JPH0259404B2 - - Google Patents
Info
- Publication number
- JPH0259404B2 JPH0259404B2 JP57003652A JP365282A JPH0259404B2 JP H0259404 B2 JPH0259404 B2 JP H0259404B2 JP 57003652 A JP57003652 A JP 57003652A JP 365282 A JP365282 A JP 365282A JP H0259404 B2 JPH0259404 B2 JP H0259404B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- propagation time
- fluid
- measured
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 41
- 238000002604 ultrasonography Methods 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Description
この発明は流体の流速を測定する超音波流量計
において被測定流体の温度変化に対する出力補正
機能を有した超音波流量計に関するものである。
超音波流量計は流体の流れ方向に対して順方向
および逆方向でそれぞれ超音波を送受波し、それ
ぞれの超音波の伝播時間の差から流体流速を求め
ようとするものである。第1図に従来の超音波流
量計の機能を説明するためのブロツク図を示す。
図において、1a,1b,2a,2bはそれぞれ
超音波送受信子、3a,3b,4a,4bはそれ
ぞれ超音波送受信子取付部材、5は配管であり、
超音波送受信子1a,1b,2a,2bは超音波
取付部材3a,3b,4a,4bを介して配管5
に取付固定されている。
超音波流量計は超音波が流体中を伝播する際、
流れ方向に対して順方向の超音波伝播時間と流れ
方向に対して逆方向の超音波伝播時間との間に伝
播時間差が生じ、その伝播時間差が流体流速に比
例することを利用したものである。このことにつ
いて第1図を用いて説明する。
第1図に示すように、配管内径d、流体流速
V、超音波送受信子取付部材3a,3b,4a,
4b1体あたりの超音波伝播時間τ0/2、配管壁と
流体の境界で超音波入射角θ、超音波の流体中の
音速をCoとする。
流体の順方向に向つて送信される超音波の流体
中の音速は流体流速に比して充分大きいので、入
射角は変化せず超音波の音速成分のみが変化し、
Co+Vcosθとなる。また、超音波の伝播距離は
d/sinθであるので、流体中を伝播する超音波の
伝播時間はd/(Co+Vcosθ)sinθとなる。従つ
て、順方向に伝播する超音波が第1図における超
音波送受信子1aより超音波送受信子2bに到達
する伝播時間tLは
tL=d/(Co+Vcosθ)sinθ+τ0 ……(1)
となる。
同様に流れ方向に対して逆方向に伝播する超音
波が超音波送受信子1bから超音波送受信子2a
に到達する伝播時間tuは
tu=d/(Co−Vcosθ)sinθ+τ0 ……(2)
となる。(1)。(2)式から流体流速Vを求めると、
V=d(tu−tL)/sin2θ(tL−τ0)(tu−τ0)…
…(3)
となる。ここで、tu−tLは伝播時間差であり△t
とおく、また、tL−τ0≫△tであるので(3)式は
V=d/sin2θ(tu−τ0)2△ ……(4)
と得られる。このように伝播時間差△tを測定す
ることにより、流体流速Vを求めることができる
というものである。
従来の超音波流量計は以上のような動作原理に
基づいているので、超音波伝播時間tu、および伝
播時間差△tを測定することにより(3)式において
超音波音速Coが入つていないことから、流体温
度変化に対する超音波流量計出力の温度補正はあ
る程度までは可能である。しかし、配管内径d、
超音波入射角θ、さらに超音波送受信子取付部材
を使用することによるτ0の温度依存性が補正され
ていない。この点が高精度の超音波流量計を実現
する際の大きな問題点として残存しており、被測
定流体が広い温度変化範囲を有するプラント等に
超音波流量計を適用する際の困難を生じていた。
この発明は上記のような従来の超音波流量計の
欠点を除去するためになされたもので、被測定流
体の温度信号を必要とせず、超音波流量計単独で
被測定流体の温度変化に対応した出力の温度補正
を可能にし、原子力および各種プラント等運転条
件により広い範囲にわたつて被測定流体温度が変
化するような場合に対しても高精度の超音波流量
計を提供することを目的としている。
上記目的を実現するため、以下、この発明の一
実施例を図について説明する。第2図において、
1a,1b,2a,2bは超音波送受信子、3
a,3b,4a,4bはそれぞれ上記超音波送受
信子1a,1b,2a,2bに対応した超音波送
受信子取付部材、5は配管、6は超音波送受信子
1a〜2bに対し超音波信号の発信、受信を制御
し、かつ被測定流体の流れ方向に対する順方向と
逆方向の超音波伝播時間差、および超音波の発信
から受信までの超音波伝播時間を測定するための
超音波流量計回路部、7は超音波流量計回路部6
よりの超音波伝播時間および伝播時間差情報を用
い超音波流量計出力に対する出力温度補正演算部
である。
第3図は、第2図における出力温度補正演算部
7の機能を示すための詳細構成図であり、8は超
音波伝播時間差信号、9は超音波伝播時間信号、
71は超音波伝播時間差信号8の信号電圧を増幅
調整する増幅調整器、72は超音波伝播時間信号
9の信号電圧に対してバイアス電圧をかけるため
のバイアス回路部、73はバイアス回路部72に
てバイアス電圧がかけられた信号電圧を平方する
二乗器、74は増幅調整器71の出力電圧を二乗
器73の出力電圧で除するための割算器である。
ここでは本発明の基本原理について記述し、以
つて第2図に示したこの発明の一実施例の構成に
おける出力温度補正演算部7の役割について明ら
かにする。超音波流量計においては超音波伝播時
間および伝播時間差を測定することにより被測定
流体中の超音波音速を消去した形で(4)式により流
体流速が求められる事は先きに説明した。また、
同様に被測定流体中での超音波音速の寄与を含め
た形での流体流速と流れ方向に対する順方向、逆
方向での超音波伝播時間差との関係は次式で与え
られている。
V=tanθ・Co2/2d△t ……(5)
いわば(5)式は被測定流体の流れ方向の順方向と
逆方向での超音波伝播時間差が流体流速に比例し
たものであることを示すもので超音波流量計の測
定原理式であり、一方(4)式又は(5)式中より被測定
流体中の超音波音速を消去し、超音波伝播時間を
測定することにより被測定流体温度変化に対応し
た流体流速を求めようとする実際の測定式であ
る。
しかし、(4)式によつて測定しても超音波流量計
出力の被測定流体の温度変化に対する出力温度補
正は充分でないことは前述した通りである。本発
明においては(4)式、(5)式とを流体流速Vに対して
等置し、
tanθ・Co2/2d△t=d/sin2θ・(tu−τ0)2△t
とし、さらに超音波伝播時間差△tを消去し、超
音波流量計において被測定流体の温度変化に依存
する成分を抽出し、上式を整理して次式を得る。
(6)式において測定対象である超音波伝播時間tu
に対する
The present invention relates to an ultrasonic flowmeter that measures the flow velocity of a fluid and has an output correction function for temperature changes in a fluid to be measured. An ultrasonic flow meter transmits and receives ultrasonic waves in the forward and reverse directions with respect to the flow direction of the fluid, and attempts to determine the fluid flow velocity from the difference in propagation time of each ultrasonic wave. FIG. 1 shows a block diagram for explaining the functions of a conventional ultrasonic flowmeter.
In the figure, 1a, 1b, 2a, and 2b are ultrasonic transceivers, 3a, 3b, 4a, and 4b are ultrasonic transceiver mounting members, and 5 is piping.
The ultrasonic transceivers 1a, 1b, 2a, 2b are connected to the piping 5 via ultrasonic mounting members 3a, 3b, 4a, 4b.
It is fixedly installed. Ultrasonic flowmeters detect when ultrasonic waves propagate through a fluid.
This method utilizes the fact that a propagation time difference occurs between the ultrasonic propagation time in the forward direction of the flow direction and the ultrasonic propagation time in the reverse direction with respect to the flow direction, and that the propagation time difference is proportional to the fluid flow velocity. . This will be explained using FIG. 1. As shown in FIG.
4b Let us assume that the ultrasonic propagation time per body is τ 0 /2, the ultrasonic incident angle θ at the boundary between the pipe wall and the fluid, and the sound speed of the ultrasonic wave in the fluid as Co. Since the sound velocity in the fluid of the ultrasound transmitted in the forward direction of the fluid is sufficiently large compared to the fluid flow velocity, the incident angle does not change and only the sound velocity component of the ultrasound changes.
It becomes Co+Vcosθ. Further, since the propagation distance of the ultrasonic wave is d/sin θ, the propagation time of the ultrasonic wave propagating in the fluid is d/(Co+Vcos θ) sin θ. Therefore, the propagation time t L for the forward-propagating ultrasound to reach the ultrasound transmitter/receiver 2b from the ultrasound transmitter/receiver 1a in FIG. 1 is t L = d/(Co+Vcosθ) sinθ+τ 0 ...(1) Become. Similarly, ultrasonic waves propagating in the opposite direction to the flow direction are transmitted from the ultrasonic transceiver 1b to the ultrasonic transceiver 2a.
The propagation time t u to reach is t u =d/(Co−Vcosθ)sinθ+τ 0 (2). (1). Obtaining the fluid flow velocity V from equation (2), V=d(t u −t L )/sin2θ(t L −τ 0 )(t u −τ 0 )...
…(3) becomes. Here, t u −t L is the propagation time difference and △t
Also, since t L −τ 0 ≫△t, equation (3) is obtained as V=d/sin2θ(t u −τ 0 ) 2 △ ...(4). By measuring the propagation time difference Δt in this manner, the fluid flow velocity V can be determined. Conventional ultrasonic flowmeters are based on the operating principle described above, so by measuring the ultrasonic propagation time t u and the propagation time difference Δt, it can be determined that the ultrasonic sound velocity Co is not included in equation (3). Therefore, temperature correction of the ultrasonic flowmeter output due to fluid temperature changes is possible to a certain extent. However, the pipe inner diameter d,
The ultrasonic incident angle θ and the temperature dependence of τ 0 due to the use of the ultrasonic transceiver mounting member are not corrected. This point remains a major problem in realizing high-precision ultrasonic flowmeters, and causes difficulties in applying ultrasonic flowmeters to plants, etc. where the fluid to be measured has a wide temperature change range. Ta. This invention was made to eliminate the drawbacks of conventional ultrasonic flowmeters as described above, and does not require a temperature signal of the fluid to be measured, allowing the ultrasonic flowmeter alone to respond to temperature changes in the fluid to be measured. Our goal is to provide a highly accurate ultrasonic flowmeter that enables temperature correction of the output output, and that is highly accurate even when the temperature of the fluid to be measured changes over a wide range due to operating conditions such as nuclear power plants and various other plants. There is. In order to achieve the above object, one embodiment of the present invention will be described below with reference to the drawings. In Figure 2,
1a, 1b, 2a, 2b are ultrasonic transmitter/receivers, 3
a, 3b, 4a, and 4b are ultrasonic transmitter/receiver mounting members corresponding to the ultrasonic transmitter/receivers 1a, 1b, 2a, and 2b, respectively; 5 is a pipe; and 6 is an ultrasonic signal attachment member for the ultrasonic transmitter/receiver elements 1a to 2b. An ultrasonic flowmeter circuit unit for controlling transmission and reception, and measuring the difference in ultrasound propagation time between the forward and reverse directions with respect to the flow direction of the fluid to be measured, and the ultrasound propagation time from ultrasound transmission to reception. , 7 is an ultrasonic flowmeter circuit section 6
This is an output temperature correction calculation unit for the ultrasonic flowmeter output using ultrasonic propagation time and propagation time difference information. FIG. 3 is a detailed configuration diagram showing the function of the output temperature correction calculating section 7 in FIG. 2, in which 8 is an ultrasonic propagation time difference signal, 9 is an ultrasonic propagation time signal,
71 is an amplification regulator for amplifying and adjusting the signal voltage of the ultrasonic propagation time difference signal 8; 72 is a bias circuit section for applying a bias voltage to the signal voltage of the ultrasonic propagation time signal 9; and 73 is an amplifier for the bias circuit section 72. A squarer 74 is a divider for dividing the output voltage of the amplification regulator 71 by the output voltage of the squarer 73. Here, the basic principle of the present invention will be described, and the role of the output temperature correction calculation section 7 in the configuration of an embodiment of the present invention shown in FIG. 2 will be explained. As previously explained, in an ultrasonic flowmeter, the fluid flow velocity can be determined by equation (4) by eliminating the ultrasonic sound velocity in the fluid being measured by measuring the ultrasonic propagation time and the propagation time difference. Also,
Similarly, the relationship between the fluid flow velocity including the contribution of the ultrasonic sound velocity in the fluid to be measured and the ultrasonic propagation time difference in the forward and reverse directions with respect to the flow direction is given by the following equation. V=tanθ・Co 2 /2d△t...(5) In other words, equation (5) indicates that the difference in ultrasonic propagation time between the forward and reverse flow directions of the fluid to be measured is proportional to the fluid flow velocity. This is the measurement principle equation of an ultrasonic flowmeter.On the other hand, the ultrasonic sound velocity in the fluid to be measured is eliminated from equation (4) or (5), and the ultrasonic propagation time is measured. This is an actual measurement formula that attempts to determine the fluid flow velocity in response to temperature changes. However, as described above, even if the measurement is performed using equation (4), the output temperature correction for the temperature change of the fluid to be measured in the output of the ultrasonic flowmeter is not sufficient. In the present invention, equations (4) and (5) are placed equal to the fluid flow velocity V, and tanθ・Co 2 /2d△t=d/sin2θ・(t u −τ 0 ) 2 △t, Furthermore, the ultrasonic propagation time difference Δt is eliminated, a component that depends on the temperature change of the fluid to be measured in the ultrasonic flowmeter is extracted, and the above equation is rearranged to obtain the following equation. In equation (6), the ultrasonic propagation time t u to be measured
against
【式】の関係を被測定流体の
温度変化に対してあらかじめ求める。被測定流
体、超音波送受信子取付部材、配管の材料、幾可
形状、温度変化範囲は超音波流量計を設置する対
象プラントが決定すれば、あらかじめ知れるの
で、超音波流量計を実地にプラントに設置測定し
なくても前もつて計算等によりtuとThe relationship [Formula] is determined in advance with respect to the temperature change of the fluid to be measured. The fluid to be measured, the ultrasonic transmitter/receiver mounting material, the material of the piping, the geometric shape, and the temperature change range can be known in advance once the target plant where the ultrasonic flowmeter will be installed is determined, so it is easy to actually install the ultrasonic flowmeter in the plant. Even without installing and measuring, t u can be calculated in advance.
【式】との関係は求められる。こうし
て求められた両者の関係から次式を満足する定数
A,Bを決定する。
すなわち、tuとThe relationship with [Formula] can be found. From the relationship between the two obtained in this way, constants A and B that satisfy the following equation are determined. That is, t u and
【式】との関係はお
おむね許容誤差範囲内で、直線となり、この直線
の勾配および切片とから得られる。こうして得ら
れた定数A,Bを用いると、流体流速は結果的に
次式で求められることになり、
V=A/(tu−B)2△t ……(8)
(8)式におけるA,Bを用いることにより被測定
流体の温度変化に対応した高精度の出力温度補正
が実現されることになる。(8)式の具体的な実施構
成が第2図に示した出力温度補正演算部7であ
り、出力温度補正演算部7における詳細構成を示
したのが第3図である。第3図において、超音波
伝播時間差信号8に対して、(8)式での定数Aによ
つて決定される増幅度を増幅調整器71において
調整すとは明らかである。また、第2図における
超音波送受信子取付部材3a〜4bを配管5壁部
を貫通させ超音波入射角θの影響を消去した方式
の超音波流量計に対しても本発明の方法により上
記実施例と同等の効果を奏する。さらに、上記実
施例では第3図における増幅器調整器71を割算
器74の前段に設けたものを示したが、割算器7
4の後段に設けてもよい。
以上のように、この発明によれば超音波流量計
出力に対する被測定流体の温度変化が相当大きい
場合をも含めた温度補正を非常に簡易な機能で高
精度に実現し得るので、原子力および各種プラン
ト等、プラント運転条件により広い範囲にわたつ
て被測定流体温度が変化するような場合に対して
も高精度の超音波流量計を提供し得るものであ
る。The relationship with [Formula] is approximately within the permissible error range and is a straight line, which can be obtained from the slope and intercept of this straight line. Using the constants A and B obtained in this way, the fluid flow velocity can be determined by the following equation, V=A/(t u −B) 2 △t ...(8) In equation (8), By using A and B, highly accurate output temperature correction corresponding to temperature changes of the fluid to be measured can be realized. A specific configuration for implementing equation (8) is the output temperature correction calculation section 7 shown in FIG. 2, and FIG. 3 shows the detailed configuration of the output temperature correction calculation section 7. In FIG. 3, it is clear that the amplification degree determined by the constant A in equation (8) is adjusted for the ultrasonic propagation time difference signal 8 in the amplification adjuster 71. The method of the present invention can also be applied to an ultrasonic flowmeter in which the ultrasonic transmitter/receiver mounting members 3a to 4b shown in FIG. It has the same effect as the example. Furthermore, in the above embodiment, the amplifier adjuster 71 in FIG. 3 was provided before the divider 74;
It may be provided after 4. As described above, according to the present invention, it is possible to realize temperature correction with a very simple function with high accuracy even when the temperature change of the measured fluid with respect to the output of an ultrasonic flowmeter is quite large. It is possible to provide a highly accurate ultrasonic flow meter even in cases such as plants where the temperature of the fluid to be measured changes over a wide range depending on the plant operating conditions.
第1図は従来の超音波流量計の動作原理および
測定原理を示す機能ブロツク図、第2図はこの発
明の一実施例による超音波流量計を示す機能ブロ
ツク図、第3図は第2図の機能ブロツク図におけ
る一機能をより詳細に示す詳細機能ブロツク図で
ある。
1a,1b,2a,2b……超音波送受信子、
3a,3b,4a,4b……超音波送受信子取付
部材、5……配管、6……超音波流量計回路部、
7……出力温度補正演算部、8……超音波伝播時
間差信号、9……超音波伝播時間信号、71……
増幅調整器、72……バイアス回路部、73……
二乗器、74……割算器。なお、図中、同一符号
は同一、又は相当部分を示す。
FIG. 1 is a functional block diagram showing the operating principle and measurement principle of a conventional ultrasonic flowmeter, FIG. 2 is a functional block diagram showing an ultrasonic flowmeter according to an embodiment of the present invention, and FIG. FIG. 2 is a detailed functional block diagram showing in more detail one function in the functional block diagram of FIG. 1a, 1b, 2a, 2b... Ultrasonic transmitter/receiver,
3a, 3b, 4a, 4b... Ultrasonic transmitter/receiver mounting member, 5... Piping, 6... Ultrasonic flowmeter circuit section,
7... Output temperature correction calculation unit, 8... Ultrasonic propagation time difference signal, 9... Ultrasonic propagation time signal, 71...
Amplification regulator, 72...Bias circuit section, 73...
Squarer, 74...divider. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.
Claims (1)
時間差を測定し、上記流体の流速・流量を求める
超音波流量計において、伝播時間信号から一定値
を差し引き、あるいは加えるバイアス回路部、バ
イアス回路部出力を二乗するための二乗器、伝播
時間差信号を二乗器出力で割算するための割算器
を備えた超音波流量計。 2 伝播時間信号から一定値を差し引き、あるい
は加える一定バイアス値を次式によるBより求め
ることを特徴とする特許請求の範囲第1項記載の
超音波流量計。 d;被測定流体配管内径 θ;配管内超音波伝播入射角 Co;被測定流体中超音波音速 tu;超音波送信子→超音波受信子全伝播時間 A,B;出力温度補正係数。[Claims] 1. In an ultrasonic flowmeter that measures the propagation time and propagation time difference of ultrasonic waves in a fluid to determine the flow velocity and flow rate of the fluid, a bias circuit section that subtracts or adds a constant value from a propagation time signal. , a squarer for squaring the bias circuit output, and a divider for dividing the propagation time difference signal by the squarer output. 2. The ultrasonic flowmeter according to claim 1, wherein a constant bias value that is subtracted from or added to the propagation time signal is determined from B according to the following equation. d; Internal diameter of the fluid pipe to be measured θ; Angle of incidence of ultrasonic propagation in the pipe Co; Speed of ultrasound sound in the fluid to be measured tu; Total propagation time from ultrasonic transmitter to ultrasonic receiver A, B: Output temperature correction coefficient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57003652A JPS58120120A (en) | 1982-01-13 | 1982-01-13 | Ultrasonic wave flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57003652A JPS58120120A (en) | 1982-01-13 | 1982-01-13 | Ultrasonic wave flowmeter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58120120A JPS58120120A (en) | 1983-07-16 |
JPH0259404B2 true JPH0259404B2 (en) | 1990-12-12 |
Family
ID=11563399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57003652A Granted JPS58120120A (en) | 1982-01-13 | 1982-01-13 | Ultrasonic wave flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58120120A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04106701U (en) * | 1990-10-12 | 1992-09-14 | 関本 徹 | scale with magnet |
JPH0536302U (en) * | 1991-10-21 | 1993-05-18 | 武夫 伊藤 | Tape measure |
-
1982
- 1982-01-13 JP JP57003652A patent/JPS58120120A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04106701U (en) * | 1990-10-12 | 1992-09-14 | 関本 徹 | scale with magnet |
JPH0536302U (en) * | 1991-10-21 | 1993-05-18 | 武夫 伊藤 | Tape measure |
Also Published As
Publication number | Publication date |
---|---|
JPS58120120A (en) | 1983-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0268314B1 (en) | Device for determining the flow velocity of a medium in a cylindrical pipe | |
JP2918126B2 (en) | Fluid level measurement method and device | |
US2874568A (en) | Ultrasonic flowmeter | |
US4748857A (en) | Ultrasonic apparatus for measuring the flow velocity of a fluid | |
US6209388B1 (en) | Ultrasonic 2-phase flow apparatus and method | |
US6386018B1 (en) | Ultrasonic 2-phase flow apparatus and stratified level detector | |
US4300400A (en) | Acoustic flowmeter with Reynolds number compensation | |
US4208908A (en) | Speed of sound compensation for Doppler flowmeter | |
JPH0447770B2 (en) | ||
JPH039405B2 (en) | ||
JPH0259404B2 (en) | ||
JP3103264B2 (en) | Ultrasonic flow meter | |
KR102603818B1 (en) | Flow rate correction method according to the water level of the conduit flow metering system | |
JPH06186124A (en) | Method and apparatus for calibrating ultrasonic- wave-type leaking-position measurement | |
JPS6246812B2 (en) | ||
JPH0339244B2 (en) | ||
JPH0339245B2 (en) | ||
JPH063384B2 (en) | Ultrasonic flow meter | |
JPH07139982A (en) | Ultrasonic flowmeter | |
JPH0337686B2 (en) | ||
JPH0259405B2 (en) | ||
JPS607209B2 (en) | How to measure flow rate using ultrasonic waves | |
JPH0527048B2 (en) | ||
JP3503578B2 (en) | Flow measurement device | |
JPS58811Y2 (en) | ultrasonic flow meter |