[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0257658A - High damping material of mg and its manufacture - Google Patents

High damping material of mg and its manufacture

Info

Publication number
JPH0257658A
JPH0257658A JP20727288A JP20727288A JPH0257658A JP H0257658 A JPH0257658 A JP H0257658A JP 20727288 A JP20727288 A JP 20727288A JP 20727288 A JP20727288 A JP 20727288A JP H0257658 A JPH0257658 A JP H0257658A
Authority
JP
Japan
Prior art keywords
vibration damping
grain size
recrystallized
regulated
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20727288A
Other languages
Japanese (ja)
Inventor
Satoru Shoji
了 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP20727288A priority Critical patent/JPH0257658A/en
Publication of JPH0257658A publication Critical patent/JPH0257658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the title material having excellent vibration damping characteristics in which structure is regulated to the recrystallized one of fine grain size by rolling or extruding the ingot of Mg in which Al, Zn and Sn as impurities are regulated to the specific amounts or below and thereafter annealing it under specific conditions. CONSTITUTION:The billet of Mg in which the total amt. of Al, Zn and sn as impurities is regulated to <=0.2wt.% is subjected to homogenizing treatment according to necessary, is thereafter subjected to hot extruding, e.g., at 320 deg.C or hot rolling at 350 deg.C, is worked into a plate material of about 3mm thickness and is successively annealed at 180 to 300 deg.C for <=24hr. The Mg high damping material having recrystallized structure of 10 to 150mum average grain size, having excellent vibration damping characteristics and furthermore having excellent mechanical characteristics such as strength and ductility, excellent formability, dimensional accuracy, surface properties or the like can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた撮動減衰、特性を有し、音II機器、精
密機器、自動車等の撮動を嫌う構造部材として使用され
るMg制振材に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has excellent imaging attenuation and characteristics, and is used as a structural member of sound II equipment, precision equipment, automobiles, etc. that is not suitable for imaging. It is related to the swing material.

〔従来の技術〕[Conventional technology]

従来、音響機器、精密機器、自動車等の撮動を嫌う構造
部材用の金属材料には、いわゆる制振材としてGo−N
i系合金、Mn−C1,J系合金、Ni−”’ji系合
金、Zn−Aj!系合金。
Conventionally, Go-N has been used as a so-called vibration damping material for metal materials for structural members of audio equipment, precision equipment, automobiles, etc. that are not suitable for photography.
i-based alloy, Mn-C1, J-based alloy, Ni-"'ji-based alloy, Zn-Aj!-based alloy.

Fe−0r系合金、Fe−C系合金、Fe−C−3i系
合金等と共に純Mg、Mg−Zr系合金、My−N i
系合金等の鋳造材が知られている。特にMg系の鋳造材
は実用金属材料中級も小さい比重と最も大きい撮動減衰
性を有するため、この特性を生かしてミサイル内部の精
密機器のハウジング材などに使用することが検討されて
いる。
Pure Mg, Mg-Zr alloy, My-N i as well as Fe-0r alloy, Fe-C alloy, Fe-C-3i alloy, etc.
Cast materials such as alloys are known. In particular, Mg-based cast materials have the lowest specific gravity and the highest photographic attenuation among intermediate-grade practical metal materials, and are being considered for use in housing materials for precision equipment inside missiles, taking advantage of these characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記Mg系に制振材として使用しつるレベ
ルの撮動減衰性を発揮させるには、鋳造時に特別の注意
をはらい鋳造品を柱状ではなく等軸になるような条件で
鋳込む必要があった。これは柱状晶になると撮動減衰性
が著しく劣化するためである。また圧延、押出などの塑
性加工をMg系鋳塊に施した場合も、原因は不明である
が、著しく撮動減衰性が劣化することが知られている。
However, in order to use the above-mentioned Mg-based material as a vibration damping material and achieve a level of vibration damping performance, it is necessary to take special care during casting and to cast the cast product under conditions that make it equiaxed rather than columnar. Ta. This is because when the crystal becomes columnar, the photographic attenuation property deteriorates significantly. Furthermore, it is known that when a Mg-based ingot is subjected to plastic working such as rolling or extrusion, the imaging damping properties are significantly deteriorated, although the cause is unknown.

従って上記Mg系を制撮材として使用できるのは、ある
特定の条件で製造した鋳物に限られ、圧延材ヤ押出材な
どの展伸材は撮動減衰性が劣るため全く使用されていな
いのが実状である。
Therefore, the above-mentioned Mg-based materials can only be used in castings manufactured under certain conditions, and rolled materials, extruded materials, and other rolled materials are not used at all because of their inferior photographic attenuation properties. is the actual situation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、大量生産性1強度
や延性などの機械特性、成形加工性。
In view of this, the present invention was developed as a result of various studies, and was developed to improve mass productivity, mechanical properties such as strength and ductility, and moldability.

寸法精度1表面性状等、多くの点で鋳物よりも優れた点
を有し、更に鋳物と同等の撮動減衰性を有するMgの展
伸材からなるMg制撮材とその′@i造方決方法発した
ものである。
A Mg photographic material made of expanded Mg material that is superior to castings in many respects such as dimensional accuracy and surface properties, and also has the same photographic attenuation properties as castings, and its manufacturing method. It came from a decision method.

即ち本発明製造法は、不純物としてのAl。That is, the production method of the present invention uses Al as an impurity.

zn、3nを総計で0.2重量%未満含み、残部M3よ
りなるMgの圧延材または押出材であって、平均粒径が
10〜150μmの再結晶粒組織を有することを特徴と
するものである。
A rolled or extruded Mg material containing less than 0.2% by weight of zn, 3n in total and the remainder being M3, which is characterized by having a recrystallized grain structure with an average grain size of 10 to 150 μm. be.

また本発明製造法は、不純物としてのA1゜Zn、3n
を総計で0.2重量%未満含み、残部MgよりなるMg
鋳塊を均質化処理し又は処理することなく圧延又は押出
加工した後、180〜300℃の温度で24時間以内の
焼鈍を施すことにより、平均粒径が10〜150μmの
再結晶粒組織とすることを特徴とするものである。
In addition, the production method of the present invention uses A1゜Zn, 3n as impurities.
Contains less than 0.2% by weight in total, with the balance consisting of Mg
After the ingot is homogenized or rolled or extruded without any treatment, it is annealed at a temperature of 180 to 300°C within 24 hours to obtain a recrystallized grain structure with an average grain size of 10 to 150 μm. It is characterized by this.

(作 用) しかして本発明においてMgに含まれる不純物の量を上
記の如く限定したのは次の理由によるものである。
(Function) The reason why the amount of impurities contained in Mg is limited as described above in the present invention is as follows.

Aj!、Zn、SnはMgの地金中に不純物として通常
存在し、それ等の総計が0.2重量%(以下重量%を%
と略記)以上になると、転位の離脱現象を妨害し、内部
摩擦が減少し、振動減衰性を低下するためである。
Aj! , Zn, and Sn normally exist as impurities in the Mg base metal, and their total amount is 0.2% by weight (hereinafter referred to as % by weight).
(abbreviated as ) or above, the dislocation dissociation phenomenon is obstructed, internal friction is reduced, and vibration damping properties are deteriorated.

このような純度のMgは常法に従って溶解鋳造し、得ら
れた鋳塊に均質化処理を施し、又は処理を施すことなく
熱間で圧延又は押出加工する。また必要に応じて更に冷
間で圧延を加える。
Mg having such purity is melted and cast according to a conventional method, and the resulting ingot is subjected to a homogenization treatment, or hot rolled or extruded without any treatment. Further, cold rolling is added if necessary.

鋳塊を必要に応じて均質化処理した後、圧延又は押出を
終了した段階では、結晶組織は第1図に示すように加工
方向に伸長したファイバー状の加工組織となる。このよ
うな状態では撮動減衰性を表す尺度である損失係数ηは
鋳造材にくらべて1/10から1/20にまで低下し、
制撮材としての機能を発揮することができない。しかる
に圧延又は押出を終了したのち、180〜300 ’C
の温度で24時間以内の焼鈍を施すと、結晶組織は第2
図に示すように平均粒径10μm以上の再結晶粒組織と
なり、驚くべきことに振動減衰性を回復し、鋳造材とほ
ぼ同等の損失係数ηを示す。これは焼鈍により、加工時
に導入された多数のからみあった転位が整理されて、転
位の不純物原子からの固着・離脱現象が起りやすくなり
、内部摩擦が増大した結果と思われる。
After the ingot is subjected to homogenization treatment as necessary, at the stage where rolling or extrusion is completed, the crystal structure becomes a fibrous processed structure extending in the processing direction as shown in FIG. Under such conditions, the loss coefficient η, which is a measure of the damping performance, decreases to 1/10 to 1/20 of that of cast material.
It cannot function as a photographic material. However, after finishing rolling or extrusion, the temperature is 180~300'C.
When annealing is carried out for less than 24 hours at a temperature of
As shown in the figure, it becomes a recrystallized grain structure with an average grain size of 10 μm or more, surprisingly recovers vibration damping properties, and exhibits a loss factor η almost equivalent to that of the cast material. This is thought to be the result of annealing, which organizes a large number of entangled dislocations introduced during processing, making it easier for dislocations to stick and detach from impurity atoms, increasing internal friction.

しかして平均粒径が10〜150μm以上の再結晶粒組
織としたのは、再結晶粒組織であっても、その平均粒径
が10μm未満の場合は、上記の転位の固着・m脱現象
が結晶粒界により妨げられるチャンスが増加するためか
、それほど大きい損失係数ηが得られないためでおる。
However, even if the recrystallized grain structure has an average grain size of 10 to 150 μm or more, if the average grain size is less than 10 μm, the above-mentioned dislocation fixation/desorption phenomenon may occur. This is probably because the chance of interference by grain boundaries increases, or because a very large loss coefficient η cannot be obtained.

また再結晶粒の平均粒径が150μmを越えると、強度
の低下が著しくなるためである。
Moreover, if the average grain size of the recrystallized grains exceeds 150 μm, the strength decreases significantly.

また焼鈍を180〜300 ’Cの温度で24時間以内
としたのは、180℃未満では10μm以上の再結晶粒
を得ることができず、300℃を越えるか又は焼鈍時間
が24時間を越えると再結晶の成長粗大化が進み、再結
晶粒が150μmを越える平均径となるためである。
Also, the reason why annealing was performed at a temperature of 180 to 300'C within 24 hours is because recrystallized grains of 10 μm or more cannot be obtained at temperatures below 180°C, and when the temperature exceeds 300°C or the annealing time exceeds 24 hours, This is because the growth of recrystallization progresses and the recrystallized grains have an average diameter exceeding 150 μm.

(実施例) 以下本発明を実施例により更に詳細に説明する。(Example) The present invention will be explained in more detail below with reference to Examples.

実施例(1) 第1表に示す純度の各種Mgを溶解・鋳造し、直径15
0m111.長さ300 msの押出用ビレットを得た
。これを400℃で8時間均質化処理した復、320℃
で熱間押出により厚さ2IrvrI、幅30#の形材と
した。これを220℃で3時間焼鈍して制振材とした。
Example (1) Various types of Mg with the purity shown in Table 1 were melted and cast, and a diameter of 15
0m111. A billet for extrusion with a length of 300 ms was obtained. This was homogenized at 400℃ for 8 hours and then heated to 320℃.
A shape having a thickness of 2IrvrI and a width of 30# was made by hot extrusion. This was annealed at 220° C. for 3 hours to obtain a vibration damping material.

これ等の制振材について複素弾性係数測定装置により、
損失係数ηを求めて振動減衰性を評価した。即ち厚さ2
InIn、幅30IIm、長さ200 mmの試験片を
用い、片側をチャッキングして発振器で強制的に撮動を
与え、共振周波数frでの損失係数ηを下記(1)式に
より求めた。
These vibration damping materials are measured using a complex elastic modulus measuring device.
The vibration damping properties were evaluated by determining the loss coefficient η. i.e. thickness 2
Using an InIn test piece with a width of 30 II m and a length of 200 mm, one side was chucked and imaging was forcibly applied using an oscillator, and the loss coefficient η at the resonance frequency fr was determined using the following equation (1).

また引張試験をおこない、引張強さと伸びを測定した。A tensile test was also conducted to measure tensile strength and elongation.

また形材表面を6%ピクリン酸アルコール溶液100 
d、氷酢酸5d、蒸溜水10戒の混合液で結晶粒界を腐
食した後、光学顕微鏡により再結晶粒の平均粒径を求め
た。これ等の結果を第2表に示す。
In addition, the surface of the shape was coated with 6% picric acid alcohol solution 100%
After corroding the grain boundaries with a mixed solution of 5 d of glacial acetic acid and 10 d of distilled water, the average grain size of the recrystallized grains was determined using an optical microscope. These results are shown in Table 2.

第1表及び第2表より明らかなように、本発明制(膜材
NQ1〜3は優れた撮動減衰性(損失係数η)を示すが
、不純物元素の多い比較制振材Nα4,5.6は振動減
衰性が劣ることが判る。
As is clear from Tables 1 and 2, the film materials NQ1 to NQ3 of the present invention exhibit excellent imaging damping properties (loss coefficient η), but the comparative damping materials Nα4, Nα5. It can be seen that No. 6 has poor vibration damping properties.

実施例(2) 第1表中Nα2に示す純度のMgを溶解・鋳造して厚さ
100M、幅500.の鋳塊とし、420°Cで4時間
均熱化処理した後、350℃で熱間圧延し、厚さ3Mの
板に仕上げた。これについて第3表に示す焼鈍を施して
制振材とし、実施例(1)と同様にして撮動減衰性(損
失係数η)、再結晶粒の平均粒径及び機械的特性を測定
した。
Example (2) Mg having a purity shown in Nα2 in Table 1 was melted and cast to a thickness of 100M and a width of 500M. The ingot was soaked at 420°C for 4 hours, and then hot rolled at 350°C to form a plate with a thickness of 3M. This material was annealed as shown in Table 3 to obtain a vibration damping material, and the photographic damping properties (loss coefficient η), average grain size of recrystallized grains, and mechanical properties were measured in the same manner as in Example (1).

これ等の結果を第3表に併記した。These results are also listed in Table 3.

第3表より明らかなように、本発明制娠材随7〜9は平
均粒径10〜150μmの再結晶粒を有し、良好な振動
減衰性と優れた引張強ざを示す。
As is clear from Table 3, the restraining materials Nos. 7 to 9 of the present invention have recrystallized grains with an average grain size of 10 to 150 μm, and exhibit good vibration damping properties and excellent tensile strength.

これに対し比較制娠材Nα10〜12は損失係数と引張
強ざの何れかが劣ることが判る。
On the other hand, it can be seen that the comparative restraining materials Nα10 to Nα12 are inferior in either the loss coefficient or the tensile strength.

(発明の効果〕 このように本発明によれば、振動減衰性に優れ、かつ大
量生産性0強度や延性などの機械特性、成形加工性1寸
法端度及び表面性状など、多くの点で鋳物よりも優れた
展伸材からなるMg制撮材が得られる等工業上顕著な効
果を秦するものである。
(Effects of the Invention) As described above, according to the present invention, castings have excellent vibration damping properties, mass productivity, mechanical properties such as strength and ductility, formability, dimensional accuracy, and surface texture. This provides remarkable industrial effects, such as the ability to obtain Mg photographic materials made of expanded materials superior to those of conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加工組織(ファイバー状組織)の模式図、第2
図は再結晶組織の模式図である。
Figure 1 is a schematic diagram of processed structure (fibrous structure), Figure 2
The figure is a schematic diagram of the recrystallized structure.

Claims (2)

【特許請求の範囲】[Claims] (1)不純物としてのAl、Zn、Snを総計で0.2
重量%未満含み、残部MgよりなるMgの圧延材または
押出材であって、平均粒径が10〜150μmの再結晶
粒組織を有することを特徴とするMg制振材。
(1) A total of 0.2 Al, Zn, and Sn as impurities
1. A Mg vibration damping material, which is a rolled or extruded Mg material containing less than % by weight and the balance being Mg, and having a recrystallized grain structure with an average grain size of 10 to 150 μm.
(2)不純物としてのAl、Zn、Snを総計で0.2
重量%未満含み、残部MgよりなるMg鋳塊を均質化処
理し又は処理することなく圧延又は押出加工した後、1
80〜300℃の温度で24時間以内の焼鈍を施すこと
により、平均粒径が10〜150μmの再結晶粒組織と
することを特徴とするMg制振材の製造方法。
(2) A total of 0.2 Al, Zn, and Sn as impurities
After rolling or extruding a Mg ingot consisting of less than % by weight and the remainder Mg with or without homogenization treatment, 1
A method for producing a Mg vibration damping material, characterized in that it is annealed at a temperature of 80 to 300°C for up to 24 hours to form a recrystallized grain structure with an average grain size of 10 to 150 μm.
JP20727288A 1988-08-23 1988-08-23 High damping material of mg and its manufacture Pending JPH0257658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20727288A JPH0257658A (en) 1988-08-23 1988-08-23 High damping material of mg and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20727288A JPH0257658A (en) 1988-08-23 1988-08-23 High damping material of mg and its manufacture

Publications (1)

Publication Number Publication Date
JPH0257658A true JPH0257658A (en) 1990-02-27

Family

ID=16537050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20727288A Pending JPH0257658A (en) 1988-08-23 1988-08-23 High damping material of mg and its manufacture

Country Status (1)

Country Link
JP (1) JPH0257658A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348646A (en) * 2001-05-25 2002-12-04 Nippon Crose Rolling Corp Long size coil of wrought magnesium alloy and manufacturing method therefor
JP2006183089A (en) * 2004-12-27 2006-07-13 Magnes:Kk Method for producing vibrator
US8062439B2 (en) 2002-06-05 2011-11-22 Sumitomo Electric Industries, Ltd. Magnesium alloy plate and method for production thereof
JP2012136727A (en) * 2010-12-24 2012-07-19 Sumitomo Electric Ind Ltd Magnesium alloy for damping and damping material
JP2014152354A (en) * 2013-02-07 2014-08-25 National Institute For Materials Science Thin plate and foil material of magnesium-based alloy, and manufacturing method thereof
CN104099508A (en) * 2014-07-28 2014-10-15 中南大学 High-strength high-damping magnesium alloy containing rare-earth elements

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348646A (en) * 2001-05-25 2002-12-04 Nippon Crose Rolling Corp Long size coil of wrought magnesium alloy and manufacturing method therefor
US8062439B2 (en) 2002-06-05 2011-11-22 Sumitomo Electric Industries, Ltd. Magnesium alloy plate and method for production thereof
JP2006183089A (en) * 2004-12-27 2006-07-13 Magnes:Kk Method for producing vibrator
JP2012136727A (en) * 2010-12-24 2012-07-19 Sumitomo Electric Ind Ltd Magnesium alloy for damping and damping material
JP2014152354A (en) * 2013-02-07 2014-08-25 National Institute For Materials Science Thin plate and foil material of magnesium-based alloy, and manufacturing method thereof
CN104099508A (en) * 2014-07-28 2014-10-15 中南大学 High-strength high-damping magnesium alloy containing rare-earth elements

Similar Documents

Publication Publication Date Title
US8425698B2 (en) Aluminum alloy sheet and method for manufacturing the same
JPWO2015155911A1 (en) High-strength aluminum alloy plate excellent in bending workability and shape freezing property and method for producing the same
JPH0257658A (en) High damping material of mg and its manufacture
JPH0247237A (en) High-damping material of mg alloy and its production
JPH03120332A (en) Aluminum foil and its manufacture
US3940290A (en) Process for preparing copper base alloys
JPS6318041A (en) Manufacture of aluminum foil
JPH0257657A (en) High damping material of mg alloy and its manufacture
JPH06145927A (en) Production of al-mg alloy rolled sheet for magnetic disk
JP2831157B2 (en) Al-Mg based superplastic aluminum alloy sheet excellent in strength and corrosion resistance and method for producing the same
JP2020147779A (en) Aluminum alloy foil for molding
JPS6056786B2 (en) Method for manufacturing foil base with excellent foil rolling properties
JP4591986B2 (en) Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability
JPS634049A (en) Manufacture of al-alloy sheet for vessel
JPS6254053A (en) Aluminum alloy for magnetic disk excellent in plating suitability and contact strength of plating layer and minimal plating defects
US3953249A (en) Copper base alloy
JPS61257459A (en) Manufacture of aluminum foil
JPS63161148A (en) Manufacture of aluminum foil excellent in strength and workability
JPH03294445A (en) High strength aluminum alloy having good formability and its manufacture
JP3394698B2 (en) High formability aluminum alloy sheet with high strength and good machinability
JP2000328209A (en) Production of aluminum alloy spring material
JPH02104644A (en) Production of high damping material of aluminum alloy
JPH03107439A (en) Aluminum alloy for warm forming
WO1999034026A1 (en) Aluminum-alloy spring materials, leaf springs made of the materials for magnetic recording tape cassettes, tape cassettes provided with the leaf springs and process for the production of the materials
JPS6160141B2 (en)