JPH026864B2 - - Google Patents
Info
- Publication number
- JPH026864B2 JPH026864B2 JP60157823A JP15782385A JPH026864B2 JP H026864 B2 JPH026864 B2 JP H026864B2 JP 60157823 A JP60157823 A JP 60157823A JP 15782385 A JP15782385 A JP 15782385A JP H026864 B2 JPH026864 B2 JP H026864B2
- Authority
- JP
- Japan
- Prior art keywords
- polyester
- nonwoven fabric
- fibers
- copolymerized
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 claims description 47
- 239000004745 nonwoven fabric Substances 0.000 claims description 42
- 229920000728 polyester Polymers 0.000 claims description 40
- 239000002131 composite material Substances 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 17
- -1 polyethylene terephthalate Polymers 0.000 claims description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 14
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 14
- 239000011230 binding agent Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 claims description 2
- 229920000742 Cotton Polymers 0.000 description 17
- 238000011084 recovery Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 238000009960 carding Methods 0.000 description 7
- 238000009987 spinning Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- SDGNNLQZAPXALR-UHFFFAOYSA-N 3-sulfophthalic acid Chemical compound OC(=O)C1=CC=CC(S(O)(=O)=O)=C1C(O)=O SDGNNLQZAPXALR-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 244000025272 Persea americana Species 0.000 description 1
- 235000008673 Persea americana Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- IBBQVGDGTMTZRA-UHFFFAOYSA-N sodium;2-sulfobenzene-1,3-dicarboxylic acid Chemical compound [Na].OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O IBBQVGDGTMTZRA-UHFFFAOYSA-N 0.000 description 1
- FLAKTUOEISEQTA-UHFFFAOYSA-N sodium;3-sulfophthalic acid Chemical compound [Na].OC(=O)C1=CC=CC(S(O)(=O)=O)=C1C(O)=O FLAKTUOEISEQTA-UHFFFAOYSA-N 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Landscapes
- Nonwoven Fabrics (AREA)
Description
(産業上の利用分野)
本発明は、高度の弾性回復性を有するポリエス
テル系不織布の製造方法に関するもので、さらに
詳しくは、2種のポリエステル成分からなる複合
繊維を45重量%以上とポリエステル繊維や低融点
ポリエステルバインダー繊維と混合してなり、高
伸長性で柔軟性に富み、弾性回復性の優れたポリ
エステル系不織布の製造方法に関するものであ
る。
(従来の技術)
従来、種々な方法で不織布を製造することが行
われている。これまでの主な方法としては、短繊
維を梳綿機によりシート状ウエブとし、繊維と繊
維を接着剤(バインダ)またはニードルパンチで
結合する等の方法や、ポリマーの紡糸後直ちに一
工程でシート化する方法(スパンボンド法)など
が開発されている。しかしながら、これらの方法
で製造されてきた不織布は、いずれも弾性回復性
の乏しいものであり、用途も限定されていた。特
にスポーツ衣料用中入れ綿の分野では、伸縮機能
性、フイツト性の面から、風合がソフトでかつ柔
軟性に富み、弾性回復性の優れた不織布が要望さ
れており、種々の高弾性不織布の開発が試みられ
ている。例えば、
(1) 短繊維にした仮撚加工糸を使用した不織布。
(2) 潜在捲縮性フイラメントを交叉配列し、接着
した不織布。
(3) 特開昭59−168159号公報記載のごとき、高捲
縮数を有する複合短繊維を使用した不織布。
など、種々の不織布が提案されている。
(発明が解決しようとする問題)
しかしながら、これらは各々いくつかの欠点が
あり、高伸長性で柔軟性に富み、弾性回復性に優
れた不織布が得られるまでに至つていない。すな
わち、(1)の場合は、強い捲縮のため梳綿機の通過
性が悪く、ネツプが多く均一な不織布を得ること
が困難である。また(2)は、均一性、弾性回復性、
方向性の面からは(1)より良好であるが、設備面が
複雑であることおよび生産性が悪いなどの欠点が
ある。(3)の場合は、捲縮数の低い領域では弾性回
復性が十分ではなく、捲縮数が高い領域では前述
(1)と同様に、梳綿機の通過性が悪く、ネツプが多
く均一な不織布が得られない。また、これらの提
案は、全般的にウエブを形成する繊維相互の絡み
が少なく、ウエブの方向性があり、ウエブの積層
を必要とするため層間剥離を起こす場合がある。
本発明者らは、この様な不均一性、伸縮性の方
向性、弾性回復性不足、構造上の欠点、生産性の
欠点等を解消し、かつ機能性、フイツト性を要求
されるスポーツ衣料用中入れ綿の分野でも十分使
用可能な柔軟性に富み、弾性回復性に優れた新規
な不織布の提供を目的とするものである。
(問題点を解決するための手段)
本発明者は、このような新規な不織布を開発す
べく鋭意研究を重ねた結果、前述の欠点を解消し
た新規な高伸長性不織布を開発するに至つた。
金属塩スルホネート基を有する構成単位を3〜
6モル%共重合したエチレンテレフタレート単位
主体の共重合ポリエステル(A)とポリエチレンテレ
フタレート(B)の2成分からなり、熱処理前の捲縮
数が18個/25mm以下の複合繊維を、不織布を構成
する繊維全体の45重量%以上とし、該複合繊維と
異なるポリエステル繊維および/又は低融点ポリ
エステルバインダー繊維と混合してウエブとなし
た後、130℃以上の熱処理を施して、前記複合繊
維の捲縮数を50個/25mm以上発現させ不織布とす
ることを特徴とするポリエステル系高伸長性不織
布の製造方法。を要旨とするものである。
本発明におけるポリエステル複合繊維は、エチ
レンテレフタレートを主体とし、金属スルホネー
ト基を有する構成単位を共重合したポリエステル
(A)と、ポリエチレンテレフタレート(B)の2成分よ
りなる複合繊維が必須である。
その理由は、本発明のごとく、比較的粗い捲縮
の原綿を梳綿してウエブとなした後、熱処理を施
して高捲縮を発現させるためおよび高弾性不織布
を得るためには、前述の2成分複合繊維として共
重合したポリエステル(A)の高収縮性を利用するこ
とができるからである。
かかる共重合ポリエステル(A)は、ポリエチレン
テレフタレートを製造する際に、5−ナトリウム
スルホイソフタル酸、5−カリウムスルホイソフ
タル酸、5−リチウムスルホイソフタル酸、4−
ナトリウムスルホフタル酸、4−ナトリウムスル
ホ2.6−ナフタレンジカルボン酸またはこれらの
エステル形成性誘導体などの金属塩スルホネート
基を有するエステル形成性化合物を3〜6モル%
添加し、共重合させることにより得られる。ま
た、必要に応じてさらに他の成分を少量共重合し
てもよい。
本発明により得られる繊維は、共重合ポリエス
テル(A)とポリエチレンテレフタレート(B)が偏心的
に接合した複合繊維であつて、弛緩熱処理によつ
てスパイラルクリンプを発現する潜在捲縮繊維で
ある。複合形態は特に限定されないが、芯鞘型よ
りもサイドバイサイド型の方が好ましい。また、
少量の添加剤として艶消剤、光沢改良剤、帯電防
止剤などを加えてもよく、繊維断面形状は円形断
面に限らず、三角断面やその他の異形断面でもよ
く、もちろん中空断面であつてもよい。
共重合ポリエステル(A)における金属塩スルホネ
ート基を有する構成単位の共重合割合は、3〜6
モル%が適当である。3モル%未満では捲縮発現
能力が不十分であり、6モル%を超えるとポリエ
ステルの融点低下および繊維の強力低下が著し
く、一般的用途には適さない。
高度の弾性回復性を有する不織布を得るために
は、該不織布を構成する繊維の平均捲縮数が50
個/25mm以上であることが必要である。さらに好
ましくは55個/25mm以上である。一方梳綿機等で
ウエブを成型する場合、繊維の平均捲縮数が18
個/25mmを超えるとネツプ等が発生し、不織布の
均一性が悪化する。したがつて、梳綿機等でウエ
ブを成型する際には、繊維の平均捲縮数が18個/
25mm未満であり、ウエブ成型後に該ウエブを130
℃以上の温度で熱処理を施すことにより不織布と
なす方法で、不織布を構成する複合繊維の平均捲
縮数が50個/25mm以上となるのがよい。このよう
な繊維は、共重合ポリエステル(A)とポリエチレン
テレフタレート(B)の極限粘度、共重合ポリエステ
ル(A)の金属スルホネート基を有する構成単位の共
重合割合、2成分の複合割合、紡糸速度および延
伸熱処理条件などを適切に選定することにより得
られる。例えば共重合ポリエステル(A)として5−
ナトリウムスルホイソフタル酸、(以下、SIPと
称す)を共重合したポリエチレンテレフタレート
系共重合ポリエステルを、ポリエステル(B)として
ポリエチレンテレフタレートを用い、複合割合
1:1の複合繊維の場合は、共重合ポリエステル
(A)のSIP成分が4〜6モル%の時は極限粘度を0.4
〜0.5、ポリエステル(B)の極限粘度を0.5〜0.8と
し、紡糸速度は1100m/分以上、延伸緊張熱処理
温度を145〜170℃程度とすることが好ましい。ま
た、共重合ポリエステル(A)のSIP成分が3〜4モ
ル%のときは、ポリエステル(A)の極限粘度を0.45
〜0.55、ポリエステル(B)の極限粘度を0.45〜0.75
とし、紡糸速度は1300m/分以上、延伸緊張熱処
理温度を120〜145℃程度とすることが好ましい。
前述のごとく高度な伸縮性と優れた弾性回復性
を有する不織布を得るためには、該不織布の1部
または全部を構成する複合繊維の捲縮数を50個/
25mm以上、好ましくは55個/25mm以上とすること
が必要である。本発明の不織布は用途、機能性の
面からポリエステル繊維100%ではなく、綿、ウ
ール等の天然繊維を混綿することもできる。ま
た、寸法安定性等の面から、繊維状バインダを混
綿し熱接着する方法がしばしばとられる。この様
な場合も、不織布を構成する繊維の平均捲縮数が
50個/25mm以上、好ましくは55個/25mm以上とす
るのがよい。例えば捲縮数が17個/25mmのポリエ
ステル繊維25%と、バインダ繊維10%および本発
明の複合繊維を65%とを混綿してなる好ましい高
弾性不織布を得るためには、本発明の複合繊維の
熱処理後の捲縮数は70個/25mm以上に設定されれ
ばよい。
(実施例)
以下、実施例によつて本発明を詳しく説明する
が、本発明はこれらによつて限定されるものでは
ない。なお、本発明に記述した諸物性の測定法は
次の通りである。
極限粘度:フエノールと四塩化エタンの等量混合
溶媒中、20℃で測定。
繊 度:JIS L1015 7.5.1A法で測定。
捲縮数:JIS L1015 7.12.1法で測定。
不織布強力、不織布伸度、弾性回復率:不織布を
幅25mmに裁断した試料を用いる。
不織布強力と不織布伸度は、定速伸長型引張試
験機で試料長100mm、引張速度100mm/分にて測
定。
弾性回復率は、定速伸長型引張試験機で試料長
100mm、引張速度100mm/分にて測定し、次式より
求める。
弾性回復率=B−C/B×100(%)
ただし、ここでBは不織布の切断時伸度の80%
の価、CはBの価を測定後荷重を外し、1分間放
置後の測定前の試料長に対する伸度を示す。
1 原綿の作成
原綿 A
共重合ポリエステル(A)としてSIP成分を5.1モル
%共重合したポリエチレンテレフタレート系ポリ
エステルで極限粘度0.470、ポリエステル(B)とし
て極限粘度0.687のポリエチレンテレフタレート
を複合重量比1:1のサイドバイサイド型複合繊
維として紡糸し、次いで該未延伸糸を延伸後のト
ウデニールが35万デニールとなるべく合糸して、
延伸温度67℃、延伸速度125m/分、延伸倍率2.3
倍で延伸を行い、引き続いて緊張熱処理温度162
℃で熱処理後、スタフアボツクスで機械捲縮を付
与した後51mmにカツトしてステープルフアイバー
を得た。その他の紡糸条件は、紡糸温度297℃、
紡糸口金孔数351孔、引取速度1175m/分、吐出
量218g/分とした。
原綿B (比較用)
前記原綿Aで使用した未延伸糸を用いて、延伸
温度67℃、延伸速度125m/分、延伸倍率2.45倍
で延伸し、引き続いて145℃×5分間の弛緩熱処
理を行い、51mmにカツトしてステープルフアイバ
ーを得た。なお、捲縮はスタフアボツクスを用い
ずとも自然に発現した。
原綿C (比較用)
共重合ポリエステル(A)としてSIP成分を2.6モル
%共重合したポリエチレンテレフタレート系ポリ
エステルで極限粘度0.536、ポリエステル(B)とし
て極限粘度0.687のポリエチレンテレフタレート
を用い、原綿Aと同様に紡糸した後(ただし、吐
出量251g/分)延伸倍率2.7倍で原綿Aと同様に
延伸して、また機械捲縮を付与してステープルフ
アイバーを得た。
原綿 D
共重合ポリエステル(A)としてSIP成分を3.3モル
%共重合したポリエチレンテレフタレート系ポリ
エステルで極限粘度0.536、ポリエステル(B)とし
て極限粘度0.553のポリエチレンテレフタレート
を用い、原綿Aと同様に紡糸、延伸し、また機械
捲縮を付与してステープルフアイバーを得た(た
だし吐出量245g/分、緊張熱処理温度130℃、延
伸倍率2.6倍)。
以上のごとき方法で得られた原綿の糸質性能を
表−1に示す。
(Industrial Application Field) The present invention relates to a method for producing a polyester nonwoven fabric having a high degree of elastic recovery. The present invention relates to a method for producing a polyester nonwoven fabric that is mixed with a low melting point polyester binder fiber and has high extensibility, flexibility, and excellent elastic recovery. (Prior Art) Conventionally, nonwoven fabrics have been manufactured using various methods. The main methods to date include methods such as forming short fibers into a sheet-like web using a carding machine and binding the fibers together with an adhesive (binder) or needle punch, or forming sheets in one step immediately after spinning the polymer. Methods such as the spunbond method have been developed. However, all of the nonwoven fabrics produced by these methods have poor elastic recovery properties and have limited applications. Particularly in the field of padded cotton for sports clothing, there is a demand for nonwoven fabrics that are soft to the touch, highly flexible, and have excellent elastic recovery properties in terms of stretch functionality and fit. Attempts are being made to develop For example, (1) Nonwoven fabrics using false twisted yarn made into short fibers. (2) A nonwoven fabric in which latent crimp filaments are cross-arranged and bonded. (3) A nonwoven fabric using composite short fibers having a high number of crimps, as described in JP-A-59-168159. Various nonwoven fabrics have been proposed. (Problems to be Solved by the Invention) However, each of these has several drawbacks, and it has not yet been possible to obtain a nonwoven fabric that is highly extensible, highly flexible, and has excellent elastic recovery properties. That is, in the case of (1), strong crimping causes poor passability through the carding machine, and it is difficult to obtain a uniform nonwoven fabric with many neps. In addition, (2) is uniformity, elastic recovery,
Although it is better than (1) in terms of directionality, it has drawbacks such as complicated equipment and poor productivity. In the case of (3), elastic recovery is not sufficient in areas with a low number of crimps, and in areas with a high number of crimps, as described above.
Similar to (1), the carding machine has poor permeability and there are many neps, making it impossible to obtain a uniform nonwoven fabric. In addition, these proposals generally have little intertwining of the fibers forming the web, have directional properties of the web, and require lamination of the webs, which may cause delamination. The present inventors have solved such non-uniformity, directionality of elasticity, insufficient elastic recovery, structural defects, productivity defects, etc., and have developed sports clothing that requires functionality and fit. The object of the present invention is to provide a novel nonwoven fabric that is sufficiently flexible and has excellent elastic recovery properties and can be used in the field of cotton padding. (Means for Solving the Problems) As a result of intensive research to develop such a new nonwoven fabric, the inventor of the present invention has developed a new highly elongated nonwoven fabric that eliminates the above-mentioned drawbacks. . 3 to 3 structural units having a metal salt sulfonate group
The nonwoven fabric is composed of two components: copolymerized polyester (A) mainly composed of 6 mol% ethylene terephthalate units and polyethylene terephthalate (B), and the number of crimps before heat treatment is 18/25 mm or less. 45% by weight or more of the total fibers, and after mixing the composite fibers with different polyester fibers and/or low melting point polyester binder fibers to form a web, heat treatment at 130°C or higher is performed to increase the crimp number of the composite fibers. A method for producing a polyester-based highly elongated nonwoven fabric, characterized by producing a nonwoven fabric with 50 pieces/25 mm or more. The main points are as follows. The polyester composite fiber in the present invention is a polyester mainly composed of ethylene terephthalate and copolymerized with a structural unit having a metal sulfonate group.
A composite fiber consisting of two components (A) and polyethylene terephthalate (B) is essential. The reason for this is that, as in the present invention, relatively coarsely crimped raw cotton is carded to form a web, and then heat treated to develop high crimps and to obtain a highly elastic nonwoven fabric, the above-mentioned method is necessary. This is because the high shrinkage of polyester (A) copolymerized as a two-component composite fiber can be utilized. When producing polyethylene terephthalate, such copolymerized polyester (A) is used in the production of polyethylene terephthalate.
3 to 6 mol% of an ester-forming compound having a metal salt sulfonate group such as sodium sulfophthalic acid, 4-sodium sulfophthalic acid, or ester-forming derivatives thereof
It can be obtained by adding and copolymerizing. Further, a small amount of other components may be copolymerized if necessary. The fiber obtained by the present invention is a composite fiber in which copolymerized polyester (A) and polyethylene terephthalate (B) are eccentrically joined, and is a latent crimped fiber that develops a spiral crimp upon relaxation heat treatment. Although the composite form is not particularly limited, a side-by-side type is preferable to a core-sheath type. Also,
A small amount of additives such as matting agents, gloss improvers, antistatic agents, etc. may be added, and the fiber cross-sectional shape is not limited to a circular cross-section, but may also be a triangular cross-section or other irregular cross-section, and of course, a hollow cross-section may also be used. good. The copolymerization ratio of the structural unit having a metal salt sulfonate group in the copolymerized polyester (A) is 3 to 6.
Mol% is appropriate. If it is less than 3 mol %, the ability to develop crimp is insufficient, and if it exceeds 6 mol %, the melting point of the polyester and the strength of the fiber are significantly lowered, making it unsuitable for general use. In order to obtain a nonwoven fabric with a high degree of elastic recovery, the average number of crimps of the fibers constituting the nonwoven fabric must be 50.
pcs/25mm or more. More preferably, the number is 55 pieces/25 mm or more. On the other hand, when forming a web using a carding machine, the average number of crimps of the fibers is 18.
If the number exceeds 25mm, neps etc. will occur and the uniformity of the non-woven fabric will deteriorate. Therefore, when forming a web using a carding machine, the average number of fiber crimps is 18/
less than 25 mm, and after web forming, the web is
A non-woven fabric is formed by heat treatment at a temperature of 0.degree. Such fibers are manufactured by controlling the intrinsic viscosity of the copolymerized polyester (A) and polyethylene terephthalate (B), the copolymerization ratio of the structural unit having a metal sulfonate group in the copolymerized polyester (A), the composite ratio of the two components, the spinning speed, and This can be obtained by appropriately selecting the stretching heat treatment conditions. For example, as a copolymerized polyester (A), 5-
Polyethylene terephthalate copolymerized polyester copolymerized with sodium sulfoisophthalic acid (hereinafter referred to as SIP) is used as the polyester (B), and in the case of a composite fiber with a composite ratio of 1:1, the copolymerized polyester is used.
When the SIP component of (A) is 4 to 6 mol%, the intrinsic viscosity is 0.4
-0.5, the intrinsic viscosity of the polyester (B) is preferably 0.5-0.8, the spinning speed is 1100 m/min or more, and the stretching and tensioning heat treatment temperature is preferably about 145-170°C. In addition, when the SIP component of the copolymerized polyester (A) is 3 to 4 mol%, the intrinsic viscosity of the polyester (A) is 0.45
~0.55, the intrinsic viscosity of polyester (B) is 0.45~0.75
It is preferable that the spinning speed is 1300 m/min or more and the stretching and tensioning heat treatment temperature is about 120 to 145°C. As mentioned above, in order to obtain a nonwoven fabric with high stretchability and excellent elastic recovery, the number of crimps of the composite fibers constituting part or all of the nonwoven fabric should be 50/50.
It is necessary to set it to 25 mm or more, preferably 55 pieces/25 mm or more. The nonwoven fabric of the present invention is not made of 100% polyester fiber in terms of usage and functionality, but can also be blended with natural fibers such as cotton and wool. In addition, from the viewpoint of dimensional stability, etc., a method is often used in which a fibrous binder is mixed and thermally bonded. In such cases, the average number of crimp of the fibers that make up the nonwoven fabric is
The number should be 50 pieces/25 mm or more, preferably 55 pieces/25 mm or more. For example, in order to obtain a preferable high-elasticity nonwoven fabric made by blending 25% polyester fiber with a number of crimps of 17/25 mm, 10% binder fiber, and 65% conjugate fiber of the present invention, the conjugate fiber of the present invention The number of crimps after heat treatment may be set to 70/25 mm or more. (Examples) Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto. The methods for measuring the various physical properties described in the present invention are as follows. Intrinsic viscosity: Measured at 20℃ in a mixed solvent of equal amounts of phenol and tetrachloroethane. Fineness: Measured using JIS L1015 7.5.1A method. Number of crimp: Measured using JIS L1015 7.12.1 method. Nonwoven fabric strength, nonwoven fabric elongation, elastic recovery rate: A sample of nonwoven fabric cut into a width of 25 mm is used. Nonwoven fabric strength and nonwoven fabric elongation were measured using a constant speed extension type tensile tester at a sample length of 100 mm and a tensile speed of 100 mm/min. The elastic recovery rate was determined by measuring the sample length using a constant speed extension type tensile tester.
Measured at 100 mm and tensile speed of 100 mm/min, and calculated from the following formula. Elastic recovery rate = B-C/B x 100 (%) However, here, B is 80% of the elongation at cutting of the nonwoven fabric.
After measuring the value of B, the load is removed and C indicates the elongation relative to the length of the sample before measurement after being left for 1 minute. 1 Creation of raw cotton Raw cotton A Copolymerized polyester (A) is a polyethylene terephthalate based polyester copolymerized with 5.1 mol% of SIP component and has an intrinsic viscosity of 0.470, and polyester (B) is polyethylene terephthalate with an intrinsic viscosity of 0.687 at a composite weight ratio of 1:1. Spun as a side-by-side composite fiber, and then combine the undrawn yarns so that the toe denier after drawing is 350,000 deniers,
Stretching temperature 67℃, stretching speed 125m/min, stretching ratio 2.3
Stretching is carried out at 100%, followed by tension heat treatment at a temperature of 162
After heat treatment at °C, the fibers were mechanically crimped using a staff box and cut to 51 mm to obtain staple fibers. Other spinning conditions are spinning temperature 297℃,
The number of spinneret holes was 351, the take-up speed was 1175 m/min, and the discharge rate was 218 g/min. Raw cotton B (for comparison) The undrawn yarn used in raw cotton A was stretched at a stretching temperature of 67°C, a stretching speed of 125 m/min, and a stretching ratio of 2.45 times, followed by relaxation heat treatment at 145°C for 5 minutes. , and cut to 51 mm to obtain staple fibers. Incidentally, crimp appeared naturally without using staff avocados. Raw cotton C (for comparison) Polyethylene terephthalate-based polyester copolymerized with 2.6 mol% of SIP component as the copolymerized polyester (A), with an intrinsic viscosity of 0.536, and polyethylene terephthalate with an intrinsic viscosity of 0.687 as the polyester (B), in the same manner as raw cotton A. After spinning (however, the discharge rate was 251 g/min), it was drawn at a draw ratio of 2.7 times in the same manner as raw cotton A, and mechanically crimped to obtain a staple fiber. Raw cotton D Copolymerized polyester (A) is a polyethylene terephthalate polyester copolymerized with 3.3 mol% of the SIP component, with an intrinsic viscosity of 0.536, and polyester (B) is polyethylene terephthalate with an intrinsic viscosity of 0.553, and spun and stretched in the same manner as raw cotton A. A staple fiber was also obtained by applying mechanical crimp (discharge rate: 245 g/min, tension heat treatment temperature: 130° C., stretching ratio: 2.6 times). Table 1 shows the yarn properties of the raw cotton obtained by the above method.
【表】
2 ウエブの作成
(実施例−1,4,5及び比較例−1,2の場
合)
1)で得たステープルフアイバーとユニチカ(株)
ポリエステルバインダ繊維“メルテイ”2d×51
mmを85:15の重量割合でオープナーにて混綿した
後、ローラー型梳綿機で目付35g/m2のウエブを
作成した。その中で原綿Bを用いた場合(これを
比較例1とする)では、ネツプおよび未解繊部が
多く満足なウエブを作成することができず、ウエ
ブ作成を断念した。
(実施例−2,3及び比較例−3の場合)
1)の実施例−1〜3で得たステープルフアイ
バーと他の綿を表−2のごとき重量割合でオープ
ナーにて混綿した後、ローラー型梳綿機で目付35
g/m2のウエブを作成した。[Table] 2 Creation of web (for Examples 1, 4, 5 and Comparative Examples 1 and 2) Staple fiber obtained in 1) and Unitika Co., Ltd.
Polyester binder fiber “Meltei” 2d×51
After mixing the cotton in an opener at a weight ratio of 85:15, a web with a basis weight of 35 g/m 2 was prepared using a roller carding machine. Among them, when raw cotton B was used (this is referred to as Comparative Example 1), it was not possible to create a satisfactory web with many neps and undefinated parts, and the web creation was abandoned. (In the case of Examples 2 and 3 and Comparative Example 3) The staple fibers obtained in Examples 1 to 3 in 1) and other cotton were mixed in an opener in the weight proportions shown in Table 2, and then mixed with a roller. Weight 35 with type carding machine
A web of g/m 2 was prepared.
【表】
3 熱処理
(実施−1〜4、比較例−2,3の場合)
作成したウエブを周長1.4m、周速1.4m/分、
表面温度115℃の熱ロールで一次熱処理を行い、
次いで160℃の熱オープンで5分間自由熱処理を
行い不織布を得た。
(実施例−5の場合)
作成したウエブを135℃の熱オーブンで5分間
自由熱処理を行い不織布を得た。
4 不織布の物性測定結果
前述のごとく作成した不織布を、既述の方法で
測定した不織布の物性を表−3に示す。[Table] 3 Heat treatment (Execution-1 to 4, Comparative Examples-2 and 3)
Primary heat treatment is performed using a heat roll with a surface temperature of 115℃.
Next, a free heat treatment was performed for 5 minutes at 160° C. to obtain a nonwoven fabric. (In the case of Example 5) The produced web was subjected to free heat treatment in a thermal oven at 135° C. for 5 minutes to obtain a nonwoven fabric. 4 Physical property measurement results of nonwoven fabric Table 3 shows the physical properties of the nonwoven fabric prepared as described above, which were measured by the method described above.
【表】
(発明の効果)
以上のごとく、本発明の不織布は高伸長性であ
り、しかも弾性回復性も優れている。[Table] (Effects of the Invention) As described above, the nonwoven fabric of the present invention has high elongation properties and also has excellent elastic recovery properties.
Claims (1)
〜6モル%共重合したエチレンテレフタレート単
位主体の共重合ポリエステル(A)とポリエチレンテ
レフタレート(B)の2成分からなり、熱処理前の捲
縮数が18個/25mm以下の複合繊維を、不織布を構
成する繊維全体の45重量%以上とし、該複合繊維
と異なるポリエステル繊維および/又は低融点ポ
リエステルバインダー繊維と混合してウエブとな
した後、130℃以上の熱処理を施して、前記複合
繊維の捲縮数を50個/25mm以上発現させ不織布と
することを特徴とするポリエステル系高伸長性不
織布の製造方法。1 3 structural units having a metal salt sulfonate group
The non-woven fabric is composed of two components: copolymerized polyester (A) mainly composed of ethylene terephthalate units copolymerized with ~6 mol% and polyethylene terephthalate (B), and the composite fiber has a number of crimps of 18/25 mm or less before heat treatment. 45% by weight or more of the total fibers to be mixed with the composite fibers and different polyester fibers and/or low melting point polyester binder fibers to form a web, and then heat treated at 130°C or higher to crimp the composite fibers. A method for producing a polyester-based highly elongated nonwoven fabric, characterized by producing a nonwoven fabric with a number of 50 pieces/25 mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60157823A JPS6221855A (en) | 1985-07-17 | 1985-07-17 | Production of polyester nonwoven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60157823A JPS6221855A (en) | 1985-07-17 | 1985-07-17 | Production of polyester nonwoven fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6221855A JPS6221855A (en) | 1987-01-30 |
JPH026864B2 true JPH026864B2 (en) | 1990-02-14 |
Family
ID=15658088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60157823A Granted JPS6221855A (en) | 1985-07-17 | 1985-07-17 | Production of polyester nonwoven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6221855A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2545248B2 (en) * | 1987-12-04 | 1996-10-16 | チッソ株式会社 | Stretchable non-woven fabric |
JPH01177293U (en) * | 1988-06-06 | 1989-12-18 | ||
JP2808702B2 (en) * | 1989-07-31 | 1998-10-08 | 東レ株式会社 | Polyester non-woven fabric |
JP2598162B2 (en) * | 1990-10-12 | 1997-04-09 | 帝人株式会社 | High elastic nonwoven |
JP4905954B2 (en) * | 2006-12-04 | 2012-03-28 | 花王株式会社 | Fiber sheet, method for producing the same, and absorbent article using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3038236A (en) * | 1954-02-26 | 1962-06-12 | Du Pont | Crimped textile products |
JPS506584A (en) * | 1973-01-23 | 1975-01-23 | ||
JPS59151956A (en) * | 1983-02-09 | 1984-08-30 | 日本バイリーン株式会社 | skin patch sheet |
JPS59168159A (en) * | 1983-03-14 | 1984-09-21 | 帝人株式会社 | Highly elastic nonwoven fabric |
JPS6011131A (en) * | 1983-06-30 | 1985-01-21 | Mitsubishi Electric Corp | Excitation device |
-
1985
- 1985-07-17 JP JP60157823A patent/JPS6221855A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3038236A (en) * | 1954-02-26 | 1962-06-12 | Du Pont | Crimped textile products |
JPS506584A (en) * | 1973-01-23 | 1975-01-23 | ||
JPS59151956A (en) * | 1983-02-09 | 1984-08-30 | 日本バイリーン株式会社 | skin patch sheet |
JPS59168159A (en) * | 1983-03-14 | 1984-09-21 | 帝人株式会社 | Highly elastic nonwoven fabric |
JPS6011131A (en) * | 1983-06-30 | 1985-01-21 | Mitsubishi Electric Corp | Excitation device |
Also Published As
Publication number | Publication date |
---|---|
JPS6221855A (en) | 1987-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5484383B2 (en) | Method for producing poly (trimethylene terephthalate) staple fiber, and poly (trimethylene terephthalate) staple fiber, yarn and fabric | |
JP3801562B2 (en) | Spun yarn | |
JPH045769B2 (en) | ||
JPH026864B2 (en) | ||
JP2703294B2 (en) | Polyester conjugate fiber, nonwoven fabric containing the fiber, and method for producing the nonwoven fabric | |
JP3028711B2 (en) | Nonwoven fabric made of latently crimpable polyester composite fiber | |
JP2000328370A (en) | Polyester composite fiber and nonwoven fabric including the same | |
JPH07292534A (en) | Spun yarn and woven or knit fabric using the same | |
JP3055381B2 (en) | Woven fabric using stretchable spun yarn | |
JP2655557B2 (en) | Polyester composite fiber | |
JPH032965B2 (en) | ||
JPH0921025A (en) | Spun yarn | |
JPS6411742B2 (en) | ||
JP2013044070A (en) | Latent crimpable polyester conjugate fiber and nonwoven fabric | |
JPH03185116A (en) | Polyester conjugate fiber | |
KR910004695B1 (en) | Non-woven | |
JP3736945B2 (en) | Latent crimped polyester composite fiber | |
JP2656583B2 (en) | Polyester composite staple fiber for elastic non-woven fabric | |
JPH09157955A (en) | Latent crimpable polyester conjugate fiber | |
JPH03269147A (en) | Production of nonwoven polyester fabric | |
JPH09195126A (en) | Polyester conjugate fiber having latent crimpability | |
JPH09228172A (en) | Spun yarn comprising fibers having latent crimping ability | |
JPH09228222A (en) | Fiber laminate comprising fiber having latent crimping ability | |
JP2016183425A (en) | Latent crimped conjugated fiber | |
JP2858971B2 (en) | Polyester composite fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |