JPH0257658A - High damping material of mg and its manufacture - Google Patents
High damping material of mg and its manufactureInfo
- Publication number
- JPH0257658A JPH0257658A JP20727288A JP20727288A JPH0257658A JP H0257658 A JPH0257658 A JP H0257658A JP 20727288 A JP20727288 A JP 20727288A JP 20727288 A JP20727288 A JP 20727288A JP H0257658 A JPH0257658 A JP H0257658A
- Authority
- JP
- Japan
- Prior art keywords
- vibration damping
- grain size
- recrystallized
- regulated
- impurities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 34
- 238000013016 damping Methods 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000005096 rolling process Methods 0.000 claims abstract description 5
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 5
- 229910052718 tin Inorganic materials 0.000 claims abstract description 4
- 238000000265 homogenisation Methods 0.000 claims description 3
- 238000000137 annealing Methods 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 238000005098 hot rolling Methods 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000005266 casting Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は優れた撮動減衰、特性を有し、音II機器、精
密機器、自動車等の撮動を嫌う構造部材として使用され
るMg制振材に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention has excellent imaging attenuation and characteristics, and is used as a structural member of sound II equipment, precision equipment, automobiles, etc. that is not suitable for imaging. It is related to the swing material.
従来、音響機器、精密機器、自動車等の撮動を嫌う構造
部材用の金属材料には、いわゆる制振材としてGo−N
i系合金、Mn−C1,J系合金、Ni−”’ji系合
金、Zn−Aj!系合金。Conventionally, Go-N has been used as a so-called vibration damping material for metal materials for structural members of audio equipment, precision equipment, automobiles, etc. that are not suitable for photography.
i-based alloy, Mn-C1, J-based alloy, Ni-"'ji-based alloy, Zn-Aj!-based alloy.
Fe−0r系合金、Fe−C系合金、Fe−C−3i系
合金等と共に純Mg、Mg−Zr系合金、My−N i
系合金等の鋳造材が知られている。特にMg系の鋳造材
は実用金属材料中級も小さい比重と最も大きい撮動減衰
性を有するため、この特性を生かしてミサイル内部の精
密機器のハウジング材などに使用することが検討されて
いる。Pure Mg, Mg-Zr alloy, My-N i as well as Fe-0r alloy, Fe-C alloy, Fe-C-3i alloy, etc.
Cast materials such as alloys are known. In particular, Mg-based cast materials have the lowest specific gravity and the highest photographic attenuation among intermediate-grade practical metal materials, and are being considered for use in housing materials for precision equipment inside missiles, taking advantage of these characteristics.
しかしながら上記Mg系に制振材として使用しつるレベ
ルの撮動減衰性を発揮させるには、鋳造時に特別の注意
をはらい鋳造品を柱状ではなく等軸になるような条件で
鋳込む必要があった。これは柱状晶になると撮動減衰性
が著しく劣化するためである。また圧延、押出などの塑
性加工をMg系鋳塊に施した場合も、原因は不明である
が、著しく撮動減衰性が劣化することが知られている。However, in order to use the above-mentioned Mg-based material as a vibration damping material and achieve a level of vibration damping performance, it is necessary to take special care during casting and to cast the cast product under conditions that make it equiaxed rather than columnar. Ta. This is because when the crystal becomes columnar, the photographic attenuation property deteriorates significantly. Furthermore, it is known that when a Mg-based ingot is subjected to plastic working such as rolling or extrusion, the imaging damping properties are significantly deteriorated, although the cause is unknown.
従って上記Mg系を制撮材として使用できるのは、ある
特定の条件で製造した鋳物に限られ、圧延材ヤ押出材な
どの展伸材は撮動減衰性が劣るため全く使用されていな
いのが実状である。Therefore, the above-mentioned Mg-based materials can only be used in castings manufactured under certain conditions, and rolled materials, extruded materials, and other rolled materials are not used at all because of their inferior photographic attenuation properties. is the actual situation.
本発明はこれに鑑み種々検討の結果、大量生産性1強度
や延性などの機械特性、成形加工性。In view of this, the present invention was developed as a result of various studies, and was developed to improve mass productivity, mechanical properties such as strength and ductility, and moldability.
寸法精度1表面性状等、多くの点で鋳物よりも優れた点
を有し、更に鋳物と同等の撮動減衰性を有するMgの展
伸材からなるMg制撮材とその′@i造方決方法発した
ものである。A Mg photographic material made of expanded Mg material that is superior to castings in many respects such as dimensional accuracy and surface properties, and also has the same photographic attenuation properties as castings, and its manufacturing method. It came from a decision method.
即ち本発明製造法は、不純物としてのAl。That is, the production method of the present invention uses Al as an impurity.
zn、3nを総計で0.2重量%未満含み、残部M3よ
りなるMgの圧延材または押出材であって、平均粒径が
10〜150μmの再結晶粒組織を有することを特徴と
するものである。A rolled or extruded Mg material containing less than 0.2% by weight of zn, 3n in total and the remainder being M3, which is characterized by having a recrystallized grain structure with an average grain size of 10 to 150 μm. be.
また本発明製造法は、不純物としてのA1゜Zn、3n
を総計で0.2重量%未満含み、残部MgよりなるMg
鋳塊を均質化処理し又は処理することなく圧延又は押出
加工した後、180〜300℃の温度で24時間以内の
焼鈍を施すことにより、平均粒径が10〜150μmの
再結晶粒組織とすることを特徴とするものである。In addition, the production method of the present invention uses A1゜Zn, 3n as impurities.
Contains less than 0.2% by weight in total, with the balance consisting of Mg
After the ingot is homogenized or rolled or extruded without any treatment, it is annealed at a temperature of 180 to 300°C within 24 hours to obtain a recrystallized grain structure with an average grain size of 10 to 150 μm. It is characterized by this.
(作 用)
しかして本発明においてMgに含まれる不純物の量を上
記の如く限定したのは次の理由によるものである。(Function) The reason why the amount of impurities contained in Mg is limited as described above in the present invention is as follows.
Aj!、Zn、SnはMgの地金中に不純物として通常
存在し、それ等の総計が0.2重量%(以下重量%を%
と略記)以上になると、転位の離脱現象を妨害し、内部
摩擦が減少し、振動減衰性を低下するためである。Aj! , Zn, and Sn normally exist as impurities in the Mg base metal, and their total amount is 0.2% by weight (hereinafter referred to as % by weight).
(abbreviated as ) or above, the dislocation dissociation phenomenon is obstructed, internal friction is reduced, and vibration damping properties are deteriorated.
このような純度のMgは常法に従って溶解鋳造し、得ら
れた鋳塊に均質化処理を施し、又は処理を施すことなく
熱間で圧延又は押出加工する。また必要に応じて更に冷
間で圧延を加える。Mg having such purity is melted and cast according to a conventional method, and the resulting ingot is subjected to a homogenization treatment, or hot rolled or extruded without any treatment. Further, cold rolling is added if necessary.
鋳塊を必要に応じて均質化処理した後、圧延又は押出を
終了した段階では、結晶組織は第1図に示すように加工
方向に伸長したファイバー状の加工組織となる。このよ
うな状態では撮動減衰性を表す尺度である損失係数ηは
鋳造材にくらべて1/10から1/20にまで低下し、
制撮材としての機能を発揮することができない。しかる
に圧延又は押出を終了したのち、180〜300 ’C
の温度で24時間以内の焼鈍を施すと、結晶組織は第2
図に示すように平均粒径10μm以上の再結晶粒組織と
なり、驚くべきことに振動減衰性を回復し、鋳造材とほ
ぼ同等の損失係数ηを示す。これは焼鈍により、加工時
に導入された多数のからみあった転位が整理されて、転
位の不純物原子からの固着・離脱現象が起りやすくなり
、内部摩擦が増大した結果と思われる。After the ingot is subjected to homogenization treatment as necessary, at the stage where rolling or extrusion is completed, the crystal structure becomes a fibrous processed structure extending in the processing direction as shown in FIG. Under such conditions, the loss coefficient η, which is a measure of the damping performance, decreases to 1/10 to 1/20 of that of cast material.
It cannot function as a photographic material. However, after finishing rolling or extrusion, the temperature is 180~300'C.
When annealing is carried out for less than 24 hours at a temperature of
As shown in the figure, it becomes a recrystallized grain structure with an average grain size of 10 μm or more, surprisingly recovers vibration damping properties, and exhibits a loss factor η almost equivalent to that of the cast material. This is thought to be the result of annealing, which organizes a large number of entangled dislocations introduced during processing, making it easier for dislocations to stick and detach from impurity atoms, increasing internal friction.
しかして平均粒径が10〜150μm以上の再結晶粒組
織としたのは、再結晶粒組織であっても、その平均粒径
が10μm未満の場合は、上記の転位の固着・m脱現象
が結晶粒界により妨げられるチャンスが増加するためか
、それほど大きい損失係数ηが得られないためでおる。However, even if the recrystallized grain structure has an average grain size of 10 to 150 μm or more, if the average grain size is less than 10 μm, the above-mentioned dislocation fixation/desorption phenomenon may occur. This is probably because the chance of interference by grain boundaries increases, or because a very large loss coefficient η cannot be obtained.
また再結晶粒の平均粒径が150μmを越えると、強度
の低下が著しくなるためである。Moreover, if the average grain size of the recrystallized grains exceeds 150 μm, the strength decreases significantly.
また焼鈍を180〜300 ’Cの温度で24時間以内
としたのは、180℃未満では10μm以上の再結晶粒
を得ることができず、300℃を越えるか又は焼鈍時間
が24時間を越えると再結晶の成長粗大化が進み、再結
晶粒が150μmを越える平均径となるためである。Also, the reason why annealing was performed at a temperature of 180 to 300'C within 24 hours is because recrystallized grains of 10 μm or more cannot be obtained at temperatures below 180°C, and when the temperature exceeds 300°C or the annealing time exceeds 24 hours, This is because the growth of recrystallization progresses and the recrystallized grains have an average diameter exceeding 150 μm.
(実施例) 以下本発明を実施例により更に詳細に説明する。(Example) The present invention will be explained in more detail below with reference to Examples.
実施例(1)
第1表に示す純度の各種Mgを溶解・鋳造し、直径15
0m111.長さ300 msの押出用ビレットを得た
。これを400℃で8時間均質化処理した復、320℃
で熱間押出により厚さ2IrvrI、幅30#の形材と
した。これを220℃で3時間焼鈍して制振材とした。Example (1) Various types of Mg with the purity shown in Table 1 were melted and cast, and a diameter of 15
0m111. A billet for extrusion with a length of 300 ms was obtained. This was homogenized at 400℃ for 8 hours and then heated to 320℃.
A shape having a thickness of 2IrvrI and a width of 30# was made by hot extrusion. This was annealed at 220° C. for 3 hours to obtain a vibration damping material.
これ等の制振材について複素弾性係数測定装置により、
損失係数ηを求めて振動減衰性を評価した。即ち厚さ2
InIn、幅30IIm、長さ200 mmの試験片を
用い、片側をチャッキングして発振器で強制的に撮動を
与え、共振周波数frでの損失係数ηを下記(1)式に
より求めた。These vibration damping materials are measured using a complex elastic modulus measuring device.
The vibration damping properties were evaluated by determining the loss coefficient η. i.e. thickness 2
Using an InIn test piece with a width of 30 II m and a length of 200 mm, one side was chucked and imaging was forcibly applied using an oscillator, and the loss coefficient η at the resonance frequency fr was determined using the following equation (1).
また引張試験をおこない、引張強さと伸びを測定した。A tensile test was also conducted to measure tensile strength and elongation.
また形材表面を6%ピクリン酸アルコール溶液100
d、氷酢酸5d、蒸溜水10戒の混合液で結晶粒界を腐
食した後、光学顕微鏡により再結晶粒の平均粒径を求め
た。これ等の結果を第2表に示す。In addition, the surface of the shape was coated with 6% picric acid alcohol solution 100%
After corroding the grain boundaries with a mixed solution of 5 d of glacial acetic acid and 10 d of distilled water, the average grain size of the recrystallized grains was determined using an optical microscope. These results are shown in Table 2.
第1表及び第2表より明らかなように、本発明制(膜材
NQ1〜3は優れた撮動減衰性(損失係数η)を示すが
、不純物元素の多い比較制振材Nα4,5.6は振動減
衰性が劣ることが判る。As is clear from Tables 1 and 2, the film materials NQ1 to NQ3 of the present invention exhibit excellent imaging damping properties (loss coefficient η), but the comparative damping materials Nα4, Nα5. It can be seen that No. 6 has poor vibration damping properties.
実施例(2)
第1表中Nα2に示す純度のMgを溶解・鋳造して厚さ
100M、幅500.の鋳塊とし、420°Cで4時間
均熱化処理した後、350℃で熱間圧延し、厚さ3Mの
板に仕上げた。これについて第3表に示す焼鈍を施して
制振材とし、実施例(1)と同様にして撮動減衰性(損
失係数η)、再結晶粒の平均粒径及び機械的特性を測定
した。Example (2) Mg having a purity shown in Nα2 in Table 1 was melted and cast to a thickness of 100M and a width of 500M. The ingot was soaked at 420°C for 4 hours, and then hot rolled at 350°C to form a plate with a thickness of 3M. This material was annealed as shown in Table 3 to obtain a vibration damping material, and the photographic damping properties (loss coefficient η), average grain size of recrystallized grains, and mechanical properties were measured in the same manner as in Example (1).
これ等の結果を第3表に併記した。These results are also listed in Table 3.
第3表より明らかなように、本発明制娠材随7〜9は平
均粒径10〜150μmの再結晶粒を有し、良好な振動
減衰性と優れた引張強ざを示す。As is clear from Table 3, the restraining materials Nos. 7 to 9 of the present invention have recrystallized grains with an average grain size of 10 to 150 μm, and exhibit good vibration damping properties and excellent tensile strength.
これに対し比較制娠材Nα10〜12は損失係数と引張
強ざの何れかが劣ることが判る。On the other hand, it can be seen that the comparative restraining materials Nα10 to Nα12 are inferior in either the loss coefficient or the tensile strength.
(発明の効果〕
このように本発明によれば、振動減衰性に優れ、かつ大
量生産性0強度や延性などの機械特性、成形加工性1寸
法端度及び表面性状など、多くの点で鋳物よりも優れた
展伸材からなるMg制撮材が得られる等工業上顕著な効
果を秦するものである。(Effects of the Invention) As described above, according to the present invention, castings have excellent vibration damping properties, mass productivity, mechanical properties such as strength and ductility, formability, dimensional accuracy, and surface texture. This provides remarkable industrial effects, such as the ability to obtain Mg photographic materials made of expanded materials superior to those of conventional methods.
第1図は加工組織(ファイバー状組織)の模式図、第2
図は再結晶組織の模式図である。Figure 1 is a schematic diagram of processed structure (fibrous structure), Figure 2
The figure is a schematic diagram of the recrystallized structure.
Claims (2)
重量%未満含み、残部MgよりなるMgの圧延材または
押出材であって、平均粒径が10〜150μmの再結晶
粒組織を有することを特徴とするMg制振材。(1) A total of 0.2 Al, Zn, and Sn as impurities
1. A Mg vibration damping material, which is a rolled or extruded Mg material containing less than % by weight and the balance being Mg, and having a recrystallized grain structure with an average grain size of 10 to 150 μm.
重量%未満含み、残部MgよりなるMg鋳塊を均質化処
理し又は処理することなく圧延又は押出加工した後、1
80〜300℃の温度で24時間以内の焼鈍を施すこと
により、平均粒径が10〜150μmの再結晶粒組織と
することを特徴とするMg制振材の製造方法。(2) A total of 0.2 Al, Zn, and Sn as impurities
After rolling or extruding a Mg ingot consisting of less than % by weight and the remainder Mg with or without homogenization treatment, 1
A method for producing a Mg vibration damping material, characterized in that it is annealed at a temperature of 80 to 300°C for up to 24 hours to form a recrystallized grain structure with an average grain size of 10 to 150 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20727288A JPH0257658A (en) | 1988-08-23 | 1988-08-23 | High damping material of mg and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20727288A JPH0257658A (en) | 1988-08-23 | 1988-08-23 | High damping material of mg and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0257658A true JPH0257658A (en) | 1990-02-27 |
Family
ID=16537050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20727288A Pending JPH0257658A (en) | 1988-08-23 | 1988-08-23 | High damping material of mg and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0257658A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002348646A (en) * | 2001-05-25 | 2002-12-04 | Nippon Crose Rolling Corp | Long size coil of wrought magnesium alloy and manufacturing method therefor |
JP2006183089A (en) * | 2004-12-27 | 2006-07-13 | Magnes:Kk | Method for producing vibrator |
US8062439B2 (en) | 2002-06-05 | 2011-11-22 | Sumitomo Electric Industries, Ltd. | Magnesium alloy plate and method for production thereof |
JP2012136727A (en) * | 2010-12-24 | 2012-07-19 | Sumitomo Electric Ind Ltd | Magnesium alloy for damping and damping material |
JP2014152354A (en) * | 2013-02-07 | 2014-08-25 | National Institute For Materials Science | Thin plate and foil material of magnesium-based alloy, and manufacturing method thereof |
CN104099508A (en) * | 2014-07-28 | 2014-10-15 | 中南大学 | High-strength high-damping magnesium alloy containing rare-earth elements |
-
1988
- 1988-08-23 JP JP20727288A patent/JPH0257658A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002348646A (en) * | 2001-05-25 | 2002-12-04 | Nippon Crose Rolling Corp | Long size coil of wrought magnesium alloy and manufacturing method therefor |
US8062439B2 (en) | 2002-06-05 | 2011-11-22 | Sumitomo Electric Industries, Ltd. | Magnesium alloy plate and method for production thereof |
JP2006183089A (en) * | 2004-12-27 | 2006-07-13 | Magnes:Kk | Method for producing vibrator |
JP2012136727A (en) * | 2010-12-24 | 2012-07-19 | Sumitomo Electric Ind Ltd | Magnesium alloy for damping and damping material |
JP2014152354A (en) * | 2013-02-07 | 2014-08-25 | National Institute For Materials Science | Thin plate and foil material of magnesium-based alloy, and manufacturing method thereof |
CN104099508A (en) * | 2014-07-28 | 2014-10-15 | 中南大学 | High-strength high-damping magnesium alloy containing rare-earth elements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8425698B2 (en) | Aluminum alloy sheet and method for manufacturing the same | |
JPWO2015155911A1 (en) | High-strength aluminum alloy plate excellent in bending workability and shape freezing property and method for producing the same | |
JPH0257658A (en) | High damping material of mg and its manufacture | |
JPH0247237A (en) | High-damping material of mg alloy and its production | |
JPH03120332A (en) | Aluminum foil and its manufacture | |
US3940290A (en) | Process for preparing copper base alloys | |
JPS6318041A (en) | Manufacture of aluminum foil | |
JPH0257657A (en) | High damping material of mg alloy and its manufacture | |
JPH06145927A (en) | Production of al-mg alloy rolled sheet for magnetic disk | |
JP2831157B2 (en) | Al-Mg based superplastic aluminum alloy sheet excellent in strength and corrosion resistance and method for producing the same | |
JP2020147779A (en) | Aluminum alloy foil for molding | |
JPS6056786B2 (en) | Method for manufacturing foil base with excellent foil rolling properties | |
JP4591986B2 (en) | Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability | |
JPS634049A (en) | Manufacture of al-alloy sheet for vessel | |
JPS6254053A (en) | Aluminum alloy for magnetic disk excellent in plating suitability and contact strength of plating layer and minimal plating defects | |
US3953249A (en) | Copper base alloy | |
JPS61257459A (en) | Manufacture of aluminum foil | |
JPS63161148A (en) | Manufacture of aluminum foil excellent in strength and workability | |
JPH03294445A (en) | High strength aluminum alloy having good formability and its manufacture | |
JP3394698B2 (en) | High formability aluminum alloy sheet with high strength and good machinability | |
JP2000328209A (en) | Production of aluminum alloy spring material | |
JPH02104644A (en) | Production of high damping material of aluminum alloy | |
JPH03107439A (en) | Aluminum alloy for warm forming | |
WO1999034026A1 (en) | Aluminum-alloy spring materials, leaf springs made of the materials for magnetic recording tape cassettes, tape cassettes provided with the leaf springs and process for the production of the materials | |
JPS6160141B2 (en) |