[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0259830B2 - - Google Patents

Info

Publication number
JPH0259830B2
JPH0259830B2 JP57035933A JP3593382A JPH0259830B2 JP H0259830 B2 JPH0259830 B2 JP H0259830B2 JP 57035933 A JP57035933 A JP 57035933A JP 3593382 A JP3593382 A JP 3593382A JP H0259830 B2 JPH0259830 B2 JP H0259830B2
Authority
JP
Japan
Prior art keywords
yield
trifluoromethyl
dihydrouracil
mmol
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57035933A
Other languages
Japanese (ja)
Other versions
JPS58174371A (en
Inventor
Iwao Oshima
Takamasa Fuchigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP57035933A priority Critical patent/JPS58174371A/en
Publication of JPS58174371A publication Critical patent/JPS58174371A/en
Publication of JPH0259830B2 publication Critical patent/JPH0259830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は一般式 (式中R1及びR2は水素原子又はアルキル基であ
る。)で表わされる5−トリフルオロメチルジヒ
ドロウラシル誘導体の製造方法に関する。 本発明により得られる前記一般式()で表わ
される5−トリフルオロメチルジヒドロウラシル
誘導体は、酢酸中、臭素と反応させた後、加熱す
ることによりトリフルオロチミン誘導体に誘導す
ることが出来る(C.Heidelberger,D.G,
Parsonsand D.C.Remy,J.Med.Chem,,1
(1964)及び下記参考例参照)。トリフルオロチミ
ン誘導体は医薬品、特に低毒性の制癌、抗ウイル
ス作用を有し、角膜炎感染症やヘルペス用に用い
られつつある。 従来とりわけ5−トリフルオロメチルジヒドロ
ウラシルを合成する方法としてはトリフルオロア
セトンをシアノヒドリンとし、アセチル化した後
熱分解することによつて得られるα−トリフルオ
ロアクリロニトリルをメタノール中、臭化水素と
反応させβ−ブロモ−α−トリフルオロメチルプ
ロピオンアミドとし、このものと尿素又はアセチ
ル尿素と反応させて得られる化合物を塩酸中で環
化させることによつて合成されている(C.
Heidl-berger,D.G.Parsons and D.C.Remy,J.
Med.Chem,,1(1964)参照)。 しかし、この方法は工程も長く、しかも全収率
も7〜16%ときわめて低いものである。 本発明者等は従来法の欠点を克服すべく検討し
た結果2−ハロ−3,3,3−トリフルオロプロ
ペン、尿素誘導体及び一酸化炭素を反応させるこ
とにより、収率よく一挙に5−トリフルオロメチ
ルジヒドロウラシル誘導体を製造する方法を見出
し本発明を完成した。 本発明は塩基及びパラジウムホスフイン錯体触
媒の存在下、一般式 (式中、Xはハロゲン原子である。)で表わされ
る2−ハロ−3,3,3−トリフルオロプロペ
ン、一般式 R1NHCONHR2 −() (式中、R1及びR2は水素原子又はアルキル基で
ある)で表わされる尿素誘導体及び一酸化炭素を
反応させ、前記一般式()で表わされる5−ト
リフルオロメチルジヒドロウラシル誘導体を製造
するものである。 本発明の原料である前記一般式()で表わさ
れる2−ハロ−3,3,3−トリフルオロプロペ
ンは、3,3,3−トリフルオロプロペンに塩
素、臭素あるいはヨウ素を付加させることによつ
て得られる1,1,1−トリフルオロ−2,3−
ジハロプロパンを脱ハロゲン化水素をさせること
によつて容易に製造することが出来る(A.L.
Henne and M. Nager,J.Amer.Chem. Soc.,
73,1042(1951)参照)。 又、本発明を実施する際は1,1,1−トリフ
ルオロ−2,3−ジハロプロパンを用いて、系中
で直接前記一般式()で表わされる2−ハロ−
3,3,3−トリフルオロプロペンに変換して用
いることも出来る(実施例5、実施例10、及び実
施例13)。 本発明は塩基及びパラジウムホスフイン錯体触
媒の存在下に行うことを必須の要件とする。 塩基としてはアルカリ金属の水素化物、水酸化
物、炭酸塩、炭酸水素塩、アルカリ金属アミド、
トリエチルアミン、N,N−ジメチルアニリン、
ピリジン等が挙げられる。 塩基の使用量は前記一般式()の化合物に対
して等モル又はやや過剰用いればよい。又1,
1,1−トリフルオロ−2,3−ジハロプロパン
を原料として用いる場合には2倍モル以上用いる
のが好ましい。 パラジウムホスフイン錯体触媒としては塩化パ
ラジウム、酢酸パラジウム等のパラジウム塩に三
級ホスフインを添加したもの及びジクロロビス
(トリフエニルホスフイン)パラジウム、テトラ
キス(トリフエニルホスフイン)パラジウム等、
更にこれらパラジウムホスフイン錯体を担体に担
持したもの等を使用することが出来る。触媒の使
用量は前記一般式()の化合物に対して1/
1000〜1/10モルの範囲で用いると効率よく反応
が進行すると共に経済的でもある。 本発明は一酸化炭素の圧力下に行うことが効率
よく反応が進行するので望ましい。。一酸化炭素
圧は1〜300気圧の範囲で適当に選択出来るが通
常は20〜50気圧で充分である。 溶媒は必ずしも必要ではないが一般的に溶媒を
用いた方が収率がよい。使用される溶媒としては
反応に直接関与しないものであれば種類を問わな
いが例えば塩化メチレン、クロロホルム、アセト
ニトリル、エーテル、テトラヒドロフラン、ジメ
トキシエタン、2−メトキシ−エチルエーテル、
ベンゼン、トルエン、N,N−ジメチルホルムア
ミド(DMF)、ジチルスルホキシド(DMSO)、
ヘキサメチルホスホリツクトリアミド(HMPA)
等を挙げることが出来る。 反応温度は室温から200℃の範囲で行うことが
出来る。以下、実施例により本発明を更に詳細に
説明する。 実施例 1 50mlのオートクレープにジクロロビス(トリフ
エニルホスフイン)パラジウム70.2mg(0.1mmo
)、2−ブロモ−3,3,3−トリフルオロプ
ロペン1.75g(10mmo)、尿素901mg(10mmo
)トリエチルアミン1.52g(15mmo)及び
溶媒のDEF(10ml)を入れ、40気圧の一酸化炭素
圧下、60℃で37時間加熱かくはんした。反応混合
物に水を加え、酢酸エチルで抽出し無水硫酸ナト
リウムで乾燥した。溶媒を留去した後シリカゲル
クロマトグラフイーにかけることにより、5−ト
リフルオロメチル−5,6−ジヒドロラウシル
380mg(収率21%)を得た。 m.p. 203〜206℃.(文献値203
〜205℃(dec.)). 質量スペクトル:m/e(rel.int.)M+182 (68)、96(45)、95(41)、44(32)、43(51)、30
(36)、29(30)、28(95)、18(100). IR(KBr):3700〜2800・cm-1(νNH)1750、1710
cm-1(νC=O1H NMR(d6−アセトン:TMS):δ3.4〜4.2
(m,3H)7.0(bs,1H)・9.5(bs,1H). 19F NMR(d6−アセトン:CFCl3):δ−66.6
(m). 実施例 2 ジクロロビス(トリフエニルホスフイン)パラ
ジウムの代りにジクロロビス(ベンゾニトリル)
パラジウム38.3mg(0.1mmol)及びトリフエニル
ホスフイン52.4mg(0.2mmol)を用いて実施例1
と同様に行い、5−トリフルオロメチル−5,6
−ジヒドロウラシル380mg(収率21%)を得た。 実施例 3 溶媒としてジメトキシエタン(10ml)及び
DMF(10ml)を用いて実施例1と同様に反応を行
い、5−トリフルオロメチル−5,6−ジヒドロ
ウラシル480mg(収率26%)を得た。 実施例 4 尿素を1.202g(20mmol)用い、反応時間を16
時間行つた以外は実施例1と同様にして5−トリ
フルオロメチル−5,6−ジヒドロウラシル615
mg(収率34%)を得た。 実施例 5 50mlのオートクレープにジクロロビス(トリフ
エニルホスフイン)パラジウム140.0mg
(0.2mmol)、2,3−ジプロモ−1,1,1−ト
リフルオロプロパン2.56g(10mmol)、尿素903
mg(15mmol)、トリエチルアミン2.53g
(25mmol)及び溶媒としてDMF(10ml)を入れ、
45気圧の一酸化炭素圧下60℃で20時間反応させ
た。実施例1と同様の処理を行い5−トリフルオ
ロメチル−5,6−ジヒドロウラシル437mg(収
率24%)を得た。 実施例 6 尿素の代りにメチル尿素741mg(10mmol)を
用い、100℃で12時間反応させた以外は実施例1
と同様の操作を行い、3−メチル−5−トリフル
オロメチル−5,6−ジヒドロウラシル800mg
(収率41%)及び1−メチル−5−トリフルオロ
メチル−5,6−ジヒドロウラシル201mg(収率
10%)を得た。 3−メチル−5−トリフルオロメチル−5,6
−ジヒドロウラシル m.p. 162〜163℃. 質量スペクトル:m/e(rel.int.)M+196
(100)、99(50)、96(46)、95(32)、77(35)、5
8
(66)、56(54). IR(KBr):3260、3140cm-1(νN-H)1730、1705、
1690cm-1(νC=O). 1H NMR(d6−アセトン:TMS):δ3.03(s,
3H)、3.4〜4.0(m,3H)、7.0(bs,1H). 19F NMR(d6−アセトン:CFCl3):δ−67.0
(m). 元素分析 C6H7F3N2O2 実測値(%)C、36.43;H、3.47;N、14.16 計算値(%)C、36.74;H、3.60;N、14.28 1−メチル−5−トリフルオロメチル−5,6
−ジヒドロウラシル m.p. 142〜143℃. 質量スペクトル:m/e(rel.int.)M+196
(100)、77(20)、57(92)、56(21)、44(62)、4
3
(39)、42(88). IR(KBr):3210、3180cm-1(νN-H)1735、1720、
1700cm-1(νC=O1H NMR(d6−アセトン:
TMS):δ2.96(s,3H)、3.4〜4.0(m,3H)、9.4
(bs,1H). 19F NMR(d6−アセトン:CFCl3):δ−67.0
(m)・ 元素分析 C6H7F3N2O2 実測値(%)C、36.43;H、3.41;N、14.04 計算値(%)C、36.74;H、3.60;N、14.28 実施例 7 メチル尿素を1.48g(20mmol)を用い、5時
間反応させた以外は実施例6と同様の操作を行い
3−メチル−5−トリフルオロメチル−5,6−
ジヒドロウラシル914mg(収率47%)及び1−メ
チル−5−トリフルオロメチル−5,6−ジヒド
ロウラシル166mg(収率8%)を得た。 実施例 8 ジクロロビス(トリフエニルホスフイン)パラ
ジウム140mg(0.2mmol)、メチル尿素1.11g
(15mmol)を用い、4時間反応させた以外は実
施例6と同様の操作を行い、3−メチル−5−ト
リフルオロメチル−5,6−ジヒドロウラシル
758mg(収率39%)及び1−メチル−5−トリフ
ルオロメチル−5,6−ジヒドロウラシル152mg
(収率8%)を得た。 実施例 9 ジクロロビス(トリフエニルホスフイン)パラ
ジウム351mg(0.5mmol)を用いて1時間反応さ
せた以外は実施例8と同様の操作を行い、3−メ
チル−5−トリフルオロメチル−5,6−ジヒド
ロウラシル982mg(収率50%)及び1−メチル−
5−トリフルオロメチル−5,6−ジヒドロウラ
シル178mg(収率9%)を得た。 実施例 10 尿素の代りにメチル尿素1.11g(15mmol)を
用いて100℃で16時間反応させた以外は実施例5
と同様に行い、3−メチル−5−トリフルオロメ
チル−5,6−ジヒドロウラシル528mg(収率27
%)及び1−メチル−5−トリフルオロメチル−
5,6−ジヒドロウラシル75mg(収率4%)を得
た。 実施例 11 50mlのオートクレープにジクロロビス(トリフ
エニルホスフイン)パラジウム70.2mg
(0.1mmol)、2−プロモ−3,3,3−トリフル
オロプロペン1.75g(10mmol)、1,3−ジメチ
ル尿素881mg(10mmol)、トリエチルアミン1.01
g(10mmol)及び溶媒としてアセトニトリル
(10ml)を入れ、15気圧の一酸化炭素圧下、80℃
で15時間加熱かくはんした。反応混合物に水を加
え、クロロホルムで抽出し無水硫酸ナトリウムで
乾燥した。溶媒を留去した後、シリカゲルクロマ
トグラフイーにかけることによつて1,3−ジメ
チル−5−トリフルオロメチル−5,6−ジヒド
ロウラシル1.07(収率51%)を得た。 質量スペクトル:m/e(rel.int.)M+210
(93)、113(52)、58(42)、57(100)、56(34)、
43
(47)、42(89). IR(neat):1725、1685cm-1(νC=O1H NMR
(CDCl3:TMS):δ3.09(s,3H)、3.20(s,
3H)、3.2〜3.7(m,3H). 19F NMR(CDCl3:CFCl3):δ−67.9(m). 元素分析 C7H9F3N2O2 実測値(%)C、40.04;H、4.20;N、12.97 計算値(%)C、40.01;H、4.32;N、13.33 実施例 12 アセトニトリルの代りに溶媒としてDMFを用
い、40気圧の一酸化炭素圧下100℃で15時間反応
させた以外は、実施例11と同様に反応を行い、
1,3−ジメチル−5−トリフルオロメチル−
5,6−ジヒドロウラシル1.46g(収率70%)を
得た。 実施例 13 2−プロモ−3,3,3−トリフルオロプロペ
ンの代りに2,3−ジブロモ−1,1,1−トリ
フルオロプロパン2.56g(10mmol)を、又トリ
エチルアミン2.53g(25mmol)及び溶媒として
テトラヒドロフラン(10ml)を用いて実施例12と
同様に反応を行い、1,3−ジメチル−5−トリ
フルオロメチル−5,6−ジヒドロウラシル1.22
g(収率58%)を得た。 参考例 1 3−メチル−5−トリフルオロメチル−5,6
−ジヒドロウラシル1.96g(10mmol)を酢酸15
mlに溶解させ、臭素3.20g(20mmol)を加えて
1晩還流させた。減圧で酢酸を留去した後DMF5
mlを加えて100℃で2時間加熱かくはんした。減
圧でDMFを留去させた後、シリカゲルカラムク
ロマトグラフイーにかけることによつて3−メチ
ル−5−トリフルオロメチルウラシル1.90g(収
率98%)を得た。 m.p. 183〜184℃. 質量スペクトル:m/e(rel.int.)M+194
(75)、137(35)、110(30)、58(25)、28(100)
. IR(KBr):3250、3140cm-1(νN-H)1730、1685
cm-1(νC=O1H NMR(d6−アセトン:TMS):δ3.23(s,
3H)、8.02(bd,1H)、10.5(bs,1H). 19F NMR(d6−アセトン:CFCl3):δ−63.4
(d,J=1Hz). 元素分析 C6H5F3N2O2 実測値(%)C、36.87;H、2.69;N、14.39 計算値(%)C、37.13;H、2.60;N、14.43 参考例 2 1−メチル−5−トリフルオロメチル−5,6
−ジヒドロウラシル392mg(2mmol)、酢酸3ml
及び臭素640mg(4mmol)を用いて参考例1と同
様の操作を行い1−メチル−5−トリフルオロメ
チルウラシル380mg(収率98%)を得た。 m.p. 219〜221℃.(subl.)(文献値245〜248
℃) 質量スペクトル:m/e(rel.int.)M+194
(46)、151(17)、150(12)、42(100). IR(KBr):3190、3140、3080cm-1(νN-H)1730、
1670cm-1(νC=O). 1H NMR(d6−アセトン:TMS):δ3.43(s,
3H)、8.14(q,J=1Hz,1H)、10.3(bs,1H). 19F NMR(d6−アセトン:CFCl3):δ−62.8
(d,J=1Hz). 元素分析 C6H5F3N2O2 実測値(%)C、37.16;H、2.56;N、14.30. 計算値(%)C、37.13;H、2.60;N、14.43. 参考例 3 1,3−ジメチル−5−トリフルオロメチル−
5,6−ジヒドロウラシル1.26g(6mmol)、酢
酸10ml及び臭素1.92g(12mmol)を用いて参考
例1と同様の操作を行い、1,3−ジメチル−5
−トリフルオロメチルウラシル1.20g(収率96
%)を得た。 m.p. 109〜110℃. 質量スペクトル:m/e(rel.int.)M+208
(42)、151(16)、150(12)、123(11)、58(100)
. IR(KBr):1730、1700、1640、1640cm-1(νC=O1H NMR(CDCl3:TMS):δ3.34(s,3H),
3.48(s,3H)、7.70(q,J=1.2Hz,1H). 19F NMR(CDCl3:CFCl3):δ−64.3(d,J
=1.2Hz). 元素分析 C7H7F3N2O2 実測値(%)C、40.48;H、3.28;N、13.41. 計算値(%)C、40.39;H、3.39;N、13.46.
[Detailed Description of the Invention] The present invention relates to the general formula The present invention relates to a method for producing a 5-trifluoromethyldihydrouracil derivative represented by the formula (wherein R 1 and R 2 are a hydrogen atom or an alkyl group). The 5-trifluoromethyldihydrouracil derivative represented by the general formula () obtained by the present invention can be converted into a trifluorothymine derivative by reacting with bromine in acetic acid and then heating (C. Heidelberger, D.G.
Parsonsand DCRemy, J.Med.Chem, 7 , 1
(1964) and reference examples below). Trifluorothymine derivatives have low toxicity anticancer and antiviral effects, and are being used for keratitis infections and herpes. Conventionally, the method for synthesizing 5-trifluoromethyldihydrouracil in particular involves converting trifluoroacetone into cyanohydrin, acetylating it, and then thermally decomposing it to obtain α-trifluoroacrylonitrile, which is then reacted with hydrogen bromide in methanol. It is synthesized by reacting β-bromo-α-trifluoromethylpropionamide with urea or acetylurea and cyclizing the resulting compound in hydrochloric acid (C.
Heidl - berger, DGParsons and DCRemy, J.
(See Med. Chem, 7 , 1 (1964)). However, this method requires long steps and has an extremely low overall yield of 7-16%. As a result of studies to overcome the drawbacks of conventional methods, the present inventors succeeded in producing 5-trifluoropropene in a high yield by reacting 2-halo-3,3,3-trifluoropropene, a urea derivative, and carbon monoxide. The present invention was completed by discovering a method for producing fluoromethyldihydrouracil derivatives. In the present invention, in the presence of a base and a palladium phosphine complex catalyst, the general formula 2 - halo-3,3,3-trifluoropropene represented by the general formula R 1 NHCONHR 2 −() (wherein, or an alkyl group) and carbon monoxide to produce a 5-trifluoromethyldihydrouracil derivative represented by the general formula (). 2-halo-3,3,3-trifluoropropene represented by the general formula (), which is a raw material of the present invention, can be obtained by adding chlorine, bromine or iodine to 3,3,3-trifluoropropene. 1,1,1-trifluoro-2,3- obtained by
It can be easily produced by dehydrohalogenating dihalopropane (AL
Henne and M. Nager, J. Amer. Chem. Soc.
73, 1042 (1951)). Furthermore, when carrying out the present invention, 1,1,1-trifluoro-2,3-dihalopropane is used to directly convert 2-halo-propane represented by the above general formula () into the system.
It can also be used after being converted into 3,3,3-trifluoropropene (Example 5, Example 10, and Example 13). The present invention requires that the reaction be carried out in the presence of a base and a palladium phosphine complex catalyst. Bases include alkali metal hydrides, hydroxides, carbonates, hydrogen carbonates, alkali metal amides,
Triethylamine, N,N-dimethylaniline,
Examples include pyridine. The amount of the base to be used may be equimolar or slightly excessive with respect to the compound of the general formula (). Also 1,
When using 1,1-trifluoro-2,3-dihalopropane as a raw material, it is preferable to use it in an amount of 2 times the mole or more. Palladium phosphine complex catalysts include those obtained by adding tertiary phosphine to palladium salts such as palladium chloride and palladium acetate, dichlorobis(triphenylphosphine)palladium, tetrakis(triphenylphosphine)palladium, etc.
Furthermore, it is possible to use a carrier in which these palladium phosphine complexes are supported. The amount of catalyst used is 1/1 with respect to the compound of the general formula ().
When used in the range of 1000 to 1/10 mole, the reaction proceeds efficiently and is also economical. The present invention is preferably carried out under the pressure of carbon monoxide because the reaction proceeds efficiently. . The carbon monoxide pressure can be appropriately selected within the range of 1 to 300 atm, but 20 to 50 atm is usually sufficient. Although a solvent is not always necessary, the yield is generally better when a solvent is used. Any solvent can be used as long as it does not directly participate in the reaction, but examples include methylene chloride, chloroform, acetonitrile, ether, tetrahydrofuran, dimethoxyethane, 2-methoxy-ethyl ether,
Benzene, toluene, N,N-dimethylformamide (DMF), dithylsulfoxide (DMSO),
Hexamethylphosphoric triamide (HMPA)
etc. can be mentioned. The reaction temperature can be carried out in the range from room temperature to 200°C. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Dichlorobis(triphenylphosphine)palladium 70.2 mg (0.1 mmo) in a 50 ml autoclave
), 2-bromo-3,3,3-trifluoropropene 1.75g (10mmo), urea 901mg (10mmo
) 1.52 g (15 mmo) of triethylamine and the solvent DEF (10 ml) were added, and the mixture was heated and stirred at 60° C. for 37 hours under a carbon monoxide pressure of 40 atmospheres. Water was added to the reaction mixture, extracted with ethyl acetate, and dried over anhydrous sodium sulfate. After distilling off the solvent, 5-trifluoromethyl-5,6-dihydrolaucyl was obtained by subjecting it to silica gel chromatography.
380 mg (yield 21%) was obtained. mp 203-206℃. (Literature value 203
~205℃ (dec.). Mass spectrum: m/e (rel.int.) M + 182 (68), 96 (45), 95 (41), 44 (32), 43 (51), 30
(36), 29 (30), 28 (95), 18 (100). IR (KBr): 3700-2800 cm -1NH ) 1750, 1710
cm -1C=O ) 1 H NMR (d 6 -acetone: TMS): δ3.4-4.2
(m, 3H) 7.0 (bs, 1H)・9.5 (bs, 1H). 19F NMR ( d6 -acetone: CFCl3 ): δ-66.6
(m). Example 2 Dichlorobis(benzonitrile) instead of dichlorobis(triphenylphosphine)palladium
Example 1 using 38.3 mg (0.1 mmol) of palladium and 52.4 mg (0.2 mmol) of triphenylphosphine.
5-trifluoromethyl-5,6
-Dihydrouracil 380 mg (yield 21%) was obtained. Example 3 Dimethoxyethane (10ml) and
A reaction was carried out in the same manner as in Example 1 using DMF (10 ml) to obtain 480 mg (yield 26%) of 5-trifluoromethyl-5,6-dihydrouracil. Example 4 Using 1.202g (20mmol) of urea, the reaction time was 16
5-trifluoromethyl-5,6-dihydrouracil 615
mg (yield 34%). Example 5 Dichlorobis(triphenylphosphine)palladium 140.0mg in 50ml autoclave
(0.2 mmol), 2,3-dipromo-1,1,1-trifluoropropane 2.56 g (10 mmol), urea 903
mg (15 mmol), triethylamine 2.53 g
(25 mmol) and DMF (10 ml) as a solvent,
The reaction was carried out at 60° C. for 20 hours under a carbon monoxide pressure of 45 atm. The same treatment as in Example 1 was carried out to obtain 437 mg (yield 24%) of 5-trifluoromethyl-5,6-dihydrouracil. Example 6 Example 1 except that 741 mg (10 mmol) of methylurea was used instead of urea and the reaction was carried out at 100°C for 12 hours.
Perform the same operation as above to obtain 800 mg of 3-methyl-5-trifluoromethyl-5,6-dihydrouracil.
(yield 41%) and 1-methyl-5-trifluoromethyl-5,6-dihydrouracil 201 mg (yield
10%). 3-methyl-5-trifluoromethyl-5,6
-Dihydrouracil mp 162-163℃. Mass spectrum: m/e (rel.int.) M + 196
(100), 99 (50), 96 (46), 95 (32), 77 (35), 5
8
(66), 56(54). IR (KBr): 3260, 3140cm -1 ( νNH ) 1730, 1705,
1690cm -1C=O ). 1H NMR ( d6 -acetone: TMS): δ3.03(s,
3H), 3.4-4.0 (m, 3H), 7.0 (bs, 1H). 19F NMR ( d6 -acetone: CFCl3 ): δ-67.0
(m). Elemental analysis C 6 H 7 F 3 N 2 O 2 Actual value (%) C, 36.43; H, 3.47; N, 14.16 Calculated value (%) C, 36.74; H, 3.60; N, 14.28 1-Methyl-5- trifluoromethyl-5,6
-Dihydrouracil mp 142-143℃. Mass spectrum: m/e (rel.int.) M + 196
(100), 77 (20), 57 (92), 56 (21), 44 (62), 4
3
(39), 42(88). IR (KBr): 3210, 3180cm -1 ( νNH ) 1735, 1720,
1700cm -1C=O ) 1 H NMR (d 6 -acetone:
TMS): δ2.96 (s, 3H), 3.4-4.0 (m, 3H), 9.4
(bs, 1H). 19F NMR ( d6 -acetone: CFCl3 ): δ-67.0
(m) Elemental analysis C 6 H 7 F 3 N 2 O 2 Actual value (%) C, 36.43; H, 3.41; N, 14.04 Calculated value (%) C, 36.74; H, 3.60; N, 14.28 Example 7 3-Methyl-5-trifluoromethyl-5,6-
914 mg (yield: 47%) of dihydrouracil and 166 mg (yield: 8%) of 1-methyl-5-trifluoromethyl-5,6-dihydrouracil were obtained. Example 8 Dichlorobis(triphenylphosphine)palladium 140 mg (0.2 mmol), methylurea 1.11 g
The same operation as in Example 6 was carried out except that 3-methyl-5-trifluoromethyl-5,6-dihydrouracil was used and the reaction was carried out for 4 hours.
758 mg (yield 39%) and 152 mg of 1-methyl-5-trifluoromethyl-5,6-dihydrouracil
(yield: 8%). Example 9 The same procedure as in Example 8 was carried out except that 351 mg (0.5 mmol) of dichlorobis(triphenylphosphine)palladium was used to react for 1 hour, and 3-methyl-5-trifluoromethyl-5,6- Dihydrouracil 982 mg (yield 50%) and 1-methyl-
178 mg (yield: 9%) of 5-trifluoromethyl-5,6-dihydrouracil was obtained. Example 10 Example 5 except that 1.11 g (15 mmol) of methylurea was used instead of urea and the reaction was carried out at 100°C for 16 hours.
528 mg of 3-methyl-5-trifluoromethyl-5,6-dihydrouracil (yield 27
%) and 1-methyl-5-trifluoromethyl-
75 mg (yield: 4%) of 5,6-dihydrouracil was obtained. Example 11 70.2mg dichlorobis(triphenylphosphine)palladium in 50ml autoclave
(0.1 mmol), 2-promo-3,3,3-trifluoropropene 1.75 g (10 mmol), 1,3-dimethylurea 881 mg (10 mmol), triethylamine 1.01
g (10 mmol) and acetonitrile (10 ml) as a solvent, and heated at 80°C under 15 atmospheres of carbon monoxide pressure.
The mixture was heated and stirred for 15 hours. Water was added to the reaction mixture, extracted with chloroform, and dried over anhydrous sodium sulfate. After distilling off the solvent, the residue was subjected to silica gel chromatography to obtain 1,3-dimethyl-5-trifluoromethyl-5,6-dihydrouracil 1.07 (yield 51%). Mass spectrum: m/e (rel.int.) M + 210
(93), 113 (52), 58 (42), 57 (100), 56 (34),
43
(47), 42(89). IR (neat): 1725, 1685 cm -1C=O ) 1 H NMR
(CDCl 3 :TMS): δ3.09(s, 3H), 3.20(s,
3H), 3.2-3.7 (m, 3H). 19F NMR ( CDCl3 : CFCl3 ): δ-67.9 (m). Elemental analysis C 7 H 9 F 3 N 2 O 2 Actual value (%) C, 40.04; H, 4.20; N, 12.97 Calculated value (%) C, 40.01; H, 4.32; N, 13.33 Example 12 The reaction was carried out in the same manner as in Example 11, except that DMF was used as a solvent instead of acetonitrile and the reaction was carried out at 100 °C under 40 atmospheres of carbon monoxide pressure for 15 hours.
1,3-dimethyl-5-trifluoromethyl-
1.46 g (yield 70%) of 5,6-dihydrouracil was obtained. Example 13 2.56 g (10 mmol) of 2,3-dibromo-1,1,1-trifluoropropane was used instead of 2-promo-3,3,3-trifluoropropene, 2.53 g (25 mmol) of triethylamine, and tetrahydrofuran ( A reaction was carried out in the same manner as in Example 12 using 10 ml of 1,3-dimethyl-5-trifluoromethyl-5,6-dihydrouracil.
g (yield 58%) was obtained. Reference example 1 3-methyl-5-trifluoromethyl-5,6
-1.96g (10mmol) of dihydrouracil in 15% of acetic acid
ml, 3.20 g (20 mmol) of bromine was added, and the mixture was refluxed overnight. After distilling off the acetic acid under reduced pressure, DMF5
ml was added and heated and stirred at 100°C for 2 hours. After distilling off DMF under reduced pressure, the residue was subjected to silica gel column chromatography to obtain 1.90 g (yield: 98%) of 3-methyl-5-trifluoromethyluracil. mp 183-184℃. Mass spectrum: m/e (rel.int.) M + 194
(75), 137 (35), 110 (30), 58 (25), 28 (100)
.. IR (KBr): 3250, 3140cm -1 ( νNH ) 1730, 1685
cm -1C=O ) 1 H NMR (d 6 -acetone: TMS): δ3.23 (s,
3H), 8.02 (bd, 1H), 10.5 (bs, 1H). 19F NMR ( d6 -acetone: CFCl3 ): δ-63.4
(d, J=1Hz). Elemental analysis C 6 H 5 F 3 N 2 O 2 Actual value (%) C, 36.87; H, 2.69; N, 14.39 Calculated value (%) C, 37.13; H, 2.60; N, 14.43 Reference example 2 1-methyl-5-trifluoromethyl-5,6
-Dihydrouracil 392 mg (2 mmol), acetic acid 3 ml
The same operation as in Reference Example 1 was performed using 640 mg (4 mmol) of bromine and 380 mg of 1-methyl-5-trifluoromethyluracil (yield 98%). mp 219-221℃. (subl.) (Literature value 245-248
°C) Mass spectrum: m/e (rel.int.) M + 194
(46), 151 (17), 150 (12), 42 (100). IR (KBr): 3190, 3140, 3080 cm -1NH ) 1730,
1670cm -1C=O ). 1H NMR ( d6 -acetone: TMS): δ3.43(s,
3H), 8.14 (q, J = 1Hz, 1H), 10.3 (bs, 1H). 19F NMR ( d6 -acetone: CFCl3 ): δ-62.8
(d, J=1Hz). Elemental analysis C 6 H 5 F 3 N 2 O 2 Actual value (%) C, 37.16; H, 2.56; N, 14.30. Calculated value (%) C, 37.13; H, 2.60; N, 14.43. Reference example 3 1,3-dimethyl-5-trifluoromethyl-
The same operation as in Reference Example 1 was performed using 1.26 g (6 mmol) of 5,6-dihydrouracil, 10 ml of acetic acid, and 1.92 g (12 mmol) of bromine, and 1,3-dimethyl-5
- 1.20 g of trifluoromethyluracil (yield 96
%) was obtained. mp 109-110℃. Mass spectrum: m/e (rel.int.) M + 208
(42), 151 (16), 150 (12), 123 (11), 58 (100)
.. IR (KBr): 1730, 1700, 1640, 1640 cm -1C=O ) 1 H NMR (CDCl 3 :TMS): δ3.34 (s, 3H),
3.48 (s, 3H), 7.70 (q, J=1.2Hz, 1H). 19F NMR ( CDCl3 : CFCl3 ): δ-64.3 (d, J
= 1.2Hz). Elemental analysis C 7 H 7 F 3 N 2 O 2 Actual value (%) C, 40.48; H, 3.28; N, 13.41. Calculated value (%) C, 40.39; H, 3.39; N, 13.46.

Claims (1)

【特許請求の範囲】 1 塩基及びパラジウムホスフイン錯体触媒の存
在下、一般式 で表わされる2−ハロ−3,3,3−トリフルオ
ロプロペン(式中、Xは後記の意味を有する。)、
一般式 R1NHCONHR2 で表わされる尿素誘導体(式中、R1及びR2は後
記の意味を有する。)及び一酸化炭素を反応させ
ることからなる、一般式 で表わされる5−トリフルオロメチルジヒドロウ
ラシル誘導体の製造方法(式中R1及びR2は水素
原子又はアルキル基であり、Xはハロゲン原子で
ある。)。
[Claims] 1. In the presence of a base and a palladium phosphine complex catalyst, the general formula 2-halo-3,3,3-trifluoropropene represented by (wherein, X has the meaning below),
A urea derivative represented by the general formula R 1 NHCONHR 2 (wherein R 1 and R 2 have the meanings given below) and carbon monoxide are reacted. A method for producing a 5-trifluoromethyldihydrouracil derivative represented by (wherein R 1 and R 2 are a hydrogen atom or an alkyl group, and X is a halogen atom).
JP57035933A 1982-03-09 1982-03-09 Production of 5-trifluoromethyldihydrouracil derivative Granted JPS58174371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035933A JPS58174371A (en) 1982-03-09 1982-03-09 Production of 5-trifluoromethyldihydrouracil derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035933A JPS58174371A (en) 1982-03-09 1982-03-09 Production of 5-trifluoromethyldihydrouracil derivative

Publications (2)

Publication Number Publication Date
JPS58174371A JPS58174371A (en) 1983-10-13
JPH0259830B2 true JPH0259830B2 (en) 1990-12-13

Family

ID=12455822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035933A Granted JPS58174371A (en) 1982-03-09 1982-03-09 Production of 5-trifluoromethyldihydrouracil derivative

Country Status (1)

Country Link
JP (1) JPS58174371A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769911B1 (en) * 1997-08-07 2001-05-25 F Tech Inc PROCESS FOR PREPARING 5-PERFLUOROALKYLURACIL DERIVATIVES
JPWO2002068655A1 (en) * 2001-02-27 2004-06-24 財団法人理工学振興会 Method for searching for therapeutic agent for hepatitis D

Also Published As

Publication number Publication date
JPS58174371A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
JP3195787B2 (en) Isocyanate trimerization or urethanization catalyst
JP3586288B2 (en) Preparation of biphenyl derivatives
JPH0236561B2 (en)
JPH0259830B2 (en)
JP3831954B2 (en) Process for producing 4-hydroxy-2-pyrrolidone
JP2001039939A (en) Production of malonitrile
JP3010264B2 (en) Method for producing isocoumarins
JPH03279348A (en) Production of 2,4,5-trifluoro-3-alkoxybenzoic acid
JP3046258B2 (en) Method for producing 1-chlorocarbonyl-4-piperidinopiperidine or hydrochloride thereof
JPS6094933A (en) Production of alpha-perfluoroalkylacrylic acid
JPH0558985A (en) Production of cyanoguanidine derivative
JPH0261461B2 (en)
JP3013760B2 (en) Method for producing 4-hydroxy-2-pyrrolidone
JP2743198B2 (en) Cyclopentanes
JPH029013B2 (en)
JP4663105B2 (en) Method for producing 2-sulfonyl-4-oxypyridine derivative
JP2959811B2 (en) Manufacturing method of acid chloride
CN117865881A (en) Preparation method of arbeli intermediate
KR0177618B1 (en) Method for preparing 2,6 dichloro-5-fluoronicotinic acid
JP4123606B2 (en) Process for producing 4,5-dichloro-6- (α-fluoroalkyl) pyrimidine
JP2964160B2 (en) Method for isolating cyclopropanecarboxylic acid and method for producing intermediate thereof
JPH07316137A (en) Production of (hexahydro-1-methyl-1h-azepin-4-yl)-hydrazine or salt thereof
JP2652248B2 (en) Process for producing alkoxynitrile compounds
JPH01319496A (en) Uracil derivative
JP2967425B2 (en) Oligo-N-methylpyrrolecarboxamide derivative