[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH026761B2 - - Google Patents

Info

Publication number
JPH026761B2
JPH026761B2 JP57157058A JP15705882A JPH026761B2 JP H026761 B2 JPH026761 B2 JP H026761B2 JP 57157058 A JP57157058 A JP 57157058A JP 15705882 A JP15705882 A JP 15705882A JP H026761 B2 JPH026761 B2 JP H026761B2
Authority
JP
Japan
Prior art keywords
methylglucose
polysaccharide
tri
repeating unit
repeating units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57157058A
Other languages
Japanese (ja)
Other versions
JPS5945301A (en
Inventor
Akira Misaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP57157058A priority Critical patent/JPS5945301A/en
Publication of JPS5945301A publication Critical patent/JPS5945301A/en
Publication of JPH026761B2 publication Critical patent/JPH026761B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多糖類及びその製造法に関するもので
あり、更に詳しくは担子菌類であるフクロタケ由
来の多糖類及びフクロタケからこの多糖類を抽出
採取するその製造法に関するものである。 〔従来の技術及び発明が解決しようとする問題
点〕 自己を復製し修復しうる生体はその機能維持の
ためアミノ酸、脂質などの多種類の低分子物質と
ともに蛋白質、核酸、多糖類などの高分子物質か
ら成り立つている。 従つて多糖類は天然に広く存在する。そして食
品、医薬品等として広く用いられている。これら
の多糖類のうち、担子菌類由来の多糖類が近年抗
コレステロール薬、免疫賦活剤などとして注目さ
れている。 この様な多糖類としてはシイタケよりのレンチ
ナン及びスエヒロタケよりのシゾフイランが特に
よく知られている。 これらはいずれもβ―1,3―グルカンを主鎖
とし、α―1,6―結合でグルコースが分岐して
いると云われている。 担子菌,ブクリヨウよりのパキマン,スクレロ
チウム属の微生物よりのスクレログルカン等も同
様の構造を持つと云われている。またペスタロチ
ア属に属する微生物の産生する多糖はβ―1,3
―グルカンの主鎖にβ―1,6―結合でD―グル
コピラノシル基及びD―グルコピラノシル―D―
グルコピラノシル基の側鎖の付いた構造であると
されているが、その側鎖の数は極めて多く、主鎖
100個当り約55ないし約75個であるとされている
(特開昭56―34702号公報)。 フクロタケ属に属する担子菌、キヌオオフクロ
タケ、及びシロフクロタケからは水、低級アルコ
ール、低級ケトン又はエートル等の溶媒による抽
出で抗腫瘍性の多糖が得られることが知られてい
る(特開昭57―38723号公報)。しかしその構造、
物性等は全く知られていない。 またフクロタケの菌糸体を希アルカリ溶液で抽
出することにより、サンタニン2と呼ばれる血圧
降下性物質を調製することが知られている(特開
昭57―47483号公報)。しかしこの物質は多糖のみ
から成る物質ではない。 〔問題点を解決する手段〕 本発明は本質的に式 〔→3)β−D−Glu(1〕→…… () で表わされる第1のくり返し単位、式 で表わされる第2のくり返し単位及び式 で表わされる第3のくり返し単位(各式中Gluは
グルコピラノシル基を、数字は結合位置を表わ
す)からなり、第1(式())、第2(式())
及び式3())のくり返し単位の個数の和100当
り、平均で第3(式())のくり返し単位の個数
が約4ないし約12個で、第2(式())及び第3
(式())のくり返し単位の個数の和が同じく約
16ないし約33個である多糖類を提供するものであ
る。 〔作 用〕 本発明の多糖類の物理的、科学的性質は以下の
通りである。 (1) 溶解性 アルカリ水溶液及びジメチルスルホキシドに
可溶で、メタノール、エタノール、n―ブタノ
ール、アセトン、ベンゼン、トルエン、酢酸エ
チル、プロピレングルコール、ピリジン等に実
質的に不溶である。乾燥した本発明の多糖類は
水に難溶性であるが、超音波処理などの操作を
加えることにより、水に可溶化できる。また塩
類水溶液にはわずかに溶ける。低濃度でアルカ
リ水溶液に溶解したのち中和すると溶解したま
まで残る。 (2) 旋光度 本発明の多糖類の0.5規定水酸化ナトリウム
水溶液(0.5%)中での比旋光度は 〔α〕D 25:約−12゜ である。 (3) 元素分析値 注意深く充分に乾燥するとCnH2nOnから計
算される値に近い値を与えるが、通常少量の水
分を含有し、 C:43〜45% H:5.6〜6.4% N:定量限界以下 程度の値を与える。ハロゲン及び硫黄は検出さ
れない。 (4) 赤外線吸収分析 KBr錠剤法による赤外線吸収スペクトルを
第1図に示す。896cm-1における吸収はD―グ
ルコース残基のβ―結合に特有なものである。 (5) C13−NMR分析 δ値:103.6,86.8,76.9,75.2,74.2,
(ppm)73.3,70.7,69.0及び61.4にピークを示
す。 (6) 発色反応 アンスロン反応 :陽性 ニンヒドリン反応 :陰性 デイシユのカルバゾール反応 :陰性 (7) 分子量 濃度0.1モル/、PH8.6のトリス塩酸塩緩衝
液を移動相とするゲル過高速液体クロマトグ
ラフイにおいて分子量約30万ないし約280万を
中心に溶出する。 (8) 塩化セチルピリジニウムとの反応 水溶液中塩化セチルピリジニウムと沈澱を生
成しない。 (9) 構成糖類 本発明の多糖類を1規定硫酸水溶液中、100
℃で加水分解した後、ペーパークロマトグラフ
イにより、及びアルジトールアセテートに誘導
後、ガスクロマトグラフイにより同定するとグ
ルコースのみが検出される。 (10) 結合構式 メチル化分析により、モル比で 2,3,4,6―テトラ―O―メチルグルコ
ース 1 2,4,6―トリ―O―メチルグルコース 約2.7ないし約5.0 2,3,4―トリ―O―メチルグルコース 約0.10ないし約0.35 及び 2,4―ジ―O―メチルグルコース 約0.7ないし約1.3 を与える。 エキソ型のβ―1,3―グルカナーゼを用いて
酵素分解すると、グルコースとゲンチオビオーズ
を生成する。 またメタ過ヨウ素ナトリウムで充分に酸化し、
水素化ホウ素ナトリウムで還元後、緩和な条件、
例えば0.1ないし0.2規定硫酸で、80ないし100℃、
1〜2時間程度加水分解すると側鎖に相当するグ
ルコース基の除去された直鎖状β―1,3―グル
カンが得られる。このものはメチル化分析で2,
4,6―トリ―O―メチルグルコースと痕跡量の
2,3,4,6―テトラ―O―メチルグルコース
を与える。この直鎖状β―1,3―グルカンをエ
キソ型β―1,3―グルカナーゼで酵素分解する
とグルコースのみが生成する。 従つて本発明の多糖類の主鎖は実質上β―1,
3―結合のグルコース残基のみから成る。 このことから本発明の多糖類は連続したβ―
1,3―グルコシド結合の主鎖よりなり、概略β
―1,3―結合のグルコース残基3〜6個の1個
の割合で、その6位にβ―結合で主として単独の
グルコース残基よりなる側鎖を有するが、側鎖約
3個のうち1個はβ―1,6―結合した2個のグ
ルコース残基からなるものと認められる。それ
故、本発明の多糖類の基本構造は前述の一般式の
くり返し単位からなるということができる。 これらのことから本発明の多糖は公知のスクレ
ログルカン、シゾフイラン及びキクラゲ子実体か
ら得られる分枝型β―1,3―グルカンよりも枝
分れの頻度が少なくかつ分枝中にわずかのβ―
1,6―結合で2ケ以上連続したグルコース残基
からなる分枝をもつ多糖類である。 またペスタロチア属の微生物の産生する多糖類
と比べると枝分れの頻度が著しく小さい。 本発明の多糖類は水で抽出されないから特開昭
57―38723号公報で開示された多糖とは別の物質
である。同様に本発明の多糖類は前述したサンタ
ニン2とは後者が多量の窒素を含み、ニンビトリ
ン反応陽性(従つてこのものは糖蛋白質であると
推定される)であることから明らかに別異の物質
である。 本発明の多糖類は免疫賦活作用及び抗腫瘍作用
を有し、抗ウイルス作用なども期待できる。 本発明の多糖類はフクロタケ属に属する担子
菌、特にフクロタケ(Volvariella volcacea)を
アルカリ水溶液で抽出することにより容易に調製
することができる。すなわち本発明はまたフクロ
タケをアルカリ水溶液で抽出して、本発明の多糖
類を製造する方法を提供するものである。 本発明の方法で原料として用いるフクロタケは
その子実体及び菌糸体のいずれであつてもよい。
そしてこれらは生の状態であつても乾燥品であつ
てもよい。抽出にあたり原料をあらかじめ細断す
ること抽出効率をあげるために有効である。 抽出に用いるアルカリ水溶液としては、例えば
水酸化ナトリウム、水酸化カリウム等のアルカリ
金属水酸化物を用いることができる。特に水酸化
ナトリウム水溶液が便利である。 用いるアルカリの濃度は特に限定的ではない
が、約0.1規定ないし約3規定の範囲内で用いる
のが好ましい。 抽出に用いるアルカリ水溶液の量は通常1回の
抽出あたり、原料乾燥重量の約5ないし約100倍
量程度である。この量は少なすぎれば抽出効率が
悪く、多すぎれば後処理が面倒である。 この抽出工程においては多糖の分解又は過酸化
等の変性を防ぐため、窒素等の不活性ガスの雰囲
気下で抽出を行うことが好ましい。またさらに水
素化ホウ素ナトリウム等の還元剤の存在下で行つ
てもよい。 抽出温度には格別の限定はないが、約30℃以下
が望ましい。さらに高温、例えば通常の熱アルカ
リ抽出の温度条件である60ないし80℃程度で抽出
すると、さらに多くの分岐を有する多糖類が抽出
されるからである。抽出操作はくり返し行つても
よい。 本発明に用いるフクロタケも自己の生命を維持
するための多くの成分をその菌体内に含んでい
る。従つてアルカリ水溶液でそのまま抽出すれば
種々の夾雑物が目的の多糖類中に含まれてしま
う。この抽出液から目的の多糖類を精製すること
は可能であるが煩雑な工程を必要とする。本発明
の多糖類は水、アルコール等の溶媒では抽出され
ないので、アルカリ水溶液で抽出する工程に先だ
ち、水、熱水、緩衝水溶液、アルコール又はこれ
らを組合せた溶媒により、これらの夾雑物を除去
しておくことが好ましい。なおこの様な操作によ
りアルカリ水溶液抽出の際夾雑物となる蛋白質、
マンガノラクトン、グリコーゲン様多糖等をあら
かじめ除去することができる。 本発明の方法に従つて抽出を行つたアルカリ水
溶液は塩酸、酢酸等の酸で中和する。通常この状
態では目的の多糖は塩溶液中に溶解している。多
少の沈澱を生ずる場合もある。所望によりこの中
和液に塩化セチルピリジニウムなどの第4級アン
モニウム塩を加えて夾雑する加能性のある物質を
不溶性沈澱として析出させる操作を行つてもよ
い。この沈澱は過、遠心分離等の通常の分離手
段により除去する。こうして得た中和液をそのま
ま又は濃縮後水で透析し、透析液を乾燥すること
により目的の多糖類を得ることができる。中和液
をそのまま又は濃縮した後、これにアルコール、
アセトンなどの沈澱剤を加え、得られた沈澱を所
望により水に対して透析し、乾燥して目的の多糖
類を固体として得てもよい。その際の乾燥方法と
しては、減圧乾燥、凍結乾燥、墳霧乾燥等の適当
な乾燥手段を用いることができる。 〔実施例〕 以下本発明を実施例により更に詳細に説明す
る。 実施例 1 風乾したフクロタケ子実体100gを0.9%の食塩
を含むPH7.0の0.1Mリン酸塩緩衝液1に一夜浸
した後、ミキサーおよびホモジナイザーで破砕し
た。さらにこれに同じリン酸塩緩衝液2を加え
て4時間かくはんし遠心分離した。得られた固形
分を同じリン酸塩緩衝液3に入れホモジナイザ
ーで分散させた後、4時間かくはん、遠心分離し
沈澱を得た。この沈澱を3の水に分散させ、オ
ートクレープ中、120℃で30分間加熱した。冷却
後遠心分離して沈澱を得た。この熱水抽出処理を
さらに4回くり返し、水溶性画分をほぼ完全に抽
出除去した。 こうして得られた水不溶性画分を、水素化ホウ
素ナトリウム5gを溶解させた1規定水酸化ナト
リウム水溶液3に分散させた。窒素気流下に25
℃で4時間かくはんした後遠心分離した。この沈
澱に対して1規定水酸化ナトリウム水溶液による
抽出操作をくり返した。両水酸化ナトリウム抽出
液を合併し、これを濃塩酸で中和し、PH6.5に調
整した。 こうして得た抽出液に塩化セチルピリジニウム
水溶液(10%)をかくはん下に、その添加によつ
てあらたに沈澱が生じなくなるまで滴下し、つい
で10.000Gで30分間遠心分離を行い、生じた沈澱
を除去した。この上清に等容のメタノールを加え
てかくはんし、多糖類を沈澱させた。この沈澱を
1のメタノーで洗浄した後、蒸溜水500mlに加
えホモミキサーで分散後流水中に5日間透析し
た。 透析内液を凍結乾燥し、目的物13.0gを得た。 元素分析値 C:44.03% H:6.05% N:定量限界以下 比旋光度 〔α〕25 D:−12゜(濃度0.5〜、0.5規定水酸化ナト
リウム溶液中) 赤外吸収スペクトル 第1図にKBr錠剤法による、フーリエ変換赤
外吸収スペクトルを示す。 分子量 0.1M、PH8.6のトリス塩酸塩緩衝液を移動相と
して、東洋曹達工業(株)製G5000PWカラムを用い
たゲル過高速液体クロマトグラフイで分子量約
68万のリテンシヨンタイムの位置に溶出した。 C13―NMR分析、発色反応及び塩化セチルピ
リジニウムとの反応 前述した物理的、化学的性質と同じであつた。 構成糖及び結合様式 得られた多糖をメチル化し、さらに加水分解し
た。得られたメチル化糖をアルジトールアセテー
トに誘導した。これをガスクロマトグラフイで分
析した。得られたメチル化糖のモル比は 2,3,4,6―テトラ―O―メチルグルコース
1 2,4,6―トリ―O―メチルグルコース 3.76 2,3,4―トリ―O―メチルグルコース 0.33 2,4―ジ―O―メチルグルコース 1.01 別にこの多糖をエキソ型β―1,3―グルカナ
ーゼで酵素分解した。グルコースとゲンチオビオ
ースが得られた。そのモル比は前者1モルに対し
て後者0.177モルであつた。 さらにまたこの多糖をメタ過ヨウ素酸ナトリウ
ムで充分に酸化し、水素化ホウ素ナトリウムで還
元した。これを更に0.1期定の硫酸中、100℃で2
時間加水分解したところ、側鎖に相当するグルコ
ース基の除去された直鎖状のグルカンの沈澱が得
られた。この沈澱を同様にしてメチル化分析を行
つたところ2,4,6―トリ―O―メチルグルコ
ースと痕跡量の2,3,4,6―テトラ―O―メ
チルグルコースを与えた。 またこの沈澱をエキソ型β―1,3―グルカナ
ーゼで酵素分解したところグルコースのみが生成
した。 従つて得られた多糖は前述した式(),()
及び()のくり返し単位からなりその個数の比
がこれらのくり返し単位の合計の個数100個当り、
式()のくり返し単位7個、式()のくり返
し単位と式()のくり返しし単位との個数の和
は21個であつた。 実施例 2 アルカリ水溶液抽出の前の工程を実施例1と同
様にして行つた後、抽出温度を20℃に変えた以外
は実施例1と同様にしてアルカリ水溶液抽出を行
つた。得られた抽出液を塩酸でPH6.5に調整した
後、実施例1と同様にして塩化セチルピリジニウ
ム水溶液(10%)を加え生ずる沈澱を遠心分離に
より除去した。上清を2日間流水中に透析した
後、透析内液を3にまで40℃で減圧下に濃縮し
た。これに等容のメタノールを加え生じた沈澱を
10000Gで30分間遠心分離した。この沈澱を300ml
のメタノールに加え約1時間かくはん遠心分離し
沈澱を得た。このメタノールによる洗浄をさらに
2度くり返したのち、沈澱を減圧乾燥し目的物
10.5gを得た。 こうして得た多糖について実施例1と同様にし
て分析を行なつた。 元素分析値 C:44.31% H:6.10% N:定量限界以下 分子量 分子量約55万の位置に溶出した。 メチル比糖のモル比 2,3,4,6―テトラ―O―メチルグルコー
ス 1 2.4,6―トリ―O―メチルグルコース 4.26 2,3,4―トリ―O―メチルグルコース 0.32 2,4―ジ―O―メチルグルコース 1.01 エキソ型β―1,3―グルカナーゼ消化で得ら
れたグルコースとゲンチオビオースとのモル比 1:0.160 くり返し単位の割合 合計個数100個当り式()のくり返し単位6
個で、式()のくり返し単位と式()のくり
返し単位の個数の和は19個であつた。 その他の結果は実施例1の場合と実質的に同一
であつた。 〔発明の効果〕 本発明の多糖類の抗腫瘍剤としての使用例 ICRマウス群で、本発明の多糖類のザルコーマ
180個型腫瘍に対する効果を試験した。 ICRマウス1匹につきザルコーマ180腹水癌細
胞5×166個をそけい部皮下に接種した。実験群
は6匹あてとした。癌細胞移植後、翌日より10日
間、1日1回薬剤を腹腔内に0.1mlずつ投与した。
試験群には本発明の多糖類(実施例1で得たも
の)を第1表に示した投与量になる様、生理食塩
水に溶解して用い、対照群には生理食塩水のみを
投与した。腫瘍移植後35日目に癌を摘出してその
重量を測定した。各群の腫瘍抑制率は次式により
算出した。 抑制率(%)=(1−試験群の平均腫瘍重量/対象群の平
均腫瘍重量) ×100 結果を第1表に示す。 【表】
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a polysaccharide and a method for producing the same, and more specifically, a polysaccharide derived from Fukurotake, which is a basidiomycete, and the extraction and collection of this polysaccharide from Fukurotake. It is related to its manufacturing method. [Problems to be solved by conventional techniques and inventions] Living organisms that can reproduce and repair themselves use many kinds of low-molecular substances such as amino acids and lipids as well as macromolecules such as proteins, nucleic acids, and polysaccharides in order to maintain their functions. It is made up of matter. Polysaccharides are therefore widely occurring in nature. It is widely used as food, medicine, etc. Among these polysaccharides, polysaccharides derived from basidiomycetes have recently attracted attention as anticholesterol drugs, immunostimulants, and the like. As such polysaccharides, lentinan from Shiitake mushroom and schizophyllan from Swahirotake mushroom are particularly well known. All of these are said to have β-1,3-glucan as the main chain, with glucose branched through α-1,6-bonds. It is said that basidiomycetes, pachyman from Sclerotium, and scleroglucans from microorganisms of the genus Sclerotium have similar structures. In addition, the polysaccharide produced by microorganisms belonging to the genus Pestalotia is β-1,3
-D-glucopyranosyl group and D-glucopyranosyl-D- with β-1,6-bonds in the main chain of glucan
It is said to have a structure with side chains of glucopyranosyl groups, but the number of side chains is extremely large, and the main chain
It is said to be about 55 to about 75 pieces per 100 pieces (Japanese Unexamined Patent Publication No. 34702/1983). It is known that anti-tumor polysaccharides can be obtained from Basidiomycetes, Cysophyllus spp., and Pseudophytes belonging to the genus Fukurotake by extraction with solvents such as water, lower alcohols, lower ketones, or ethers (Japanese Patent Application Laid-Open No. 1983-1997) - Publication No. 38723). However, its structure
Its physical properties are completely unknown. It is also known that a hypotensive substance called Santanin 2 can be prepared by extracting the mycelium of Fukurotake with a dilute alkaline solution (Japanese Unexamined Patent Publication No. 47483/1983). However, this substance is not composed only of polysaccharides. [Means for solving the problem] The present invention essentially consists of a first repeating unit represented by the formula [→3)β-D-Glu(1]→... () The second repeating unit and expression expressed by It consists of a third repeating unit represented by
and the number of repeating units of the third (formula ()) is about 4 to about 12 on average per 100 repeating units of the second (formula ()) and the third
The sum of the repeating units in (formula ()) is also approximately
16 to about 33 polysaccharides. [Function] The physical and scientific properties of the polysaccharide of the present invention are as follows. (1) Solubility Soluble in aqueous alkaline solutions and dimethyl sulfoxide, and substantially insoluble in methanol, ethanol, n-butanol, acetone, benzene, toluene, ethyl acetate, propylene glycol, pyridine, etc. Although the dried polysaccharide of the present invention is sparingly soluble in water, it can be made solubilized in water by applying operations such as ultrasonication. It is also slightly soluble in aqueous salt solutions. When it is dissolved in an alkaline aqueous solution at a low concentration and then neutralized, it remains dissolved. (2) Optical rotation The specific optical rotation of the polysaccharide of the present invention in a 0.5N aqueous sodium hydroxide solution (0.5%) is [α] D 25 :about -12°. (3) Elemental analysis values If carefully and thoroughly dried, it will give a value close to the value calculated from CnH 2 nOn, but it usually contains a small amount of water, C: 43-45% H: 5.6-6.4% N: Limit of quantification Give the following value. Halogens and sulfur are not detected. (4) Infrared absorption analysis Figure 1 shows the infrared absorption spectrum obtained by the KBr tablet method. The absorption at 896 cm -1 is characteristic of the β-bond of D-glucose residues. (5) C 13 −NMR analysis δ value: 103.6, 86.8, 76.9, 75.2, 74.2,
(ppm) Shows peaks at 73.3, 70.7, 69.0 and 61.4. (6) Color reaction Anthrone reaction: Positive Ninhydrin reaction: Negative Dish carbazole reaction: Negative (7) Molecular weight In gel permeable high performance liquid chromatography using Tris hydrochloride buffer with a concentration of 0.1 mol/PH8.6 as the mobile phase. It mainly elutes with a molecular weight of about 300,000 to about 2.8 million. (8) Reaction with cetylpyridinium chloride Does not form a precipitate with cetylpyridinium chloride in aqueous solution. (9) Constituent Saccharide The polysaccharide of the present invention was dissolved in a 1N sulfuric acid aqueous solution at 100%
After hydrolysis at °C, only glucose is detected by paper chromatography and, after derivation into alditol acetate, by gas chromatography. (10) Bond structure According to methylation analysis, the molar ratio is 2,3,4,6-tetra-O-methylglucose 1 2,4,6-tri-O-methylglucose about 2.7 to about 5.0 2,3, 4-tri-O-methylglucose from about 0.10 to about 0.35 and 2,4-di-O-methylglucose from about 0.7 to about 1.3. Enzymatic decomposition using exo-type β-1,3-glucanase produces glucose and gentiobiose. In addition, it is sufficiently oxidized with sodium metaperiodate,
After reduction with sodium borohydride, mild conditions,
For example, 0.1 to 0.2N sulfuric acid, 80 to 100℃,
When hydrolyzed for about 1 to 2 hours, linear β-1,3-glucan from which glucose groups corresponding to side chains have been removed is obtained. This one was found to be 2 in methylation analysis.
Gives 4,6-tri-O-methylglucose and trace amounts of 2,3,4,6-tetra-O-methylglucose. When this linear β-1,3-glucan is enzymatically decomposed with exo-type β-1,3-glucanase, only glucose is produced. Therefore, the main chain of the polysaccharide of the present invention is substantially β-1,
Consists only of 3-linked glucose residues. From this, the polysaccharide of the present invention has continuous β-
Consists of a main chain of 1,3-glucoside bonds, approximately β
One out of every three to six -1,3-bonded glucose residues has a side chain consisting mainly of a single glucose residue with a β-bond at the 6th position, but out of about three side chains, One is recognized to consist of two β-1,6-linked glucose residues. Therefore, it can be said that the basic structure of the polysaccharide of the present invention consists of repeating units of the above-mentioned general formula. Based on these facts, the polysaccharide of the present invention has a lower frequency of branching than the branched β-1,3-glucans obtained from known scleroglucans, schizophyllans, and wood ear fruiting bodies, and has a small amount of β during branching. ―
It is a polysaccharide with branches consisting of two or more consecutive glucose residues in 1,6-bonds. Furthermore, the frequency of branching is significantly lower than that of polysaccharides produced by microorganisms of the genus Pestalotia. Since the polysaccharide of the present invention cannot be extracted with water,
This is a different substance from the polysaccharide disclosed in Publication No. 57-38723. Similarly, the polysaccharide of the present invention is clearly a different substance from the aforementioned santanin 2, as the latter contains a large amount of nitrogen and is positive for the ninvitrin reaction (therefore, it is presumed to be a glycoprotein). It is. The polysaccharide of the present invention has immunostimulatory and antitumor effects, and can also be expected to have antiviral effects. The polysaccharide of the present invention can be easily prepared by extracting a basidiomycete belonging to the genus Volvariella, particularly Volvariella volcacea, with an aqueous alkaline solution. That is, the present invention also provides a method for producing the polysaccharide of the present invention by extracting Fukurotake with an aqueous alkaline solution. The Fukurotake used as a raw material in the method of the present invention may be either its fruiting body or mycelium.
These may be in a raw state or in a dried form. It is effective to shred raw materials before extraction to increase extraction efficiency. As the aqueous alkali solution used for extraction, for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used. In particular, an aqueous sodium hydroxide solution is convenient. The concentration of the alkali used is not particularly limited, but it is preferably used within the range of about 0.1N to about 3N. The amount of alkaline aqueous solution used for extraction is usually about 5 to about 100 times the dry weight of the raw material per extraction. If this amount is too small, the extraction efficiency will be poor, and if it is too large, post-processing will be troublesome. In this extraction step, in order to prevent decomposition of the polysaccharide or denaturation such as peroxidation, it is preferable to perform the extraction under an atmosphere of an inert gas such as nitrogen. Furthermore, the reaction may be carried out in the presence of a reducing agent such as sodium borohydride. There are no particular limitations on the extraction temperature, but it is preferably about 30°C or lower. This is because polysaccharides having even more branches will be extracted if extracted at a higher temperature, for example, about 60 to 80°C, which is the temperature condition for normal hot alkaline extraction. The extraction operation may be repeated. The Fukurotake used in the present invention also contains many components for maintaining its own life within its bacterial body. Therefore, if the polysaccharide is directly extracted with an alkaline aqueous solution, various impurities will be included in the target polysaccharide. Although it is possible to purify the target polysaccharide from this extract, it requires complicated steps. Since the polysaccharide of the present invention cannot be extracted with a solvent such as water or alcohol, these impurities are removed using water, hot water, a buffered aqueous solution, alcohol, or a combination thereof prior to the step of extraction with an alkaline aqueous solution. It is preferable to keep it. In addition, this operation removes proteins that become contaminants during alkaline aqueous extraction.
Manganolactone, glycogen-like polysaccharide, etc. can be removed in advance. The alkaline aqueous solution extracted according to the method of the present invention is neutralized with an acid such as hydrochloric acid or acetic acid. Normally, in this state, the target polysaccharide is dissolved in the salt solution. Some precipitation may occur. If desired, a quaternary ammonium salt such as cetylpyridinium chloride may be added to this neutralized solution to precipitate contaminating substances with additivity as an insoluble precipitate. This precipitate is removed by conventional separation means such as filtration or centrifugation. The target polysaccharide can be obtained by dialyzing the thus obtained neutralized solution as it is or after concentration against water and drying the dialysate. Add alcohol to the neutralized solution as it is or after concentrating it.
A precipitant such as acetone may be added, and the resulting precipitate may be dialyzed against water, if desired, and dried to obtain the desired polysaccharide as a solid. As a drying method at that time, suitable drying means such as reduced pressure drying, freeze drying, and fog drying can be used. [Example] The present invention will be explained in more detail below with reference to Examples. Example 1 100 g of air-dried fruiting bodies of Fukurotake were soaked overnight in 0.1M phosphate buffer 1 of pH 7.0 containing 0.9% sodium chloride, and then crushed using a mixer and a homogenizer. Further, the same phosphate buffer 2 was added to this, followed by stirring and centrifugation for 4 hours. The obtained solid content was placed in the same phosphate buffer solution 3 and dispersed using a homogenizer, followed by stirring for 4 hours and centrifugation to obtain a precipitate. This precipitate was dispersed in 3 water and heated in an autoclave at 120°C for 30 minutes. After cooling, it was centrifuged to obtain a precipitate. This hot water extraction treatment was repeated four more times to almost completely extract and remove the water-soluble fraction. The water-insoluble fraction thus obtained was dispersed in a 1N aqueous sodium hydroxide solution 3 in which 5 g of sodium borohydride was dissolved. 25 under nitrogen flow
After stirring at °C for 4 hours, the mixture was centrifuged. This precipitate was subjected to repeated extraction operations using a 1N aqueous sodium hydroxide solution. Both sodium hydroxide extracts were combined and neutralized with concentrated hydrochloric acid to adjust the pH to 6.5. Cetylpyridinium chloride aqueous solution (10%) was added dropwise to the thus obtained extract while stirring until no further precipitate was formed.Then, centrifugation was performed at 10,000G for 30 minutes to remove the formed precipitate. did. An equal volume of methanol was added to this supernatant and stirred to precipitate the polysaccharide. This precipitate was washed with 1 methanol, added to 500 ml of distilled water, dispersed in a homomixer, and then dialyzed in running water for 5 days. The dialysis fluid was freeze-dried to obtain 13.0 g of the target product. Elemental analysis values C: 44.03% H: 6.05% N: Specific rotation below the limit of quantification [α] 25 D : -12° (concentration 0.5~, in 0.5N sodium hydroxide solution) Infrared absorption spectrum Figure 1 shows KBr This shows a Fourier transform infrared absorption spectrum obtained by the tablet method. The molecular weight was determined by gel permeation high performance liquid chromatography using a G5000PW column manufactured by Toyo Soda Kogyo Co., Ltd. using a Tris hydrochloride buffer with a molecular weight of 0.1M and a pH of 8.6 as the mobile phase.
It eluted at a retention time of 680,000. C 13 -NMR analysis, color reaction, and reaction with cetylpyridinium chloride The physical and chemical properties were the same as described above. Constituent sugars and bonding mode The obtained polysaccharide was methylated and further hydrolyzed. The obtained methylated sugar was converted into alditol acetate. This was analyzed by gas chromatography. The molar ratio of the obtained methylated sugar is 2,3,4,6-tetra-O-methylglucose
1 2,4,6-tri-O-methylglucose 3.76 2,3,4-tri-O-methylglucose 0.33 2,4-di-O-methylglucose 1.01 Separately, this polysaccharide was converted into exo-type β-1,3- Enzymatically digested with glucanase. Glucose and gentiobiose were obtained. The molar ratio was 1 mol of the former to 0.177 mol of the latter. Furthermore, this polysaccharide was sufficiently oxidized with sodium metaperiodate and reduced with sodium borohydride. This was further heated for 2 hours at 100℃ in sulfuric acid for 0.1 period.
After time hydrolysis, a linear glucan precipitate from which glucose groups corresponding to side chains had been removed was obtained. Methylation analysis of this precipitate was conducted in the same manner, yielding 2,4,6-tri-O-methylglucose and a trace amount of 2,3,4,6-tetra-O-methylglucose. Furthermore, when this precipitate was enzymatically decomposed with exo-type β-1,3-glucanase, only glucose was produced. Therefore, the obtained polysaccharide has the above-mentioned formulas (), ()
It consists of repeating units of and (), and the ratio of the number is per 100 of the total number of these repeating units,
There were 7 repeating units of formula (), and the total number of repeating units of formula () and repeating units of formula () was 21. Example 2 After carrying out the step before the alkaline aqueous solution extraction in the same manner as in Example 1, an alkaline aqueous solution extraction was carried out in the same manner as in Example 1 except that the extraction temperature was changed to 20°C. After adjusting the obtained extract to pH 6.5 with hydrochloric acid, a cetylpyridinium chloride aqueous solution (10%) was added in the same manner as in Example 1, and the resulting precipitate was removed by centrifugation. After dialyzing the supernatant in running water for 2 days, the dialyzed solution was concentrated under reduced pressure at 40°C to a concentration of 3. Add an equal volume of methanol to this and collect the resulting precipitate.
Centrifugation was performed at 10,000G for 30 minutes. 300ml of this sediment
of methanol and was stirred and centrifuged for about 1 hour to obtain a precipitate. After repeating this washing with methanol twice, the precipitate was dried under reduced pressure to obtain the desired product.
10.5g was obtained. The thus obtained polysaccharide was analyzed in the same manner as in Example 1. Elemental analysis values C: 44.31% H: 6.10% N: Molecular weight below the limit of quantification Eluted at a molecular weight of approximately 550,000. Methyl ratio sugar molar ratio 2,3,4,6-tetra-O-methylglucose 1 2.4,6-tri-O-methylglucose 4.26 2,3,4-tri-O-methylglucose 0.32 2,4-dimethylglucose -O-Methylglucose 1.01 Molar ratio of glucose and gentiobiose obtained by exo-type β-1,3-glucanase digestion 1:0.160 Ratio of repeating units 6 repeating units of formula () per 100 total units
, and the sum of the number of repeating units in equation () and the number of repeating units in equation () was 19. Other results were substantially the same as in Example 1. [Effect of the invention] Example of use of the polysaccharide of the present invention as an antitumor agent.
The effect on 180 types of tumors was tested. 5 x 16 6 Sarcoma 180 ascites carcinoma cells were inoculated subcutaneously in the groin area per ICR mouse. The experimental group consisted of 6 animals. After the cancer cell transplantation, the drug was intraperitoneally administered in an amount of 0.1 ml once a day for 10 days from the next day.
For the test group, the polysaccharide of the present invention (obtained in Example 1) was dissolved in physiological saline at the dosage shown in Table 1, and for the control group, only physiological saline was administered. did. On the 35th day after tumor implantation, the cancer was excised and its weight was measured. The tumor suppression rate of each group was calculated using the following formula. Inhibition rate (%) = (1-average tumor weight of test group/average tumor weight of control group) ×100 The results are shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多糖類の赤外吸収スペクトル
を示す図である。
FIG. 1 is a diagram showing an infrared absorption spectrum of the polysaccharide of the present invention.

Claims (1)

【特許請求の範囲】 1 本質的に式 〔→3)β−D−Glu(1〕→ で表わされる第1のくり返し単位、式 で表わされる第2のくり返し単位及び式 で表わされる第3のくり返し単位(各式中、Glu
はグルコピラノシル基を、また数字は結合位置を
表わす)からなり、第1、第2及び第3の各くり
返し単位の和100個当り、平均で第3のくり返し
単位の個数が約4ないし約12個で、第2のくり返
し単位と第3のくり返し単位の個数の和が同じく
約16ないし約33個である多糖類。 2 フクロタケ由来の多糖類である特許請求の範
囲第1項記載の多糖類。 3 濃度0.1モル/、PH8.6のトリス塩酸塩緩衝
液を移動相とするゲル過高速液体クロマトグラ
フイにおいて分子量約30万ないし約280万円与え
る特許請求の範囲第1項または第2項記載の多糖
類。 4 メチル化分析により、2,3,4,6―テト
ラ―O―メチルグルコース、2,4,6―トリ―
O―メチルグルコース、2,3,4―トリ―O―
メチルグルコース及び2,4―ジ―O―メチルグ
ルコースを、3,3,4,6―テトラ―O―メチ
ルグルコースを1としたときモル比で2,4,6
―トリ―O―メチルグルコース約2.7ないし約
5.0、2,3,4―トリ―O―メチルグルコース
約0.1ないし約0.35及び2,4―ジ―O―メチル
グルコース約0.7ないし約1.3の割合で与える特許
請求の範囲第1項ないし第3項のいずれかの項記
載の多糖類。 5 アルカリ水溶液及びジメチルスルホキシドに
可溶で、メタノール、エタノール、n―ブタノー
ル、アセトン、プロピレングリコール、ベンゼ
ン、トルエン、ピリジン及び酢酸エチルに実質的
に不溶である特許請求の範囲第1項ないし第4項
記載の多糖類。 6 フクロタケをアルカリ水溶液で抽出して得た
ものである特許請求の範囲第1項ないし第5項の
いずれか1項記載の多糖類。 7 フタロタケをアルカリ水溶液で抽出して、本
質的に式 〔→3)β−D−Glu(1〕→ で表わされる第1のくり返し単位、式 で表わされる第2のくり返し単位及び式 で表わされる第3のくり返し単位(各式中、Glu
はグルコピラノシル基を、数字は結合位置を表わ
す)からなり、第1、第2及び第3の各くり返し
単位の個数の和100個当り、平均で第3のくり返
し単位の個数が約4ないし約12個で、第2及び第
3のくり返し単位の個数の和が同じく約16ないし
約33個である多糖類を採取することを特徴とする
多糖類の製造法。 8 多糖類が濃度0.1モル/、PH8.6のトリス塩
酸緩衝液を移動相とするゲル過高速液体クロマ
トグラフイにおいて分子量約30万ないし約280万
を与えるものである特許請求の範囲第7項記載の
製造方法。 9 多糖類がそのメチル化分析により、2,3,
4,6―テトラ―O―メチルグルコース、2,
4,6―トリ―O―メチルグルコース、2,3,
4―トリ―O―メチルグルコース及び2,4―ジ
―O―メチルグルコースを、2,3,4,6―テ
トラ―O―メチルグルコースを1としたときモル
比で2,4,6―トリ―O―メチルグルコース約
2.7ないし約5.0、2,3,4―トリ―O―メチル
グルコース約0.1ないし約0.35及び2,4―ジ―
O―メチルグルコース約0.7ないし約1.3の割合で
与えるものである特許請求の範囲第7項または第
8項記載の製造法。 10 多糖類がアルカリ水溶液及びジメチルスル
ホキシドに可溶で、メタノール、n―ブタノー
ル、アセトン、プロピレングリコール、ベンゼ
ン、トルエン及び酢酸エチルに実質的に不溶なも
のである特許請求の範囲第7項ないし第9項のい
ずれか1項記載の製造法。 11 アルカリ水溶液がアルカリ金属水酸化物の
水溶液である特許請求の範囲第7項ないし第10
項のいずれか1項記載の製造法。 12 アルカリ水溶液の濃度が約0.1規定ないし
約5規定である特許請求の範囲第7項ないし第1
1項のいずれか1項記載の製造法。 13 抽出を還元剤の存在下で行なう特許請求の
範囲第7項ないし第12項のいずれか1項記載の
製造法。 14 抽出を温度約30℃以下で行なう特許請求の
範囲第7項ないし第13項のいずれか1項記載の
製造法。
[Claims] 1. A first repeating unit essentially represented by the formula [→3)β-D-Glu(1]→ The second repeating unit and expression expressed by The third repeating unit represented by (in each formula, Glu
represents a glucopyranosyl group, and the number represents the bonding position), and the average number of third repeating units is about 4 to about 12 per 100 total of each of the first, second, and third repeating units. and a polysaccharide in which the sum of the numbers of the second repeating unit and the third repeating unit is about 16 to about 33. 2. The polysaccharide according to claim 1, which is a polysaccharide derived from Fukurotake. 3 Claims 1 or 2 which provide a molecular weight of about 300,000 to about 2,800,000 yen in gel permeation high performance liquid chromatography using a Tris hydrochloride buffer with a concentration of 0.1 mol/pH 8.6 as a mobile phase. polysaccharides. 4 Methylation analysis revealed that 2,3,4,6-tetra-O-methylglucose, 2,4,6-tri-
O-methylglucose, 2,3,4-tri-O-
The molar ratio of methylglucose and 2,4-di-O-methylglucose is 2,4,6 when 3,3,4,6-tetra-O-methylglucose is 1.
- Tri-O-methylglucose from about 2.7 to about
5.0, 2,3,4-tri-O-methylglucose in a ratio of about 0.1 to about 0.35 and 2,4-di-O-methylglucose in a ratio of about 0.7 to about 1.3. The polysaccharide described in any of the following. 5. Claims 1 to 4 which are soluble in aqueous alkaline solutions and dimethyl sulfoxide, and substantially insoluble in methanol, ethanol, n-butanol, acetone, propylene glycol, benzene, toluene, pyridine, and ethyl acetate. Polysaccharides listed. 6. The polysaccharide according to any one of claims 1 to 5, which is obtained by extracting Fukurotake with an aqueous alkaline solution. 7 Phthalotake is extracted with an alkaline aqueous solution to obtain the first repeating unit, which is essentially represented by the formula [→3) β-D-Glu(1]→ The second repeating unit and expression expressed by The third repeating unit represented by (in each formula, Glu
represents a glucopyranosyl group, and the number represents the bonding position), and the average number of third repeating units is about 4 to about 12 per 100 of the total number of first, second, and third repeating units. A method for producing a polysaccharide, which comprises collecting a polysaccharide in which the sum of the second and third repeating units is about 16 to about 33. 8. Claim 7, wherein the polysaccharide has a molecular weight of about 300,000 to about 2.8 million in gel permeation high performance liquid chromatography using a Tris-HCl buffer with a concentration of 0.1 mol/PH8.6 as the mobile phase. Manufacturing method described. 9 Polysaccharides were found to have 2,3,
4,6-tetra-O-methylglucose, 2,
4,6-tri-O-methylglucose, 2,3,
The molar ratio of 4-tri-O-methylglucose and 2,4-di-O-methylglucose is 2,4,6-tri-O-methylglucose, when 2,3,4,6-tetra-O-methylglucose is 1. -O-methylglucose approx.
2.7 to about 5.0, 2,3,4-tri-O-methylglucose about 0.1 to about 0.35 and 2,4-di-
9. The method of claim 7 or 8, wherein O-methylglucose is provided in a proportion of about 0.7 to about 1.3. 10 Claims 7 to 9, wherein the polysaccharide is soluble in aqueous alkaline solutions and dimethyl sulfoxide, and substantially insoluble in methanol, n-butanol, acetone, propylene glycol, benzene, toluene, and ethyl acetate. The manufacturing method according to any one of paragraphs. 11 Claims 7 to 10, wherein the aqueous alkali solution is an aqueous solution of an alkali metal hydroxide.
The manufacturing method according to any one of paragraphs. 12 Claims 7 to 1, wherein the concentration of the alkaline aqueous solution is about 0.1N to about 5N.
The manufacturing method according to any one of Item 1. 13. The production method according to any one of claims 7 to 12, wherein the extraction is carried out in the presence of a reducing agent. 14. The production method according to any one of claims 7 to 13, wherein the extraction is carried out at a temperature of about 30°C or less.
JP57157058A 1982-09-09 1982-09-09 Polysaccharide and its preparation Granted JPS5945301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57157058A JPS5945301A (en) 1982-09-09 1982-09-09 Polysaccharide and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57157058A JPS5945301A (en) 1982-09-09 1982-09-09 Polysaccharide and its preparation

Publications (2)

Publication Number Publication Date
JPS5945301A JPS5945301A (en) 1984-03-14
JPH026761B2 true JPH026761B2 (en) 1990-02-13

Family

ID=15641286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57157058A Granted JPS5945301A (en) 1982-09-09 1982-09-09 Polysaccharide and its preparation

Country Status (1)

Country Link
JP (1) JPS5945301A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692441B2 (en) * 1986-03-03 1994-11-16 株式会社林原生物化学研究所 β-D-glucan, production method and use thereof
US5488040A (en) * 1989-09-08 1996-01-30 Alpha-Beta Technology, Inc. Use of neutral soluble glucan preparations to stimulate platelet production
JPH05503952A (en) * 1989-09-08 1993-06-24 アルファ ベータ テクノロジー,インコーポレイティッド Method for producing soluble glucans
US5622939A (en) * 1992-08-21 1997-04-22 Alpha-Beta Technology, Inc. Glucan preparation
US5811542A (en) * 1989-09-08 1998-09-22 Alpha-Beta Technology, Inc. Method for producing soluble glucans
DE69030880T2 (en) * 1989-09-08 1997-09-18 Alpha Beta Technology Composition for stimulating the immune system
US5622940A (en) * 1994-07-14 1997-04-22 Alpha-Beta Technology Inhibition of infection-stimulated oral tissue destruction by β(1,3)-glucan
US6046323A (en) * 1997-07-29 2000-04-04 The Collaborative Group, Ltd. Conformations of PPG-glucan
AU6261999A (en) 1998-09-25 2000-04-17 Collaborative Group, Ltd., The Very high molecular weight beta-glucans
US6369216B1 (en) 1998-09-25 2002-04-09 Biopolymer Engineering Pharmaceutical, Inc. Very high molecular weight β-glucans
JP4812157B2 (en) * 2000-05-16 2011-11-09 株式会社Adeka Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action

Also Published As

Publication number Publication date
JPS5945301A (en) 1984-03-14

Similar Documents

Publication Publication Date Title
Sone et al. Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum
Misaki et al. Structure of pestalotan, a highly branched (1→ 3)-β-D-glucan elaborated by Pestalotia sp. 815, and the enhancement of its antitumor activity by polyol modification of the side chains
CA1183530A (en) Polysaccharides having anticarcinogenic activity and method for producing same
JPH08259602A (en) New polysaccharide substance
CN108727509B (en) Moso bamboo shoot shell arabinogalactan and preparation and application thereof
JPH026761B2 (en)
Kiho et al. A minor, protein-containing galactomannan from a sodium carbonate extract of Cordyceps sinensis
Golovchenko et al. Structure characterization of the mannofucogalactan isolated from fruit bodies of Quinine conk Fomitopsis officinalis
US4398023A (en) β-1,3-Glucanpolyol, process for preparation thereof, and utilization thereof
US4762825A (en) Polysaccharide RON substance
JPH0314289B2 (en)
JPH0248161B2 (en)
JPS6377901A (en) Novel polysaccharides
US4639516A (en) Polysaccharide polyol
JP2838863B2 (en) Hypoglycemic inhibitor
JP2838862B2 (en) Hypoglycemic agent
JP4820956B2 (en) Method for producing apple vinegar-derived antitumor polysaccharide and apple vinegar-derived antitumor polysaccharide obtained thereby
JPH0645645B2 (en) Chemically modified polysaccharide and method for producing the same
JPH0645644B2 (en) Chemically modified polysaccharide and method for producing the same
EP0173228A2 (en) Polysaccharide rin substance, production of the same and use of the same
JPS6337801B2 (en)
JPH0645647B2 (en) Chemically modified polysaccharide and method for producing the same
JPS60199001A (en) Antitumor polysaccharide derivative
KR910004367B1 (en) Method for preparation of novel glucan
JPH0647605B2 (en) Chemically modified polysaccharide and method for producing the same