JPH0269983A - Distributed feedback-type laser - Google Patents
Distributed feedback-type laserInfo
- Publication number
- JPH0269983A JPH0269983A JP63221261A JP22126188A JPH0269983A JP H0269983 A JPH0269983 A JP H0269983A JP 63221261 A JP63221261 A JP 63221261A JP 22126188 A JP22126188 A JP 22126188A JP H0269983 A JPH0269983 A JP H0269983A
- Authority
- JP
- Japan
- Prior art keywords
- mode
- layer
- phase shift
- gainasp
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 230000010287 polarization Effects 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 claims description 2
- 230000001902 propagating effect Effects 0.000 claims 1
- 230000010363 phase shift Effects 0.000 abstract description 36
- 238000005530 etching Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 101100355609 Caenorhabditis elegans rae-1 gene Proteins 0.000 description 1
- 101150054880 NASP gene Proteins 0.000 description 1
- 101150054854 POU1F1 gene Proteins 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- RIGXBXPAOGDDIG-UHFFFAOYSA-N n-[(3-chloro-2-hydroxy-5-nitrophenyl)carbamothioyl]benzamide Chemical compound OC1=C(Cl)C=C([N+]([O-])=O)C=C1NC(=S)NC(=O)C1=CC=CC=C1 RIGXBXPAOGDDIG-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1053—Comprising an active region having a varying composition or cross-section in a specific direction
- H01S5/1064—Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/124—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
- H01S5/1243—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は光導波路に沿って形成された回折格子によって
光帰還を行なう分布帰還型レーザに関する。DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Application Field) The present invention relates to a distributed feedback laser that performs optical feedback using a diffraction grating formed along an optical waveguide.
(従来の技術)
近年、光通信や光デイスク装置の光源として、各種の半
導体発光素子が盛んに使用されている。(Prior Art) In recent years, various semiconductor light emitting devices have been widely used as light sources for optical communications and optical disk devices.
この中でも光導波路に沿って周期的摂動(回折格子)を
設【プた分布帰還型半導体レーザ(DFB(Distr
ibuted Feedbacck) l a s
e r )は、この回折格子の波長選択性により、単一
波長(単−縦モード)での発振が容易に実現できる。現
在、この素子は長距離高速光通信用の光源としてGaI
nAsP/InP系材料を用いて実用化されている。Among these, distributed feedback semiconductor lasers (DFBs) have periodic perturbations (diffraction gratings) installed along the optical waveguide.
ibuted Feedback)
e r ) can easily realize oscillation at a single wavelength (single longitudinal mode) due to the wavelength selectivity of this diffraction grating. Currently, this device is used as a light source for long-distance, high-speed optical communications.
It has been put into practical use using nAsP/InP-based materials.
この分布帰還型半導体レーザの構造として、第4図に示
ずような、固装開端面40をAR(無反射)]−ト等に
よってその反制率を低下させ、かつその共振器の中央に
回折格子42の周期の不連続部43(管内波長λの1/
4に相当する位相だけシフトしている)を有する構造が
よく知られている。この素子は、プラグ波長(the
Bragg wavelength)での発振が可能で
、かつまた他の縦モードとのゲイン差も大きいため、単
一縦モード動作に極めて有利である。As shown in FIG. 4, the structure of this distributed feedback semiconductor laser is such that the fixed open end surface 40 is reduced in repulsion rate by AR (non-reflection), etc., and is placed in the center of the resonator. Discontinuous portion 43 of the period of the diffraction grating 42 (1/1 of the tube wavelength λ)
Structures with a phase shift corresponding to 4) are well known. This element has a plug wavelength (the
It is extremely advantageous for single longitudinal mode operation because it is possible to oscillate at a Bragg wavelength and also has a large gain difference from other longitudinal modes.
また、このλ/4位相シフ1〜構造と等価的に同様の効
果を持つ等価λ/4位相シフト構造も知られている(例
えば、H,5oda et al、Electroni
csLetters、 vol、20.pp、1016
−10181984) 。これは、第5図にその導波路
構造の一例を示すように、光導波路52をその軸方向に
沿って一部分を変形させたものである。この場合、導波
路の厚さは一定で、中央部54の幅を1μmから2μm
と変化させている。変化の途中のテーパは急激な不連続
による不要反射を防ぐためのものである。幅の変化は、
その部分の等価屈折率の相対変化を引き起こず作用があ
る。従って、導波光の位相速度が変わり、その部分の通
過前後で導波光の感じる回折格子の位相が変化する。こ
れにより、回折格子の周期の不連続を導入したこと等価
な作用を生じる。In addition, an equivalent λ/4 phase shift structure that has the same effect as this λ/4 phase shift structure is also known (for example, H, 5oda et al, Electronic
csLetters, vol, 20. pp, 1016
-10181984). This is an optical waveguide 52 partially deformed along its axial direction, as shown in FIG. 5, an example of the waveguide structure. In this case, the thickness of the waveguide is constant, and the width of the central portion 54 is set from 1 μm to 2 μm.
It is changing. The taper in the middle of the change is intended to prevent unnecessary reflections due to abrupt discontinuities. The change in width is
It works without causing a relative change in the equivalent refractive index of that part. Therefore, the phase velocity of the guided light changes, and the phase of the diffraction grating that the guided light feels changes before and after passing through that part. This produces an effect equivalent to introducing discontinuity in the period of the diffraction grating.
(発明が解決しようとする課題)
ところで、半導体レーザでは偏波の異なる2つのモード
が存在する。つまり、丁FモードとTM副モードある。(Problems to be Solved by the Invention) Incidentally, a semiconductor laser has two modes with different polarizations. In other words, there is a D-F mode and a TM sub-mode.
両端面を襞間によって形成したいわゆるファブリペo
−(Fabry−Perot )型のレーザでは、襞聞
面が、TEモードに対して反則が大きくなるように働く
ため、このモードのしきい値が小さくなり、TEモード
で発振する。So-called Fabrype o with both end faces formed by pleats.
In the -(Fabry-Perot) type laser, the fold surface acts so as to increase the resistance to the TE mode, so the threshold value of this mode becomes small and the laser oscillates in the TE mode.
これに対して、両端面の反射をOに近付けたλ/4位相
シフト構造では、その機構は働かない。On the other hand, in the λ/4 phase shift structure in which the reflection at both end faces is brought close to O, this mechanism does not work.
従って、原理的には、丁EとTMの2つのモードのしき
い値差がなく、単一縦モード動作が不可能となる。但し
、結合係数にが丁Eモードと丁Mモトとで異なるため、
辛うじてTEモードで発振する。しかし、このときのし
きい値ゲイン差はせいぜい3〜4 cm−1である。結
合係数にを大きくすると、TE、TMモモ−間でのゲイ
ン差ももつと大きくできる(例えば、S、Akiba
et al。Therefore, in principle, there is no threshold difference between the two modes, E and TM, and single longitudinal mode operation is impossible. However, since the coupling coefficient is different between Ding E mode and Ding M moto,
It barely oscillates in TE mode. However, the threshold gain difference at this time is at most 3 to 4 cm. By increasing the coupling coefficient, the gain difference between TE and TM can also be increased (for example, S, Akiba
et al.
、The Transaction of the I
ECof Japan、vol、E69pp、389−
391.1986 )が、軸方向ホールバーニングのた
め、縦モードの安定性か悪くなる(例えば、H,5od
a et al、 IEEE Journal of
QuantumElectronics、QE−23,
pp、804−814.1987)。従って、この値が
事実上の限界である。, The Transaction of the I
ECof Japan, vol, E69pp, 389-
391.1986), but the stability of the longitudinal mode deteriorates due to axial hole burning (for example, H,5od
a et al, IEEE Journal of
Quantum Electronics, QE-23,
pp. 804-814.1987). Therefore, this value is the actual limit.
高速のピッ1〜レー1〜でDFBレーザを変調し、長距
離用に適用する場合には、6cm−1以上のゲイン差が
望まれるが、現状では十分なゲイン差が得られていない
。両端面の反射を○に近付けたλ/4位相シフト構造で
は、同じ偏波の副モードとは20cm−1程度のゲイン
差とれているだ(プに、TMモトに対する抑圧が不十分
であることが致命的であると言って良い。When a DFB laser is modulated with high-speed PIT 1~RAE 1~ and used for long distance use, a gain difference of 6 cm<-1> or more is desired, but a sufficient gain difference cannot be obtained at present. In the λ/4 phase shift structure in which the reflection on both end faces is close to ○, there is a gain difference of about 20 cm-1 from the submode of the same polarization (particularly, the suppression of TM mode is insufficient). can be said to be fatal.
本発明は、上記従来技術の欠点を克服し、TM副モード
抑え安定な単一縦モード動作が実現でき、更に高速、高
効率の変調が可能な分布帰還型レーザを提供するもので
ある。即ち、本発明は、次の特性を示す分布帰還型レー
ザを提供するものである。The present invention overcomes the above-mentioned drawbacks of the prior art, and provides a distributed feedback laser that can suppress the TM sub-mode, realize stable single longitudinal mode operation, and can perform high-speed, high-efficiency modulation. That is, the present invention provides a distributed feedback laser exhibiting the following characteristics.
■同一偏波(TE)の伯の縦モード(副モード)とのし
きい値ゲイン差(Δα)が大きい。(2) The threshold gain difference (Δα) with the vertical mode (secondary mode) of the same polarization (TE) is large.
■他の偏波(TM>のモードとのしきい値ゲイン差(△
αTM>も大きい。■Threshold gain difference (△
αTM> is also large.
■軸方向ホールバーニングの影響が少ない。■Less effect of axial hole burning.
U発明の構成コ
(課題を解決するための手段)
本発明は、分布帰還型レーザにおいて、特に導波路構造
の等価屈折率が他の部分と相対的に変化している部分構
造を1個または2個以上有し、その等価位相不シフト部
の位相シフト量を丁Eモードで最適化し、TM副モード
はしきい値が上昇するようにしたものである。Structure of the Invention (Means for Solving the Problems) The present invention provides a distributed feedback laser in which one or more partial structures in which the equivalent refractive index of the waveguide structure changes relative to other portions is used. There are two or more of them, and the phase shift amount of the equivalent phase non-shifting portion is optimized in the D-E mode, and the threshold value is increased in the TM sub-mode.
(作 用)
回折格子による位相シフトでは位相の不連続部のほぼ1
点で作用するが、等価位相シフト部はある一定の長さが
あるため、T「モードとTM副モード位相シフト量に差
をつけることができる。これにより、位相シフト量を丁
Fモードで最適化し、TM副モードはしきい値が上昇す
るようにし、TM副モード抑え安定な単一縦モード動作
をする分布帰還型レーザが実現できる。(Function) In the phase shift by the diffraction grating, the phase discontinuity is almost 1
However, since the equivalent phase shift section has a certain length, it is possible to differentiate the amount of phase shift between the T mode and the TM sub-mode. By increasing the threshold value of the TM submode, it is possible to realize a distributed feedback laser that suppresses the TM submode and operates in a stable single longitudinal mode.
より概略的に言えば、本発明では、例えば、TEモード
ではシフト量がλ/4、TM副モードはシフト量がλ/
10以下とする等価位相シフト部を設けたものでおる。More generally speaking, in the present invention, for example, in the TE mode, the shift amount is λ/4, and in the TM sub-mode, the shift amount is λ/4.
It is provided with an equivalent phase shift section having a phase shift of 10 or less.
これにより、結合係数によるのゲイン差を上積みし、最
低限の5cm−1を達成することができる。Thereby, the gain difference due to the coupling coefficient is added up, and the minimum value of 5 cm −1 can be achieved.
さて、第2図はTEモードの規格化副モードゲイン差Δ
αLとTM副モードの規格化ゲイン差ΔαLTM(負の
値はTM副モード方がしきい値が低いことを示す。)を
計算し、位相シフト領域長ざLoを横軸にしてプロン1
〜図である。但し、丁EモードとT M ”E−ドのに
Lの違いによる差は考慮していない。Now, Figure 2 shows the normalized sub-mode gain difference Δ in TE mode.
Calculate the normalized gain difference ΔαLTM between αL and TM submode (a negative value indicates that the TM submode has a lower threshold value), and use the phase shift region length Lo as the horizontal axis.
~It is a figure. However, the difference due to the difference in L between the mode E mode and the mode T M "E-mode" is not taken into consideration.
同図(a)は、共振器長りが300μm、導波路幅が1
μm1位相シフト部の幅が0.5μm、また共振器両端
面無反射としたものである。この図から、L −40μ
m付近で、ΔαLとΔαLT)lの両方をともに大ぎく
できることが分かる。即ち、このときΔαL=0.5、
ΔαL、、= 0.15である。In the same figure (a), the resonator length is 300 μm and the waveguide width is 1
The width of the μm1 phase shift portion is 0.5 μm, and both end faces of the resonator are non-reflective. From this figure, L −40μ
It can be seen that both ΔαL and ΔαLT)l can be increased near m. That is, at this time ΔαL=0.5,
ΔαL, , = 0.15.
αに換算すると、それぞれ17cm 、5cm’でお
る。When converted to α, they are 17 cm and 5 cm', respectively.
特に、にLの違いを加味すると、△αTMは、8〜9c
m にも達し、安全圏の6 cm”を上回る。In particular, when considering the difference in L, △αTM is 8~9c
m, exceeding the safe range of 6 cm.
また、第2図(b)のように、中央部の位相シフト部の
輻幅を2μmとした場合には、活性層厚みを0.05μ
mとしても、△αt−rqは大きくても0.05程度し
か得られず、また、そのときのり。In addition, as shown in FIG. 2(b), when the convergence width of the central phase shift part is 2 μm, the active layer thickness is 0.05 μm.
Even if m, Δαt−rq can only be obtained at most about 0.05, and in that case, the glue.
の値は△αLの極大値からも離れている。従って、所望
の目的を果たすことができない。活性層厚みが0.10
μmのときにはほとんど効果がない。The value of is also far from the maximum value of ΔαL. Therefore, the desired purpose cannot be achieved. Active layer thickness is 0.10
There is almost no effect when it is μm.
要するに、TEモードの感じる位相シフト量が副モード
とゲイン差の大きいときに、TEモードの位相シフト量
とTM副モード感じる位相シフト量との差Δφが±π/
2(λ/4)に近いものが、丁M七−ドとのゲイン差を
大きくできる。つまり、理想的には、TEモードでλ/
4、TM副モード○のシフ1〜であることが望ましい。In short, when the amount of phase shift felt by the TE mode has a large gain difference from that of the sub-mode, the difference Δφ between the amount of phase shift of the TE mode and the amount of phase shift felt by the TM sub-mode is ±π/
A value close to 2(λ/4) can increase the gain difference with the 7-mode. In other words, ideally, in TE mode, λ/
4. It is desirable that the shift is 1 or more in TM submode ○.
第1図は、丁Fモードの位相シフト量とTM七ドの感じ
る位相シフト量との差Δφの値を、活性層幅、活性層厚
みをパラメータとしてプロットしたのである。同図(a
)は中央部の幅がその他の部分よりも0.5μm小さい
場合で、同図(b)は中央部の幅が0.5μm大きい場
合である。中央部の幅か0.5μm小さい場合では、か
なり広い範囲で0.3π以上の△φが得られ、3 cm
−1以上のゲイン差か確保できる。これに対し、中央部
の幅が0.5μm大きい場合では、活性層幅は0.6μ
m以下、活性層厚み0,15μm以上必要である。In FIG. 1, the value of the difference Δφ between the amount of phase shift in the D-F mode and the amount of phase shift felt by the TM-D is plotted using the active layer width and the active layer thickness as parameters. The same figure (a
) shows the case where the width of the center part is 0.5 μm smaller than the other parts, and the figure (b) shows the case where the width of the center part is larger by 0.5 μm. When the width of the central part is 0.5 μm smaller, △φ of 0.3π or more is obtained over a fairly wide range, and 3 cm
A gain difference of -1 or more can be ensured. On the other hand, if the width at the center is 0.5 μm larger, the active layer width is 0.6 μm.
m or less, and the active layer thickness must be 0.15 μm or more.
丁Mモード抑圧に対して効果的な導波路パラメータは、
個々のDFB構造に依存し、−該には記述できない。即
ち、等何位相シフト部以外の部分とも相対的に関連して
いるため、その導波路構造は総合的に設計しなくてはい
けない。導波路とその位相シフト構造に関しては、幅、
厚さ、屈折率を含めた層構造等、多数の組み合わせが考
えられる。しかし、InGaASP/InP系の等価λ
/4シフl−D F Bシー1アに限定すれば、活性層
を含めた導波路溝造層の厚さの合計が0.3μm以下、
且つ活性層の厚さが0.1μm以下、且つ導波路構造層
主要部(周辺の通常部)の幅が1μm以下であるとき、
中央の位相シフト領域長の幅は主要部より0.5μ…以
上小さくすれば、楽な精度で丁Mモードとのゲイン差を
大ぎくできる。なお、前半の、寸法の規定は、安定な基
本横モードを得るための必要条件である。これに絡んで
第1図には、高次横モードのカッl−オフ条件も示して
おる。The effective waveguide parameters for M-mode suppression are:
Depends on the individual DFB structure - cannot be specifically described. That is, the waveguide structure must be designed comprehensively because it is relatively related to other parts than the phase shift part. Regarding the waveguide and its phase shift structure, the width,
Many combinations of layer structure including thickness and refractive index are possible. However, the equivalent λ of InGaASP/InP system
/4 Schiff l-D F B Sea 1A, the total thickness of the waveguide groove layer including the active layer is 0.3 μm or less,
and when the thickness of the active layer is 0.1 μm or less and the width of the main part of the waveguide structure layer (peripheral normal part) is 1 μm or less,
If the width of the central phase shift region length is made smaller than the main part by 0.5 μ... or more, the gain difference from the D-M mode can be increased with easy accuracy. Note that the first half of the dimension definition is a necessary condition for obtaining a stable fundamental transverse mode. In connection with this, FIG. 1 also shows cut-off conditions for higher-order transverse modes.
(実施例〉
iX下、本発明をGaInASP/InP系材料を用い
たλ/4位相シフト型分布帰還型レーザに適用した一実
施例について図面を参照して説明する。(Example) Below, an example in which the present invention is applied to a λ/4 phase shift type distributed feedback laser using GaInASP/InP-based materials will be described with reference to the drawings.
第3図は実施例の分布帰還型レーザの水平、垂直断面図
および平面図を示す。FIG. 3 shows horizontal and vertical sectional views and a plan view of the distributed feedback laser according to the embodiment.
まず、n型InP基板上11に2次の回折格子12を形
成し、その上にn型Ga1nASP光導波層13(λ−
1,27μm帯組成、0.1μm厚)、アンドープGa
InASP活性層14(λ−1,55μm帯組成、0.
1μm厚)、p型GaIr1ASPアンヂメルトバック
層15(λ−1.27μm帯組成、0.05 μm厚)
、p型InPクラッド層16、p+型GaInASPオ
ーミックコンタクト層17(λ−1,15μm帯組成)
を順次積層する。First, a second-order diffraction grating 12 is formed on an n-type InP substrate 11, and an n-type Ga1nASP optical waveguide layer 13 (λ-
1,27 μm band composition, 0.1 μm thickness), undoped Ga
InASP active layer 14 (λ-1, 55 μm band composition, 0.
1 μm thick), p-type GaIr1ASP angel meltback layer 15 (λ-1.27 μm band composition, 0.05 μm thickness)
, p-type InP cladding layer 16, p+-type GaInASP ohmic contact layer 17 (λ-1, 15 μm band composition)
are sequentially stacked.
その後、エツチングにより、メサ・ストライプ部を形成
する。このとき、導波路構造は、厚さを均一とし、中央
部は長さし。に渡って幅を狭くした。外側の均一部22
の幅は1μmで、狭い幅の位相シフト部30の幅は0.
5μmとした。また、位相シフト部30の長さり。は4
0μmとした。Thereafter, mesa stripes are formed by etching. At this time, the waveguide structure has a uniform thickness and a length in the center. The width was narrowed over . Outer uniform part 22
The width of the narrow phase shift portion 30 is 1 μm, and the width of the narrow phase shift portion 30 is 0.0 μm.
It was set to 5 μm. Also, the length of the phase shift section 30. is 4
It was set to 0 μm.
次に、その周囲を、p型InP層18、n型In2層1
9、アンドープGaInASPキャップ層20(λ−1
,15μm帯組成)を連続成長して埋め込む。このとき
、埋め込み領域ではp−n逆バイアス接合21によって
電流がブロックされるため、活性層ストライプ14にの
み、電流が効率良く注入される。Next, the p-type InP layer 18, the n-type In2 layer 1
9. Undoped GaInASP cap layer 20 (λ-1
, 15 μm band composition) is continuously grown and embedded. At this time, since the current is blocked by the pn reverse bias junction 21 in the buried region, the current is efficiently injected only into the active layer stripe 14.
共振器長りは300μmとし、また共振器の端面は無反
射コー1〜を施した。また規格化結合係数にLの値は、
軸方向ホールバーニングの影響の最も少ない1.25付
近になるように調整した。The length of the resonator was 300 μm, and the end faces of the resonator were coated with anti-reflection coats 1 to 1. Also, the value of L for the normalized coupling coefficient is
It was adjusted to around 1.25, where the influence of hole burning in the axial direction is least.
この実施例の分布帰還型レーザによれば、十分にTM副
モード抑えて安定な単一縦モード動作が得られた。According to the distributed feedback laser of this example, stable single longitudinal mode operation was obtained by sufficiently suppressing the TM submode.
上述の実施例では1つの等何位相シフト部かある場合に
ついて説明したが、本発明はこれに限ることなく、2つ
以上の位相シフト領域を持つ場合にも、同様に適用でき
る。また、位相シフト領域が形状的変化を持たず、外部
からの注入励起を独立に制御することによってその部分
の屈折率を変える方式にも適用可能である。Although the above-mentioned embodiment describes the case where there is one phase shift section, the present invention is not limited to this, and can be similarly applied to a case where there are two or more phase shift regions. It is also applicable to a method in which the phase shift region does not change in shape and the refractive index of that portion is changed by independently controlling injection excitation from the outside.
[発明の効果]
本発明によれば、TM副モード抑え安定な単一縦モード
動作が実現できる。さらに、これによって高速、高効率
の変調が可能な分布帰還型レーザが得られる。[Effects of the Invention] According to the present invention, stable single longitudinal mode operation can be realized while suppressing the TM submode. Furthermore, this provides a distributed feedback laser capable of high-speed, high-efficiency modulation.
第1図はTEモードの位相シフト量とTM副モード感じ
る位相シフト量との差Δφの値を活性層幅、活性層厚み
をパラメータとしてプロットした図で、同図(a)は導
波路構造の中央部の幅が他よりも0.5μm小さい場合
、また同図(b)は導波路構造の中央部の幅が他よりも
0.5μm人きい場合をそれぞれ示す図、第2図はTE
モードの規格化副モードゲイン差ΔαLとTM副モード
の規格化ゲイン差△αLTMを、位相シフト領域長さり
。を横軸にしてプロットした図で、同図(a)は導波路
構造の中央部の幅が仙よりも0.5μm小さい場合、ま
た同図(b)は導波路構造の中央部の幅が他よりも0.
5μm大きい場合をそれぞれ示す図、第3図は実施例の
分布帰還型レーザの水平、垂直断面図および平面図を示
す図、第4図はλ/4位相シフト構造の導波路構造の断
面構造模式図、第5図は等価λ/4位相シフト構造の導
波路構造の一例を示す平面図である。
代理人 弁理士 則 近 憲 佑
同 竹 花 喜久男Figure 1 is a diagram in which the value of the difference Δφ between the amount of phase shift in the TE mode and the amount of phase shift felt in the TM submode is plotted using the active layer width and active layer thickness as parameters. Figure 2 shows the case where the width of the central part of the waveguide structure is 0.5 μm smaller than the other parts, and the same figure (b) shows the case where the width of the central part of the waveguide structure is 0.5 μm wider than the other parts.
The normalized sub-mode gain difference ΔαL of the mode and the normalized gain difference ΔαLTM of the TM sub-mode are the length of the phase shift region. is plotted on the horizontal axis. Figure (a) shows the case where the width at the center of the waveguide structure is 0.5 μm smaller than the width, and figure (b) shows the case where the width at the center of the waveguide structure is 0.5 μm smaller than the center width. 0. than others.
Figure 3 is a diagram showing horizontal and vertical cross-sectional views and a plan view of the distributed feedback laser of the example, Figure 4 is a schematic cross-sectional structure of a waveguide structure with a λ/4 phase shift structure. FIG. 5 is a plan view showing an example of a waveguide structure having an equivalent λ/4 phase shift structure. Agent Patent Attorney Nori Chika Yudo Kikuo Takehana
Claims (1)
う分布帰還型レーザにおいて、導波路構造の等価屈折率
が他の部分と相対的に変化している部分構造を1個また
は2個以上有し、かつこの部分構造を伝搬する偏波の異
なる2つの発振モードのうち、発振させたい一方のモー
ドと他方のモードとのしきい値ゲイン差が大きくなるよ
うに、前記部分構造を設定したことを特徴とする分布帰
還型レーザ。In a distributed feedback laser that performs optical feedback using a diffraction grating provided along an optical waveguide, one or more partial structures in which the equivalent refractive index of the waveguide structure changes relative to other parts are used. The partial structure is set so that the threshold gain difference between one mode to be oscillated and the other mode is large among two oscillation modes having different polarizations and propagating through this partial structure. A distributed feedback laser characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63221261A JP2732604B2 (en) | 1988-09-06 | 1988-09-06 | Distributed feedback laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63221261A JP2732604B2 (en) | 1988-09-06 | 1988-09-06 | Distributed feedback laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0269983A true JPH0269983A (en) | 1990-03-08 |
JP2732604B2 JP2732604B2 (en) | 1998-03-30 |
Family
ID=16763998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63221261A Expired - Fee Related JP2732604B2 (en) | 1988-09-06 | 1988-09-06 | Distributed feedback laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2732604B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04229687A (en) * | 1990-06-12 | 1992-08-19 | Toshiba Corp | Semiconductor laser |
US5321716A (en) * | 1991-12-17 | 1994-06-14 | Kabushiki Kaisha Toshiba | Distributed Feedback semiconductor laser with controlled phase shift |
US5388106A (en) * | 1991-05-27 | 1995-02-07 | Fujitsu Limited | Tunable optical source for producing a coherent optical beam with a wide range of wavelength tuning |
WO2010116460A1 (en) * | 2009-03-30 | 2010-10-14 | 富士通株式会社 | Optical element and method for manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60124887A (en) * | 1983-12-09 | 1985-07-03 | Kokusai Denshin Denwa Co Ltd <Kdd> | Distributed feedback type semiconductor laser |
JPS6114787A (en) * | 1984-06-29 | 1986-01-22 | Nec Corp | Distributed feedback type semiconductor laser |
JPS61242092A (en) * | 1985-04-19 | 1986-10-28 | Fujitsu Ltd | Semiconductor laser |
JPS63186A (en) * | 1986-06-19 | 1988-01-05 | Fujitsu Ltd | Semiconductor laser |
-
1988
- 1988-09-06 JP JP63221261A patent/JP2732604B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60124887A (en) * | 1983-12-09 | 1985-07-03 | Kokusai Denshin Denwa Co Ltd <Kdd> | Distributed feedback type semiconductor laser |
JPS6114787A (en) * | 1984-06-29 | 1986-01-22 | Nec Corp | Distributed feedback type semiconductor laser |
JPS61242092A (en) * | 1985-04-19 | 1986-10-28 | Fujitsu Ltd | Semiconductor laser |
JPS63186A (en) * | 1986-06-19 | 1988-01-05 | Fujitsu Ltd | Semiconductor laser |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04229687A (en) * | 1990-06-12 | 1992-08-19 | Toshiba Corp | Semiconductor laser |
US5388106A (en) * | 1991-05-27 | 1995-02-07 | Fujitsu Limited | Tunable optical source for producing a coherent optical beam with a wide range of wavelength tuning |
US5321716A (en) * | 1991-12-17 | 1994-06-14 | Kabushiki Kaisha Toshiba | Distributed Feedback semiconductor laser with controlled phase shift |
WO2010116460A1 (en) * | 2009-03-30 | 2010-10-14 | 富士通株式会社 | Optical element and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2732604B2 (en) | 1998-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4796273A (en) | Distributed feedback semiconductor laser | |
US5444730A (en) | Single-wavelength semiconductor laser | |
US8705583B2 (en) | Semiconductor laser | |
JP2692913B2 (en) | Grating coupled surface emitting laser device and modulation method thereof | |
US8494320B2 (en) | Optical element and method for manufacturing the same | |
US4257011A (en) | Semiconductor laser device | |
JP2008294124A (en) | Optical semiconductor element | |
JP3086767B2 (en) | Laser element | |
Nakano et al. | Analysis, design, and fabrication of GaAlAs/GaAs DFB lasers with modulated stripe width structure for complete single longitudinal mode oscillation | |
US4803690A (en) | Semiconductor laser | |
JP2957240B2 (en) | Tunable semiconductor laser | |
JPH0269983A (en) | Distributed feedback-type laser | |
US4516243A (en) | Distributed feedback semiconductor laser | |
KR100456670B1 (en) | Distributed Bragg reflector laser diode having distributed feedback laser diode and optical spot size converter on the same substrate | |
JPH0311554B2 (en) | ||
JPS63166281A (en) | Distributed feedback semiconductor laser | |
JPS63228795A (en) | Distributed feedback type semiconductor laser | |
JP3595677B2 (en) | Optical isolator, distributed feedback laser and optical integrated device | |
JP2804502B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH08274406A (en) | Distributed feedback semiconductor laser and its manufacture | |
JP2635649B2 (en) | Distributed feedback semiconductor laser | |
JP3154244B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP3239387B2 (en) | Semiconductor laser and method of manufacturing the same | |
JP3166236B2 (en) | Semiconductor laser and method of manufacturing the same | |
Noda et al. | Ridge waveguide AlGaAs/GaAs distributed feedback lasers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |