下し
加工性を劣化させる。
Mg content shall be 0.2-5%. Mg forms a solid solution in Al and coexists with Cu, thereby precipitating during aging, increasing the strength at room temperature and high temperature, and further contributing to improving wear resistance by 1 m. If the Mg content is less than 0.2%, the effect is insufficient. If the Mg content exceeds 5%, the ductility of the material decreases and the workability deteriorates.

W含有量は0.1〜5%、Ce含有量は0.1〜8%、
Ce含有量は0.1〜5%とする。
W content is 0.1 to 5%, Ce content is 0.1 to 8%,
Ce content shall be 0.1 to 5%.

W、Co、Ceは微細な化合物としてマトリックス1身
こ分散しその強度を高める効果がある。その効果は、そ
れぞれの含有量かその下限未満ては不十分である。それ
ぞれの含有量かその上限を越えるとその効果は飽和する
とともに化合物か粗大化しかえって靭性の低下を引き起
こす。
W, Co, and Ce are dispersed in the matrix as fine compounds and have the effect of increasing the strength of the matrix. The effect is insufficient when the respective contents are at or below their lower limits. If each content exceeds its upper limit, the effect will be saturated and the compound will become coarser, resulting in a decrease in toughness.

第2発明においてFe含有量は0.1〜8%、N】含有
量は0.3〜8%、Cr含有量はo、i〜5%、Mn含
有値は0.2〜5%、Zr含有量は0.1〜5%、■含
有量は0.1〜5%、Ti含有量は0.1〜5%とする
In the second invention, the Fe content is 0.1 to 8%, the N content is 0.3 to 8%, the Cr content is o, i to 5%, the Mn content is 0.2 to 5%, and the Zr content is 0.1 to 8%. The content is 0.1 to 5%, the content is 0.1 to 5%, and the Ti content is 0.1 to 5%.

Fe、Ni、Cr、Mn、Zr、■、Tiの元素はいず
れもマトリックスの強度を高める効果かあり、さらにそ
の耐摩耗性を向上させる働きかある。これら元素のそれ
ぞれの含有量かその下限未満ではその効果か不十分であ
る。また含有量かそれぞれその上限を越えると効果は飽
和する。
The elements Fe, Ni, Cr, Mn, Zr, ■, and Ti all have the effect of increasing the strength of the matrix, and also have the function of improving its wear resistance. If the content of each of these elements is less than its lower limit, the effect will be insufficient. Moreover, if the content exceeds the respective upper limit, the effect will be saturated.

また、Si、Cu、Mgを除く他の元素の含有量は合計
量で10%を越えない量とする。合計含有量が10%を
越えるとその効果は飽和するとともに軽量化か損なわれ
る。
Further, the total content of other elements other than Si, Cu, and Mg shall not exceed 10%. If the total content exceeds 10%, the effect will be saturated and the weight reduction will be lost.

本発明の耐摩耗性アルミニウム合金材中に」−記の元素
のほかにBe、B、Na、Ca等の不可避的不純物か0
.5〜500ppm含まれていてもその特性になんら影
響を与えない。
In addition to the elements listed above, there are no inevitable impurities such as Be, B, Na, and Ca in the wear-resistant aluminum alloy material of the present invention.
.. Even if it is contained in an amount of 5 to 500 ppm, its properties are not affected in any way.

本発明の耐摩耗性アルミニウム合金材中の最大Si粒子
径は20pm以下とする。Si粒子径か20gmを越え
ると切削加工性が著しく低下し、切削時のハイドの損耗
が大きくなる。
The maximum Si particle diameter in the wear-resistant aluminum alloy material of the present invention is 20 pm or less. If the Si particle size exceeds 20 gm, the machinability will be significantly reduced and the wear of the hide during cutting will increase.

本発明の耐摩耗性アルミニウム合金材は上記組成及びS
i粒子径を有するA!;L−Si系合金のマトリックス
中に潤滑成分としてPb、Sn、In、B i、Sb、
C,MoS、、、WS2.CaF2、BaF2、LIF
を1種または2種以上合計量で2〜20体積%含有する
。これら潤滑成分はマトリックス中に均一に分散させる
ことにより優れた潤滑特性を示す。その効果は2体積%
未満ては十分てはなく、20体積%を越えると強度の低
下か著しくなる。
The wear-resistant aluminum alloy material of the present invention has the above composition and S
A with i particle size! ; Pb, Sn, In, Bi, Sb, as lubricating components in the matrix of L-Si alloy;
C,MoS,,WS2. CaF2, BaF2, LIF
Contains one or more types in a total amount of 2 to 20% by volume. These lubricating components exhibit excellent lubricating properties when uniformly dispersed in the matrix. The effect is 2% by volume
If it is less than 20% by volume, it is not sufficient, and if it exceeds 20% by volume, the strength will drop significantly.

次に本発明の耐摩耗性アルミニウム合金材の製造方法に
ついて説明する。
Next, a method for manufacturing the wear-resistant aluminum alloy material of the present invention will be explained.

本発明の耐摩耗性アルミニウム合金材は例えば上記組成
を有するAl−Si系合金を粉末化し、これに潤滑成分
を均一分散配合して成形することにより製造することか
てきる。
The wear-resistant aluminum alloy material of the present invention can be produced, for example, by pulverizing an Al--Si alloy having the above-mentioned composition, blending a lubricating component into the powder and uniformly dispersing it, and then molding the powder.

本発明のアルミニウム合金材の製造に用いられるA文−
Si系合金粉末は溶湯から急冷凝固粉末とされたものか
好ましい。ここて用いられる急冷凝固粉末とは、フレー
ク状、リボン状、粉末状、いずれてもよく、またその製
造方法は、回転円盤法、急冷ロール法、ガスア1〜マイ
ズ法、いずれの方法てもよいか、Si粒子やマトリック
スを強化する化合物を均一に分散させるためには102
°C/ s e c以上の冷却速度か得られる方法か好
ましい。
A pattern used for manufacturing the aluminum alloy material of the present invention -
Preferably, the Si-based alloy powder is one that is rapidly solidified from a molten metal. The rapidly solidified powder used here may be in the form of flakes, ribbons, or powder, and its manufacturing method may be any of the rotating disk method, the rapid cooling roll method, and the gas atomization method. 102 to uniformly disperse the Si particles and the compound that strengthens the matrix.
A method that can obtain a cooling rate of at least °C/sec is preferred.

固体潤滑成分をマトリックス中に均一に分散させるため
にアトライター等により合金粉末と潤滑成分を十分混ぜ
合わすことが好ましい。
In order to uniformly disperse the solid lubricant component in the matrix, it is preferable to thoroughly mix the alloy powder and the lubricant component using an attritor or the like.

潤滑成分としてPb、Sn等の低融点金属を使用する場
合はこれらをマトリックス合金溶湯に溶解し急冷凝固粉
末とすることにより均一に分散させることかできる。ま
た、In、Bi、Sb、C1MoS2.WS2.CaF
2.BaF2.LiF等の粉末を使用する場合は表面メ
ツキ処理などマトリックス合金と十分密着てきるような
処理を施すことがより一層好ましい。
When low melting point metals such as Pb and Sn are used as lubricating components, they can be uniformly dispersed by melting them into a molten matrix alloy and forming rapidly solidified powders. Moreover, In, Bi, Sb, C1MoS2. WS2. CaF
2. BaF2. When using powder such as LiF, it is even more preferable to perform a treatment such as surface plating treatment to ensure sufficient adhesion to the matrix alloy.

潤滑成分を配合した合金粉末の成形加工は通常のアルミ
ニウム粉末冶金合金製造方法に準じて行うととかてきる
It is said that the molding process of the alloy powder mixed with the lubricating component is carried out according to the usual aluminum powder metallurgy manufacturing method.

(実施例) 次に本発明を実施例に基づいてさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例 ばしめに第1表に示ずA−′−Eの化学組成を有するア
ルミニウム合金について合金溶湯からArカスア1〜マ
イズ法により急冷速度10〜10’°C/ s e c
として粉末を製造した。この合金粉末を71〜ソツクス
とし第2表に示す固体潤滑材をそれぞれの割合で配合し
、アトライターを用いて十分混ぜ合わせた後、冷間圧縮
成形により直径100mmφ、長さ200 m mて密
度比80%の冷間成形体とした。これを脱ガスコンテナ
のアルミニウム缶に封缶した後、400°Cて過熱真空
脱ガスを行ない、400°Cにおいて真密度まで熱間プ
レス成形をした後に、脱ガスコンテナを外削・除去し直
径80mmφ、長さ150mmのビレットとし1じ。さ
らに400°Cて熱間押出を行い直径30mmφの押出
棒を作製し、本発明合金材試料No。
For example, an aluminum alloy not shown in Table 1 and having a chemical composition of A-'-E was quenched at a rate of 10 to 10'C/sec from a molten alloy by the Ar casing method.
A powder was manufactured as follows. This alloy powder was used as 71 to sox, and the solid lubricants shown in Table 2 were mixed in the respective proportions, thoroughly mixed using an attritor, and then cold compression molded to a diameter of 100 mmφ and a length of 200 mm. A cold-formed product with a ratio of 80% was obtained. After sealing this in an aluminum can of a degassing container, superheating vacuum degassing was performed at 400°C, hot press forming was performed at 400°C to true density, and the degassing container was externally cut and removed. One billet with 80mmφ and 150mm length. Further, hot extrusion was carried out at 400°C to produce an extruded rod with a diameter of 30 mmφ, which was prepared as Invention Alloy Material Sample No.

1〜lOを11すだ。1 to 11 O.

次に第1表に示ずF、Gの化学組成を有するアルミニウ
ム合金について冷却速度208C/secの金型鋳造を
行ない切削加工し直径80mmφ、長さ1.50mmの
ビレッ1〜を作製した後これを400°Cで押出30m
mφの押出棒とし、比較例合金相試料No、11.12
を得た。
Next, an aluminum alloy having chemical compositions F and G not shown in Table 1 was mold-cast at a cooling rate of 208 C/sec and cut to produce billets 1~ with a diameter of 80 mmφ and a length of 1.50 mm. extruded for 30 m at 400°C
mφ extruded rod, comparative example alloy phase sample No. 11.12
I got it.

得られたアルミニウム合金材押出杯試利について最大S
i粒子径を光学顕微鏡を用いて測定した。また、・大越
式摩耗試験機による摩耗試験およびビン−ディスク方式
の続刊試験を行っ′C焼続刊生曲の面圧をM2O定した
。また、旋盤を用い切削試験を行い切削前T性を評価し
た。これらの結果をp53表に示す。
Maximum S for the obtained aluminum alloy material extrusion cup sample
i particle diameter was measured using an optical microscope. In addition, a wear test using an Okoshi type abrasion tester and a bottle-disk type follow-up test were carried out to determine the surface pressure of the C-fired work piece (M2O). In addition, a cutting test was conducted using a lathe to evaluate the T properties before cutting. These results are shown in Table p53.

第3表の結果から明らかなように、本発明合金材(試料
No、1〜10)はいずれも、比摩耗是か少なく耐摩耗
性に優れ、焼イζノ発生時の面圧か大きく耐焼付性に優
れ、また切削加工性に優れている。
As is clear from the results in Table 3, all of the alloy materials of the present invention (sample Nos. 1 to 10) have low specific wear and excellent wear resistance, and have high resistance to surface pressure when scorching occurs. Excellent seizability and machinability.

(発明の効果) 本発明によれば切削加工性とともに耐焼付性、耐摩耗性
に優れたアルミニウム合金材が得られる。このように本
発明の耐摩耗性アルミニウム合金材は過酷な乾式条件下
ても焼付を起こさない自己潤滑性に優れる耐摩耗性を有
しており、特に白焼機関などの摺動部材の軽量化に効果
を奏する。
(Effects of the Invention) According to the present invention, an aluminum alloy material having excellent cutting workability, seizure resistance, and wear resistance can be obtained. In this way, the wear-resistant aluminum alloy material of the present invention has excellent wear resistance with self-lubricating properties that do not cause seizure even under harsh dry conditions, and is particularly useful for reducing the weight of sliding parts such as white-burning engines. be effective.

Claims (2)

【特許請求の範囲】[Claims] (1)Si5〜35%、Cu0.5〜10%、Mg0.
2〜5%を含み、W0.1〜5%、Co0.1〜8%、
Ce0.1〜5%のうち1種または2種以上を合計量で
10%を越えない量(以上重量%)含有し、かつ最大S
i粒子径が20μm以下であるAl−Si系合金のマト
リックス中に潤滑成分としてPb、Sn、In、Bi、
Sb、C、MoS_2WS_2、CaF_2、BaF_
2、LiFのうち1種または2種以上を合計量で2〜2
0体積%含むことを特徴とする耐摩耗性アルミニウム合
金材。
(1) Si5-35%, Cu0.5-10%, Mg0.
Contains 2-5%, W0.1-5%, Co0.1-8%,
Contains one or more of Ce0.1 to 5% in a total amount not exceeding 10% (or more by weight), and has a maximum S
Pb, Sn, In, Bi,
Sb, C, MoS_2WS_2, CaF_2, BaF_
2. One or more types of LiF in a total amount of 2 to 2
A wear-resistant aluminum alloy material characterized by containing 0% by volume.
(2)Si5〜35%、Cu0.5〜10%、Mg0.
2〜5%を含み、W0.1〜5%、Co0.1〜8%、
Ce0.1〜5%のうち1種または2種以上およびFe
0.1〜8%、Ni0.3〜8%、Cr0.1〜5%、
Mn0.2〜5%、Zr0.1〜5%、V0.1〜5%
、Ti0.1〜5%のうち1種または2種以上を合計量
で10%を越えない量(以上重量%)含有し、かつ最大
Si粒子径が20μm以下であるAl−Si系合金のマ
トリックス中に潤滑成分としてPb、Sn、In、Bi
、Sb、C、MoS_2、WS_2、CaF_2、Ba
F_2、LiFのうち1種または2種以上を合計量で2
〜20体積%含むことを特徴とする耐摩耗性アルミニウ
ム合金材。
(2) Si5-35%, Cu0.5-10%, Mg0.
Contains 2-5%, W0.1-5%, Co0.1-8%,
One or more of Ce0.1-5% and Fe
0.1-8%, Ni0.3-8%, Cr0.1-5%,
Mn0.2-5%, Zr0.1-5%, V0.1-5%
, a matrix of an Al-Si alloy containing one or more of Ti0.1 to 5% in a total amount not exceeding 10% (or more by weight) and having a maximum Si particle size of 20 μm or less Pb, Sn, In, Bi as lubricating components
, Sb, C, MoS_2, WS_2, CaF_2, Ba
The total amount of one or more of F_2 and LiF is 2
A wear-resistant aluminum alloy material characterized by containing ~20% by volume.
JP21978288A 1988-09-02 1988-09-02 Wear-resistant aluminum alloy material Pending JPH0270036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21978288A JPH0270036A (en) 1988-09-02 1988-09-02 Wear-resistant aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21978288A JPH0270036A (en) 1988-09-02 1988-09-02 Wear-resistant aluminum alloy material

Publications (1)

Publication Number Publication Date
JPH0270036A true JPH0270036A (en) 1990-03-08

Family

ID=16740922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21978288A Pending JPH0270036A (en) 1988-09-02 1988-09-02 Wear-resistant aluminum alloy material

Country Status (1)

Country Link
JP (1) JPH0270036A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090497A (en) * 1997-02-28 2000-07-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Wear-resistant coated member
CN104388758A (en) * 2014-10-24 2015-03-04 苏州莱特复合材料有限公司 Self-lubrication material for aluminum base solid of powder metallurgy
CN104894416A (en) * 2015-06-23 2015-09-09 东北大学 Method for improving surface cracks of aluminum-silicon alloy by using rare-earth element
CN106381426A (en) * 2016-09-23 2017-02-08 兰州理工大学 Novel damping wear-resisting hypereutectic aluminum-silicon alloy preparing method based on rare earth cerium modification
CN107130152A (en) * 2017-06-06 2017-09-05 合肥饰界金属制品有限公司 High toughness Al-alloy material and preparation method thereof
RU2661525C1 (en) * 2017-04-18 2018-07-17 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Aluminium-based alloy
RU2688039C1 (en) * 2017-12-28 2019-05-17 Акционерное общество "Объединенная компания РУСАЛ Уральский Алюминий" (АО "РУСАЛ Урал") Aluminum material for additive technologies
CN112063901A (en) * 2020-09-09 2020-12-11 南昌工程学院 High-strength wear-resistant self-lubricating bearing high-temperature composite material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090497A (en) * 1997-02-28 2000-07-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Wear-resistant coated member
CN104388758A (en) * 2014-10-24 2015-03-04 苏州莱特复合材料有限公司 Self-lubrication material for aluminum base solid of powder metallurgy
CN104894416A (en) * 2015-06-23 2015-09-09 东北大学 Method for improving surface cracks of aluminum-silicon alloy by using rare-earth element
CN106381426A (en) * 2016-09-23 2017-02-08 兰州理工大学 Novel damping wear-resisting hypereutectic aluminum-silicon alloy preparing method based on rare earth cerium modification
RU2661525C1 (en) * 2017-04-18 2018-07-17 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Aluminium-based alloy
CN107130152A (en) * 2017-06-06 2017-09-05 合肥饰界金属制品有限公司 High toughness Al-alloy material and preparation method thereof
CN107130152B (en) * 2017-06-06 2019-07-19 合肥饰界金属制品有限公司 High toughness Al-alloy material and preparation method thereof
RU2688039C1 (en) * 2017-12-28 2019-05-17 Акционерное общество "Объединенная компания РУСАЛ Уральский Алюминий" (АО "РУСАЛ Урал") Aluminum material for additive technologies
CN112063901A (en) * 2020-09-09 2020-12-11 南昌工程学院 High-strength wear-resistant self-lubricating bearing high-temperature composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0100470B1 (en) Heat-resistant, wear-resistant, and high-strength aluminum alloy powder and body shaped therefrom
JP2738999B2 (en) High wear-resistant aluminum bronze casting alloy, sliding member using the alloy
JP3173452B2 (en) Wear-resistant covering member and method of manufacturing the same
US6037067A (en) High temperature abrasion resistant copper alloy
JPH0270036A (en) Wear-resistant aluminum alloy material
JPH0551684A (en) Aluminum alloy with high strength and wear resistance and working method therefor
JPH0120215B2 (en)
US4537161A (en) Inserts for pistons of diesel engines of aluminum-silicon alloys having an improved thermal resistance and machinability
US5344507A (en) Wear-resistant aluminum alloy and method for working thereof
JPH029099B2 (en)
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JP2556114B2 (en) High strength and high toughness Cu-based sintered alloy with excellent wear resistance
JPS6086237A (en) Cu-alloy for slide member
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH0261024A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JP2697171B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures
JPH0270037A (en) Wear-resistant aluminum alloy material
JPH01159345A (en) Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture
JP2745699B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures
JPH03264639A (en) Al alloy product having high strength at high temperature
JPH10298684A (en) Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance
JPH0121856B2 (en)
JPS61257450A (en) Heat resistant aluminum alloy
JP2556113B2 (en) High strength and high toughness Cu-based sintered alloy with excellent wear resistance
JPS62149840A (en) High strength, heat and wear resistant al alloy