[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0261824A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0261824A
JPH0261824A JP21243988A JP21243988A JPH0261824A JP H0261824 A JPH0261824 A JP H0261824A JP 21243988 A JP21243988 A JP 21243988A JP 21243988 A JP21243988 A JP 21243988A JP H0261824 A JPH0261824 A JP H0261824A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
hexagonal ferrite
magnetic recording
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21243988A
Other languages
Japanese (ja)
Other versions
JP2743392B2 (en
Inventor
Makoto Noda
誠 野田
Yutaka Okazaki
裕 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63212439A priority Critical patent/JP2743392B2/en
Publication of JPH0261824A publication Critical patent/JPH0261824A/en
Application granted granted Critical
Publication of JP2743392B2 publication Critical patent/JP2743392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain excellent reproduction output particularly in a short wavelength region by specifying the saturated magnetic flux density of a magnetic layer to a specified Gausses or less in the magnetic recording medium in which signals are recorded by a magnetic field transfer system. CONSTITUTION:The magnetic recording medium is composed of a nonmagnetic supporting substance and the magnetic layer formed thereon comprising hexagonal ferrite magnetic powder and a binder, in which signals are recorded by a magnetic field transfer system. The saturated magnetic flux density of the magnetic layer is specified to <=1,800 Gauss. The hexagonal ferrite magnetic powder consists of fine particles of hexagonal ferrite expressed by general formula MO.n(Fe2O3), the particles of which are hexagonal plate type. In the formula, M represents at least one of Ba, Sr and Ca, and n is 5-6. In this case, at least one of Co, Ti, Ni, Mn, Cu, Zn, In, Ge and Nb can be added so as to control the coercive force by substituting these elements for part of the Fe which constitutes the hexagonal ferrite.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は、いわゆるマスター用の磁気記録媒体上に記録
された記録信号がもイl界転写方弐により転写されるス
レーブ用の磁気記録媒体に関するものであり、時に六方
晶系フェライト磁性粉を用いたスレーブ用磁気記録媒体
の短波長領域での転写再生出力の改善に関するものであ
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a magnetic recording medium for a slave in which a recording signal recorded on a so-called master magnetic recording medium is also transferred by an illumination transfer method. This invention relates to improving the transfer and reproduction output in the short wavelength region of a slave magnetic recording medium using hexagonal ferrite magnetic powder.

〔発明の概要〕[Summary of the invention]

本発明は、六方晶系フェライト粉末を磁性451末とし
不n界転写方弐でスレーブ媒体に用いられる磁気記録媒
体において、磁性層の飽和磁束密度の値を規定すること
により、特に1μm以下の短波長領域での転写効率を高
め、優れた転写再生出力を得ようとするものである。
The present invention provides a magnetic recording medium that uses hexagonal ferrite powder as a magnetic 451 powder and is used as a slave medium in the non-n-field transfer method, by specifying the value of the saturation magnetic flux density of the magnetic layer. The objective is to improve transfer efficiency in the wavelength range and obtain excellent transfer and reproduction output.

〔従来の技術〕[Conventional technology]

マスター用磁気記録媒体上に記録された記録信号を磁界
転写方式により転写する際に使用されるスレーブ用磁気
記録媒体の保磁力は、上記転写方式の特性上マスター用
磁気記録媒体の有する保磁力の1/2.5以下であるご
とが好ましい。この理由は、転写の際のバイアス磁界に
よりマスター用磁気記録媒体が8されることにあり、ス
レーブ用磁気記録媒体の保磁力と転写の際に必要なバイ
アス磁界は比例関係にあるためである。
Due to the characteristics of the above-mentioned transfer method, the coercive force of the slave magnetic recording medium used when the recording signal recorded on the master magnetic recording medium is transferred by the magnetic field transfer method is the same as the coercive force of the master magnetic recording medium. It is preferable that it is 1/2.5 or less. The reason for this is that the master magnetic recording medium is biased by the bias magnetic field during transfer, and there is a proportional relationship between the coercive force of the slave magnetic recording medium and the bias magnetic field required during transfer.

従来、マスター用磁気記録媒体には磁性粉として強磁性
金属粉末を使用した。いわゆるメタルテ−プを用いるこ
とが検討されているが、それでもその保磁力は2000
工ルステツド程度が限度である。したがって、スレーブ
用磁気記録媒体には保磁力800エルステツド以下の低
保磁力の磁気記録媒体を使用せざるを得ないのが現状で
ある。
Conventionally, ferromagnetic metal powder has been used as magnetic powder in master magnetic recording media. The use of so-called metal tape is being considered, but its coercive force is still 2000.
The limit is about the level of construction. Therefore, it is currently necessary to use a magnetic recording medium with a low coercive force of 800 oersted or less as a slave magnetic recording medium.

そのため、スレーブ用磁気記録媒体として実用されてい
るのは、例えば保磁カフ00工ルステンド前後を有する
Co被着T−Fe203を磁性粉末とする磁気記録媒体
である。
Therefore, what has been put into practical use as a slave magnetic recording medium is, for example, a magnetic recording medium using Co-coated T-Fe203 as a magnetic powder and having a coercive cuff around 00 mm.

ところで、近年実用化が図られている5例えばデジタル
オーディオテープレコーダ(以下DATと称する。)、
8ミリビデオテープレコーダ等においては、最短記録波
長が1μm以下の高密度記録がなされている。このよう
な短波長信号を転写しようとすると、残留磁束密度B「
や保磁力Hcが低いCo被着1−Fe2O,、Cry、
等を磁性粉末とする長手磁気記録媒体では、その短波長
領域での自己減磁損失の増大が原因となって、出力。
By the way, there are 5 types of devices that have been put into practical use in recent years, such as digital audio tape recorders (hereinafter referred to as DAT),
In 8 mm video tape recorders and the like, high-density recording is performed with a shortest recording wavelength of 1 μm or less. When attempting to transfer such a short wavelength signal, the residual magnetic flux density B'
Co-coated 1-Fe2O, with low coercive force Hc, Cry,
In a longitudinal magnetic recording medium using magnetic powder, the output decreases due to an increase in self-demagnetization loss in the short wavelength region.

C/Nともに不十分なものとなり使用することができな
い虞れがある。
There is a possibility that both the C/N ratio will be insufficient and the product cannot be used.

したがって、上記DAT、8ミリビデオテープレコーダ
等の記録信号を転写するために使用されるスレーブ用磁
気記録媒体としては、保磁力Hcが低いにもかかわらず
lam以下の記録波長であっても高い出力特性を有する
ものの出現が要望されている。
Therefore, as a slave magnetic recording medium used for transferring recording signals of the above-mentioned DAT, 8 mm video tape recorder, etc., even though the coercive force Hc is low, it has a high output even at a recording wavelength of lam or less. The emergence of something with these characteristics is desired.

このような状況から、近年、磁化容易軸が板面に対して
垂直方向にある板状の六方晶系フェライトもn性粉末の
当該垂直方向の磁化成分を積極的に利用し、磁界転写方
式により転写するスレーブ用のfft気記録媒体の高密
度記録化を図る試みが種々行われている。
Under these circumstances, in recent years, plate-shaped hexagonal ferrite whose axis of easy magnetization is perpendicular to the plate surface has also been developed using the magnetic field transfer method, actively utilizing the perpendicular magnetization component of n-type powder. Various attempts have been made to achieve high-density recording on slave recording media for transfer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、リングへνF“記録再生が長子磁化をリング
ヘッドのトレーリングエツジ磁界で記録するのに対して
、磁界転写はあらかじめ長手記録されたマザー用磁気記
録媒体表面から発生する漏洩磁界に交流バイアスを重畳
し、しかも六方晶系フェライト粉末を磁性粉末とする垂
直磁気記録媒体に残留磁化を残すものであるので、これ
らは原理的に全く異なる記録方式である。
By the way, while νF" recording/reproducing to a ring records firstborn magnetization using the trailing edge magnetic field of a ring head, magnetic field transfer applies an alternating current bias to a leakage magnetic field generated from the surface of a mother magnetic recording medium that has been longitudinally recorded in advance. These recording systems are completely different in principle because they are superimposed and leave residual magnetization in a perpendicular magnetic recording medium that uses hexagonal ferrite powder as the magnetic powder.

したがって、スレーブ用磁気記録媒体の電磁変換特性に
おいて、へyトによって記録再生した場合と磁界転写記
録後にへンF再生した場合とでは、その特性が太き(異
なることが珍しくなく、どのような特性を有するスレー
ブ用磁気記録媒体が磁界転写において良好な再生出力を
得られるのかは未だ明らかではない。
Therefore, in terms of the electromagnetic conversion characteristics of a magnetic recording medium for a slave, the characteristics are thicker (it is not uncommon for them to differ, and there are some It is not yet clear whether a slave magnetic recording medium having such characteristics can obtain good reproduction output in magnetic field transfer.

そこで本発明は、かかる従来の実情に鑑みて提案された
ものであって、ル11界転写において良好な再生出力が
得られるスレーブ用の磁気記録媒体を提供することを目
的とし、特に短波長領域において優れた再生出力を示す
磁気記録媒体を提供することを目的とする。
Therefore, the present invention was proposed in view of the conventional situation, and an object of the present invention is to provide a magnetic recording medium for a slave that can obtain good reproduction output in Le 11 field transfer, and particularly in the short wavelength region. An object of the present invention is to provide a magnetic recording medium that exhibits excellent reproduction output.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、前述の目的を達成せんものと鋭意検討を
重ねた結果、従来のヘッド録再用の磁気記録媒体は角形
比及び保磁力が同程度の場合その飽和磁束密度Bmが大
きい程そのヘッド録再出力が大きくなる傾向にあったの
に対して、六方晶系フェライト(磁性$5)を用いたス
トーブ用五イ(気記録媒体においては、その飽和磁束密
度Bmが大きすぎると短波長領域における磁界転写出力
が逆に減少していくという磁界転写特有の事実を見出し
、本発明を完成するに至ったものである。
The inventors of the present invention have conducted intensive studies to find out whether or not the above-mentioned object can be achieved.As a result, the inventors have found that, when the squareness ratio and coercive force are the same, the larger the saturation magnetic flux density Bm, the higher the saturation magnetic flux density Bm. While the recording and reproducing output of the head tended to increase, in the case of a stove recording medium using hexagonal ferrite (magnetic $5), if the saturation magnetic flux density Bm is too large, it will shorten. The inventors discovered the fact unique to magnetic field transfer that the magnetic field transfer output in the wavelength region conversely decreases, leading to the completion of the present invention.

すなわち、本発明の磁気記録媒体は、非磁性支持体上に
六方晶系フェライト(11性粉と結合剤を主体とする磁
性層が形成され、磁界転写方式により記録信号が転写さ
れる磁気記録媒体において、磁性層の飽和磁束密度が1
800ガウス以下であることを特1枚とするものである
That is, the magnetic recording medium of the present invention is a magnetic recording medium in which a magnetic layer mainly composed of hexagonal ferrite (11-type powder) and a binder is formed on a non-magnetic support, and recorded signals are transferred by a magnetic field transfer method. , the saturation magnetic flux density of the magnetic layer is 1
One special feature is that it is 800 Gauss or less.

六方晶系フェライト(11性粉は、六角平板状の粒子で
、−数式 %式%() 〔但し、式中MはBa、Sr、Caの内生なくとも一種
を表し、またnは5〜6である。]で表される六方晶系
フェライトの微粒子である。
Hexagonal ferrite (11-dimensional powder is a hexagonal tabular particle, - Formula % Formula % () [However, in the formula, M represents at least one type of Ba, Sr, Ca, and n is 5 to 6.] These are fine particles of hexagonal ferrite.

この場合、保磁力を制御するために、Co、Ti。In this case, Co, Ti are used to control the coercive force.

Ni  Mn、Cu、Zn、In、Ge、Nbのうら少
なくとも一種を添加し、上記六方晶系フェライトを構成
するFeの一部をこれら元素で置き換えてもよい。例え
ば、(1)式中のMがBaであるマグネトブランバイト
型バリウムフェライトにおいて、上記元素によりFeの
一部を置き換えた場合には、その組成は一般式 %式%() 〔但し、式中XはCo、 Ti、 Ni、 Mn、 C
uZn、In、Ge、Nbのうち少なくとも一種を表し
、mはO〜0.2、nは5〜6である。)で表される。
At least one of Ni Mn, Cu, Zn, In, Ge, and Nb may be added to replace a part of Fe constituting the hexagonal ferrite with these elements. For example, in a magnetobrambite barium ferrite in which M in formula (1) is Ba, when a part of Fe is replaced by the above element, the composition is expressed by the general formula % formula % () [However, in the formula X is Co, Ti, Ni, Mn, C
It represents at least one of uZn, In, Ge, and Nb, m is O-0.2, and n is 5-6. ).

また、−上述の六方晶系フェライト磁性む)の製法とし
ては、例えばフランクス法、ガラス結晶化法2水熱合成
法、共沈法等が挙げられるが、勿論これらに限定される
ものではなく、従来より知られる何れの方法であっても
よい。
In addition, methods for producing the above-mentioned hexagonal ferrite magnetism include, for example, the Franks method, glass crystallization method, hydrothermal synthesis method, coprecipitation method, etc., but are of course not limited to these. Any conventionally known method may be used.

六方晶系フェライ)l性扮のtH子径は、0.03〜0
.1μmであることが好ましい。粒子径が0.03μm
未満であると、塗膜中で粒子が垂直方向に配向し難くな
り、短波長出力がとれなくなる傾向を示す。逆に0.1
μmを越えると、粒子が大きすぎ、表面性の悪化等によ
りやはり短波長出力がとれなくなる傾向を示す。
The tH diameter of the hexagonal ferrite is 0.03 to 0.
.. Preferably, the thickness is 1 μm. Particle size is 0.03μm
If it is less than this, it becomes difficult for particles to orient in the vertical direction in the coating film, and there is a tendency that short wavelength output cannot be obtained. On the contrary, 0.1
If it exceeds .mu.m, the particles are too large and tend to be unable to produce short wavelength output due to deterioration of surface properties and the like.

六方晶系フェライト磁性粉の板状比は、3〜6であるこ
とが好ましい。板状比が3未満では塗膜中で六方晶系フ
ェライト磁性粉の粒子が垂直に配向し難く、また6を越
えると塗膜に均一に分散させることが難しく、いずれに
しても短波長における転写出力がとれなくなる傾向を示
す。
The plate ratio of the hexagonal ferrite magnetic powder is preferably 3 to 6. If the plate ratio is less than 3, it is difficult to orient the hexagonal ferrite magnetic powder particles vertically in the coating film, and if it exceeds 6, it is difficult to disperse them uniformly in the coating film, and in any case, transfer at short wavelengths is difficult. Indicates a tendency to lose output.

上述の六方晶系フェライト(ff磁性粉、もn気記録媒
体の磁性粉末として使用する場合には、樹脂結合剤や有
機溶剤とともに混練され、磁性塗料に調製された後、非
磁性支持体上に塗布され磁性層となる。
When using the above-mentioned hexagonal ferrite (FF magnetic powder) as a magnetic powder for recording media, it is kneaded with a resin binder and an organic solvent, prepared into a magnetic paint, and then coated on a non-magnetic support. It is coated to form a magnetic layer.

ここで、樹脂結合剤としては、通常使用される各種の樹
脂結合剤が使用でき、例えば塩化ビニル酢酸ビニル系共
重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビ
ニル−アクリロニトリル共重合体、アクリル酸エステル
−アクリロニトリル共重合体、熱可塑性ポリウレタンエ
ラストマーポリフッ化ビニル、塩化ビニリデン−アクリ
ロニトリル共重合体、ブタジェン−アクリロニトリル共
重合体、ポリアミド樹脂、ポリビニルブチラール、セル
ロース誘導体、ポリエステル樹脂、ポリブタジェン等の
合成ゴム系樹脂、フェノール樹脂、エボギン樹脂、ボリ
ウレクン硬化型樹脂、メラミン樹脂、アルキッド樹脂、
シリコーン樹脂、アクリル系反応樹脂、エポキシ−ポリ
アミド樹脂、二I・ロセルロースーメラミン樹脂、高分
子量ポリエステル樹脂とイソシアナートプレポリマーの
混合物、ポリュステルポリオールとポリイソンアナート
との混合物、尿素ホルムアルデヒド樹脂、低分子量グリ
コール/高分子量ジオール/トリフェニルメタントリイ
ソシアナート ン樹脂及びこれらの混合物等が挙げられる。
Here, various commonly used resin binders can be used as the resin binder, such as vinyl chloride vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylic Synthetic rubber resins such as acid ester-acrylonitrile copolymer, thermoplastic polyurethane elastomer polyvinyl fluoride, vinylidene chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, polyamide resin, polyvinyl butyral, cellulose derivative, polyester resin, polybutadiene, etc. , phenolic resin, Evogin resin, polyurekun hardening resin, melamine resin, alkyd resin,
silicone resins, acrylic reactive resins, epoxy-polyamide resins, di-cellulose-melamine resins, mixtures of high molecular weight polyester resins and isocyanate prepolymers, mixtures of polyster polyols and polyisonanates, urea-formaldehyde resins, low Examples include molecular weight glycol/high molecular weight diol/triphenylmethane triisocyanate resin and mixtures thereof.

あるいは、磁性粉末の分散性の改善を図るために、親水
性極性基を持った樹脂結合剤を使用してもよい。
Alternatively, in order to improve the dispersibility of the magnetic powder, a resin binder having a hydrophilic polar group may be used.

具体的には、 SOJ,  OS(h門, −COOM
,  P(OM’)z(式中、Mは水素原子またはアル
カリ金属を表し、M゛は水素原子,アルカリ金属または
炭化水素基を表す。)から選ばれた親水性極性基を導入
したポリウレタン樹脂、ポリエステル樹脂、塩化ビニル
−酢酸ビニル系共重合体、塩化ビニリデン系共重合体、
アクリル酸エステル系共重合体、ブタジェン系共重合体
等が使用可能である。
Specifically, SOJ, OS (h gate, -COOM
, P(OM')z (in the formula, M represents a hydrogen atom or an alkali metal, and M represents a hydrogen atom, an alkali metal or a hydrocarbon group). A polyurethane resin into which a hydrophilic polar group is introduced. , polyester resin, vinyl chloride-vinyl acetate copolymer, vinylidene chloride copolymer,
Acrylic acid ester copolymers, butadiene copolymers, etc. can be used.

磁性層には、これら樹脂結合剤の他、潤滑剤。In addition to these resin binders, the magnetic layer contains a lubricant.

可塑剤,分子it剤,研磨剤,帯電防止剤等を内添ある
いはトップコートしてもよい。
Plasticizers, molecular IT agents, abrasives, antistatic agents, etc. may be added internally or top coated.

磁性塗料を調製する際の有機溶剤としては通常のものが
使用可能で、例えばアセトン、メチルエチルケトン、シ
クロヘキサノン等のケトン系溶剤、酢酸メチル、酢酸エ
チル、酢酸ブチル、乳酸エチル、酢酸グリコールモノエ
チルエーテル等のエステル系)容剤、グリコールジメチ
ルエーテル、グリコールモノエチルエーテル、ジオキサ
ン等のグリコールエーテル系溶剤、ヘンゼン5 トルエ
ン、キシレン等の芳香族炭化水素系溶剤、メチレンクロ
ライド、エチレンクロライド、四塩化炭素.クロロホル
ム、エチレンクロルヒドリン、ジクロルヘンゼン等の塩
素化炭化水素系溶剤等、汎用の溶剤を用いることができ
る。
Conventional organic solvents can be used to prepare magnetic paints, such as ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, and glycol monoethyl acetate. ester type) carrier, glycol ether type solvents such as glycol dimethyl ether, glycol monoethyl ether, and dioxane, aromatic hydrocarbon type solvents such as Hensen 5 toluene and xylene, methylene chloride, ethylene chloride, carbon tetrachloride. General-purpose solvents such as chlorinated hydrocarbon solvents such as chloroform, ethylene chlorohydrin, and dichlorohenzene can be used.

一方、磁性塗料が塗布される非磁性支持体の素材として
は、ポリエチレンテレツクレート等のポリエステル類、
ポリエチレン、ポリプロピレン等のポリオレフィン類、
セルローストリアセテート。
On the other hand, the materials for the non-magnetic support to which the magnetic paint is applied include polyesters such as polyethylene terecrate,
Polyolefins such as polyethylene and polypropylene,
Cellulose triacetate.

セルロースダイアセテート、セルロースアセテートブチ
レート等のセルロース誘導体、ポリ塩化ビニル、ホリ塩
化ビニリデン等のビニル系樹脂、ポリカーボネート、ポ
リイミド、ポリアミドイミド等のプラスチック、アルミ
ニウム合金、・チタン合金等の軽金属、アルミナガラス
等のセラミ7クス等が使用される。この非磁性支持体の
形態としては、テープ、フィルム、シート、ディスク 
カード、ドラム等のいずれでもよい。
Cellulose derivatives such as cellulose diacetate and cellulose acetate butyrate, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, plastics such as polycarbonate, polyimide, and polyamideimide, light metals such as aluminum alloys and titanium alloys, and alumina glass, etc. Ceramic 7x etc. are used. The forms of this non-magnetic support include tape, film, sheet, and disk.
It may be a card, a drum, etc.

作成された磁気記録媒体の垂直方向角形比は、0.65
〜0..85であることが好ましい。垂直方向角形比が
0.65未満の場合には、短波長領域での転写出力が低
くなる傾向を示す。また、垂直方向角形比が0.85を
越えると、例えば回転ヘッド型DAT等でデジタル信号
を転写する際、その位相特性がメタルテープ等の長手媒
体をヘッド記録再生した波形と大きくずれてくるため、
同一のイコライザ回路でデータを抜き出すことができず
、エラーレートが悪化して使用できなくなる等の問題が
生ずる。
The vertical squareness ratio of the created magnetic recording medium was 0.65.
~0. .. Preferably, it is 85. If the vertical squareness ratio is less than 0.65, the transfer output in the short wavelength region tends to be low. In addition, if the vertical squareness ratio exceeds 0.85, for example, when transferring a digital signal with a rotating head type DAT, the phase characteristics will differ greatly from the waveform recorded and reproduced by the head on a longitudinal medium such as a metal tape. ,
Problems arise, such as not being able to extract data using the same equalizer circuit, and the error rate worsening, making it unusable.

また、媒体の垂直方向保磁力は600〜800エルステ
ツドであることが好ましい。垂直方向保磁力が600工
ルステツド未満であると、自己減磁によって転写出力が
劣化する傾向を示す。逆に800エルステツドを越える
と、磁界転写を行う際に大きなバイアス磁界を必要とす
るため、バイアス磁界によるマスター用磁気記録媒体の
減磁が大きくなり、転写効率が低下するとともに、繰り
返し転写における転写出力が減少してしまうことになる
Further, the perpendicular coercive force of the medium is preferably 600 to 800 oersteds. If the vertical coercive force is less than 600 degrees, the transfer output tends to deteriorate due to self-demagnetization. On the other hand, if it exceeds 800 oersteds, a large bias magnetic field is required to perform magnetic field transfer, which increases the demagnetization of the master magnetic recording medium due to the bias magnetic field, lowers the transfer efficiency, and reduces the transfer output during repeated transfers. will decrease.

本発明の磁気記録媒体では、さらに媒体の飽和磁束密度
Bmが1800ガウス以下であることが必要で、好まし
くは1400〜1800ガウスである。
In the magnetic recording medium of the present invention, it is further necessary that the medium has a saturation magnetic flux density Bm of 1800 Gauss or less, preferably 1400 to 1800 Gauss.

飽和磁束密度Bmが1800ガウスを越えると、短波長
領域における転写出力が劣化する。この原因について詳
細は不明であるが、六方晶系フェライトを用いたスレー
ブ用cd気記録媒体においては、短波長における信号の
記録再生の際に、その垂直磁化モードをvi極的に利用
しているために、磁性層の垂直方向反磁界が転写出力を
減少させる方向に働いているためではないかと推定され
る。いずれにしても、従来の長手磁気記録媒体のヘッド
録再出力は、飽和磁束密度Bmの値が大きくなるとその
磁化容易軸方向でのヒステリシスループのBH積が大き
くなり、再生出力も向上する傾向にあったが、磁界転写
によって信号が記録されるスレーブ用磁気記録媒体の再
生出力は、角形比、保磁力が同等である場合でも逆に減
少する傾向を示し、磁界転写方式のスレーブに使用され
る磁気記録媒体には、従来のヘッド録再用に検討されて
きた磁気記録媒体とは異なる特性が要求されると言うこ
とである。ただし、飽和磁束密度Bmの値が1400ガ
ウス未満であると、磁束の絶対量が少ないために転写出
力も減少し、実用的でない。
When the saturation magnetic flux density Bm exceeds 1800 Gauss, the transfer output in the short wavelength region deteriorates. The details of this cause are unknown, but in slave CD recording media using hexagonal ferrite, the perpendicular magnetization mode is used in a vi-polar manner when recording and reproducing signals at short wavelengths. It is presumed that this is because the perpendicular demagnetizing field of the magnetic layer acts in a direction to reduce the transfer output. In any case, in the head recording/reproducing output of conventional longitudinal magnetic recording media, as the value of the saturation magnetic flux density Bm increases, the BH product of the hysteresis loop in the direction of the axis of easy magnetization increases, and the reproduction output tends to improve. However, the playback output of magnetic recording media for slaves in which signals are recorded by magnetic field transfer tends to decrease even when the squareness ratio and coercive force are the same, This means that magnetic recording media are required to have different characteristics from those of magnetic recording media that have been considered for conventional heads for recording/reproducing. However, if the value of the saturation magnetic flux density Bm is less than 1400 Gauss, the absolute amount of magnetic flux is small, so the transfer output also decreases, which is not practical.

本発明にかかる磁気記録媒体には、磁化転写方式によっ
てマスター用磁気記録媒体から磁気信号が転写される。
A magnetic signal is transferred from a master magnetic recording medium to the magnetic recording medium according to the present invention by a magnetization transfer method.

磁気信号の転写の際に使用する転写装置は、例えばロー
ラ圧着方式やエアー圧着方式によるもの等、いずれも使
用可能である。
As the transfer device used for transferring the magnetic signal, any type of transfer device, such as one using a roller pressure bonding method or an air pressure bonding method, can be used.

また、使用されるマスター用磁気記録媒体としては、保
(n力1(cが1800工ルステツド以上の強磁性金属
粉末あるいは合金粉末を磁性粉とするいわゆるメタル磁
気記録媒体もしくは強磁性金属薄膜を真空蒸着等の手法
により直接非磁性支持体上に被着した。いわゆる金属薄
膜型磁気記録媒体を使用することが好ましい。
The master magnetic recording medium to be used is a so-called metal magnetic recording medium in which magnetic powder is a ferromagnetic metal powder or alloy powder with a holding force (n force 1 (c) of 1,800 degrees or more), or a ferromagnetic metal thin film is coated under vacuum. It is directly deposited on a nonmagnetic support by a method such as vapor deposition.It is preferable to use a so-called metal thin film type magnetic recording medium.

特に、転写効率5周波数特性2位相特性、マスター用磁
気記録媒体の21& &53等の点で、保磁力Hcが2
000工ルステツド程度、残留磁束密度Brが2700
ガウス以上のメタル磁気記録媒体が好ましい。
In particular, in terms of transfer efficiency, 5 frequency characteristics, 2 phase characteristics, and 21 && 53 of the master magnetic recording medium, the coercive force Hc is 2.
000 millsted, residual magnetic flux density Br is 2700
Metal magnetic recording media with Gauss or higher are preferred.

[実施例] 以下、本発明を具体的な実施例により説明する。[Example] The present invention will be explained below using specific examples.

トルエン シクロヘキサン 5帽1部 50重量部 実画LfLL 下記の組成を有する組成物をボールミルにて20時間混
練した後、硬化剤(日本ポリウレタン社製、商品名コロ
ネートし)を3重量部加え、平均孔径1μmのフィルタ
ーで濾過して磁性塗料を得た。
Toluene cyclohexane 5 parts 1 part 50 parts by weight Actual image LfLL After kneading a composition having the following composition for 20 hours in a ball mill, 3 parts by weight of a curing agent (manufactured by Nippon Polyurethane Co., Ltd., trade name Coronate) was added, and the average pore size was A magnetic paint was obtained by filtration through a 1 μm filter.

磁性塗料組成 六方晶系フェライト磁性粉      100重量部ポ
リウレタン樹脂 塩化ビニル−酢酸ビニル共重合樹脂 研磨剤(CrzO*) 分散剤(レシチン) メチルエチルケトン 15重量部 15重量部 5重量部 1重量部 110重量部 なお、上記組成中、六方晶系フェライl−1性粉の平均
粒径及び板状比は、電顕法により実測した値である。
Magnetic coating composition Hexagonal ferrite magnetic powder 100 parts by weight Polyurethane resin Vinyl chloride-vinyl acetate copolymer resin Abrasive agent (CrzO*) Dispersant (lecithin) Methyl ethyl ketone 15 parts by weight 15 parts by weight 5 parts by weight 110 parts by weight In the above composition, the average particle size and platelet ratio of the hexagonal ferrite l-1 powder are values actually measured by electron microscopy.

次いでこの磁性塗料を厚さ9μmのポリエステルフィル
ム上に塗布し、5kOeの垂直磁界により垂直配向処理
を行った後、乾燥させ非常に滑らかな表面処理が行なえ
るスーパーカレンダーにより磁性層表面を加工処理し、
磁性層厚さ3.0μmのロールを得た。そして、これを
幅3.8Mに裁断してサンプルテープを作製した。
Next, this magnetic paint was applied onto a 9 μm thick polyester film, vertically aligned using a 5 kOe perpendicular magnetic field, dried, and the surface of the magnetic layer was processed using a super calender that can produce an extremely smooth surface. ,
A roll with a magnetic layer thickness of 3.0 μm was obtained. Then, this was cut into a width of 3.8M to prepare a sample tape.

得られたサンプルテープの垂直方向保磁力Hcは680
エルステツド、垂直方向角形比は76%であった。
The vertical coercive force Hc of the obtained sample tape was 680
The vertical squareness ratio was 76%.

実画I津λ 六方晶系フェライトif磁性粉の平均粒径を0.053
μm、板状比を3.8、飽和磁化を55emu/ gと
し、他は先の実施例1に準してサンプルテープを作成し
た。
Actual picture Itsuλ Hexagonal ferrite if magnetic powder average particle size is 0.053
A sample tape was prepared in the same manner as in Example 1, except that the thickness was 3.8 μm, the plate ratio was 3.8, and the saturation magnetization was 55 emu/g.

得られたサンプルテープの垂直方向保磁力Hcは710
エルステツド、垂直方向角形比は76%であった。
The vertical coercive force Hc of the sample tape obtained was 710.
The vertical squareness ratio was 76%.

」膜1ル支 六方晶系フェライト磁性粉の平均粒径を0.055μm
、板状比を3.4、飽和磁化を56emu/ gとし、
他は先の実施例Iに準してサンプルテープを作成した。
” The average particle size of the hexagonal ferrite magnetic powder per film is 0.055 μm.
, the plate ratio is 3.4, the saturation magnetization is 56 emu/g,
Otherwise, a sample tape was prepared in accordance with the previous Example I.

得られたサンプルテープの垂直方向保磁力Hcは710
エルステンド、垂直方向角形比は76%であった。
The vertical coercive force Hc of the sample tape obtained was 710.
The vertical squareness ratio was 76%.

此−校侭上 六方晶系フエライト磁性粉の平均粒径を0.050μm
、fff状比を5.0、飽和cn化を62emu/gと
し、他は先の実施例1に準じてサンプルテープを作成し
た。
The average particle size of the hexagonal ferrite magnetic powder is 0.050 μm.
, fff-like ratio was 5.0, saturation cn conversion was 62 emu/g, and a sample tape was prepared in the same manner as in Example 1 above.

得られたサンプルテープの垂直方向保磁力Hcは660
エルステンド、垂直方向角形比は76%であった。
The vertical coercive force Hc of the sample tape obtained was 660.
The vertical squareness ratio was 76%.

此1石吐λ 六方晶系フエライ)I性粉の平均粒径を0.051μm
、板状比を3.2、飽和磁化を62emu/gとし、他
は先の実施例1に準じてサンプルテープを作成した。
The average particle size of this 1 stone λ hexagonal crystal I powder is 0.051 μm.
A sample tape was prepared in the same manner as in Example 1 except that the plate ratio was 3.2 and the saturation magnetization was 62 emu/g.

得られたサンプルテープの垂直方向保磁力Hcは660
エルステツド、垂直方向角形比は76%であった。
The vertical coercive force Hc of the sample tape obtained was 660.
The vertical squareness ratio was 76%.

此膚■九よ 六方晶系フェライト磁性粉の平均粒径を0.051μm
、板状比を3.5、飽和磁化を63emu/ gとし、
他は先の実施例1に準じてサンプルテープを作成した。
Here ■ The average particle size of the hexagonal ferrite magnetic powder is 0.051 μm.
, the plate ratio is 3.5, the saturation magnetization is 63 emu/g,
A sample tape was prepared in the same manner as in Example 1 except for the above.

得られたサンプルテープの垂直方向保磁力Hcは680
エルステツド、垂直方向角形比は76%であった。
The vertical coercive force Hc of the obtained sample tape was 680
The vertical squareness ratio was 76%.

得られた各サンプルテープについて、飽和磁束密度Bm
、表面粗さ、転写出力レベルを測定した。
For each sample tape obtained, the saturation magnetic flux density Bm
, surface roughness, and transfer output level were measured.

飽和磁束密度Bmは、振動試料型磁力計(東英工業社製
、P−1s型VSM)を使用し、外部磁場15 k O
eで測定した。
The saturation magnetic flux density Bm was measured using a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd., P-1s type VSM) under an external magnetic field of 15 kO.
Measured at e.

表面粗さの測定は、2次元表面粗度計(小坂研究所製、
ET−10型)を用いて行った。
Surface roughness was measured using a two-dimensional surface roughness meter (manufactured by Kosaka Laboratory,
ET-10 model).

転写出力レベルは、以下の手法により測定した。The transcription output level was measured by the following method.

すなわち、マザーテープに予め鏡面パターンをヘッド記
録しておき、サンプルテープと空気圧着した後、バイア
ス磁界を転写出力が最大になるように印加し、転写を行
った。なお、磁界転写条件並びにマザーテープ記録条件
は下記の通りである。
That is, a mirror pattern was previously recorded on the mother tape with a head, and after air pressure bonding with the sample tape, a bias magnetic field was applied so as to maximize the transfer output, and transfer was performed. The magnetic field transfer conditions and mother tape recording conditions are as follows.

磁界転写条件 マザーテープ  面内保磁力2000 (Oe)のメタ
ルテープ 転写速度    1.0m/秒 方式      エアー圧着方式 マザーテープ記録条件 相対スピード 周波数 ヘッドギャップ トランク幅 記録電流 3、133  m / 5ee 4.7MHz 0.25μm 20μm 各テープの4.7MHzで の最i1M電流 使用へンド      メタル系へンド次いで、キャリ
ア出力の測定をスペクトラムアナライザを用いて行った
。スペクトラムアナライザの設定値は次の通りである。
Magnetic field transfer conditions Mother tape Metal tape with in-plane coercive force 2000 (Oe) Transfer speed 1.0 m/sec method Air compression method Mother tape Recording conditions Relative speed Frequency Head gap Trunk width Recording current 3, 133 m / 5ee 4.7 MHz 0 .25 μm 20 μm For each tape, the maximum i1M current was used at 4.7 MHz.Then, the carrier output was measured using a spectrum analyzer. The settings of the spectrum analyzer are as follows.

スペクトラムアナライザ設定値 R,B、W =LOkHz V、8.W =100 Hz なお、転写出力レベルの測定に際しては、RDAT用の
メタルテープ(面内保磁力Hc=1450エルステツド
、残留磁束密度Br=2400ガウス)を基準(OdB
)とし、各サンプルテープの出力はメタルテープの1.
5倍のトラックピンチ補正を行った。
Spectrum analyzer setting values R, B, W = LOkHz V, 8. W = 100 Hz When measuring the transfer output level, the reference (OdB
), and the output of each sample tape is 1. of the metal tape.
A 5x track pinch correction was performed.

結果を次表に示す。The results are shown in the table below.

表 〔発明の効果〕 以上の説明からも明らがなように、磁界転写方式によっ
て信号が記録されるスレーブ用の磁気記録媒体において
、その磁性層の飽和磁束密度を規定することによって再
生出方、特に短波長領」戎での転写出力の向上を図るこ
とができ、その工業的価値は非常に大きいと言える。
Table [Effects of the Invention] As is clear from the above explanation, in a slave magnetic recording medium in which signals are recorded by the magnetic field transfer method, playback can be improved by specifying the saturation magnetic flux density of the magnetic layer. The transfer output can be improved, especially in the short wavelength region, and its industrial value can be said to be very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は転写出力の飽和磁束密度依存性を示す特性図で
ある。 この結果を基に、飽和磁束密度Bmと転写出力の関係を
プロットしたのが第1図である。 この第1図からも、転写出力は媒体の飽和磁束密度Bm
が1800ガウス以上であるときにメタルテープを凌ぐ
ものとなっていることがゎがる。
FIG. 1 is a characteristic diagram showing the dependence of transfer output on saturation magnetic flux density. Based on this result, the relationship between the saturation magnetic flux density Bm and the transfer output is plotted in FIG. 1. From this figure 1, the transfer output is the saturation magnetic flux density Bm of the medium.
The great thing about this is that it surpasses metal tape when the pressure is 1800 Gauss or higher.

Claims (1)

【特許請求の範囲】 非磁性支持体上に六方晶系フェライト磁性粉と結合剤を
主体とする磁性層が形成され、磁界転写方式により記録
信号が転写される磁気記録媒体において、 磁性層の飽和磁束密度が1800ガウス以下であること
を特徴とする磁気記録媒体。
[Scope of Claims] A magnetic recording medium in which a magnetic layer mainly composed of hexagonal ferrite magnetic powder and a binder is formed on a non-magnetic support, and a recording signal is transferred by a magnetic field transfer method, wherein saturation of the magnetic layer is provided. A magnetic recording medium having a magnetic flux density of 1800 Gauss or less.
JP63212439A 1988-08-29 1988-08-29 Signal recording method Expired - Fee Related JP2743392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63212439A JP2743392B2 (en) 1988-08-29 1988-08-29 Signal recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63212439A JP2743392B2 (en) 1988-08-29 1988-08-29 Signal recording method

Publications (2)

Publication Number Publication Date
JPH0261824A true JPH0261824A (en) 1990-03-01
JP2743392B2 JP2743392B2 (en) 1998-04-22

Family

ID=16622626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63212439A Expired - Fee Related JP2743392B2 (en) 1988-08-29 1988-08-29 Signal recording method

Country Status (1)

Country Link
JP (1) JP2743392B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217423A (en) * 1986-03-17 1987-09-24 Konishiroku Photo Ind Co Ltd Magnetic recording medium having magnetic layer containing hexagonal ferrite and iron carbide
JPS63136317A (en) * 1986-11-28 1988-06-08 Victor Co Of Japan Ltd Magnetic recording medium
JPH01122019A (en) * 1987-11-06 1989-05-15 Hitachi Maxell Ltd Signaled magnetic tape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217423A (en) * 1986-03-17 1987-09-24 Konishiroku Photo Ind Co Ltd Magnetic recording medium having magnetic layer containing hexagonal ferrite and iron carbide
JPS63136317A (en) * 1986-11-28 1988-06-08 Victor Co Of Japan Ltd Magnetic recording medium
JPH01122019A (en) * 1987-11-06 1989-05-15 Hitachi Maxell Ltd Signaled magnetic tape

Also Published As

Publication number Publication date
JP2743392B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US4654260A (en) Magnetic recording medium
US4455345A (en) Magnetic recording medium
US4606971A (en) Magnetic recording medium
US4486496A (en) Magnetic recording medium
JP2644322B2 (en) Magnetic recording media
JP2019021357A (en) Manufacturing method of magnetic recording media
JP2751535B2 (en) Magnetic transfer method
JP4383336B2 (en) Magnetic tape
JPH03701B2 (en)
JP2743392B2 (en) Signal recording method
JPS62204427A (en) Magnetic recording medium
JPH07105525A (en) Magnetic recording medium
JPH0291814A (en) Magnetic recording medium
JPS63268124A (en) Magnetic recording medium for slave
JP4507042B2 (en) Magnetic recording medium
JPS6173206A (en) Magnetic recording and reproducing system
JP3012190B2 (en) Magnetic recording media
JPH01236424A (en) Magnetic recording medium
JPS61217901A (en) Magnetic recording and reproducing device
JPH0312823A (en) Production of magnetic recording medium
JPS6222237A (en) Magnetic recording medium
JPH02110824A (en) Magnetic recording medium
JPS59129935A (en) Magnetic recording medium
JPS62175930A (en) Magnetic recording medium
JPH0362313A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees