[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0256499B2 - - Google Patents

Info

Publication number
JPH0256499B2
JPH0256499B2 JP58208125A JP20812583A JPH0256499B2 JP H0256499 B2 JPH0256499 B2 JP H0256499B2 JP 58208125 A JP58208125 A JP 58208125A JP 20812583 A JP20812583 A JP 20812583A JP H0256499 B2 JPH0256499 B2 JP H0256499B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
engine
zone
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58208125A
Other languages
Japanese (ja)
Other versions
JPS6098150A (en
Inventor
Hirobumi Nishimura
Yoshiaki Sugano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Matsuda KK
Original Assignee
Mitsubishi Electric Corp
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Matsuda KK filed Critical Mitsubishi Electric Corp
Priority to JP58208125A priority Critical patent/JPS6098150A/en
Publication of JPS6098150A publication Critical patent/JPS6098150A/en
Publication of JPH0256499B2 publication Critical patent/JPH0256499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/149Replacing of the control value by an other parameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、機関の空燃比を排気ガス成分から検
出し、この出力に基づき上記空燃比を制御する機
関の空燃比制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air-fuel ratio control device for an engine that detects the air-fuel ratio of the engine from exhaust gas components and controls the air-fuel ratio based on the detected output.

〔従来技術〕[Prior art]

機関の空燃比を制御する方法として、排気ガス
中の酸素濃度を酸素ガスセンサ(以下O2センサ
と称す)により検出し、該センサの出力を積分処
理した値により機関に供給する燃料量をフイード
バツク制御することが一般に行なわれている。し
かし、この方法だけでは機関の運転の過渡時にお
いて、基本空燃比の変動が上記積分処理より速い
と空燃比の制御が追い付かず、排気ガスが悪化す
るという問題がある。この対策として、機関の各
状態毎に上記積分処理した結果より空燃比のずれ
を検出し、この値に対応した補正係数をメモリに
記憶し、エンジンの各状態に対応した補正係数と
その時の上記積分処理結果に基づき機関に供給す
る燃料量を制御する学習制御が提案されている。
この場合、理論空燃比より濃い空燃比を必要とす
る開ループゾーンでは上記フイードバツク制御を
行なうことができないため、上記学習制御もでき
ない。このため、上記開ループゾーンの近傍で上
記フイードバツク制御を行なう閉ループゾーンの
補正係数により開ループゾーンにおける空燃比を
制御することが考えられる。しかし、通常閉ルー
プゾーンでは、排気ガス還流制御(EGR制御)
も同時に行ない、開ループゾーンではEGR制御
を行なわないため、上記補正係数がEGR制御に
より影響を受けて開ループゾーンの空燃比を適正
に制御できない不具合が生ずる可能性がある。
As a method of controlling the air-fuel ratio of the engine, the oxygen concentration in the exhaust gas is detected by an oxygen gas sensor (hereinafter referred to as an O 2 sensor), and the amount of fuel supplied to the engine is feedback-controlled based on the value obtained by integrating the output of the sensor. It is commonly done. However, with this method alone, there is a problem that during transient operation of the engine, if the basic air-fuel ratio changes faster than the above-mentioned integral processing, the air-fuel ratio control cannot keep up and the exhaust gas deteriorates. As a countermeasure for this, a deviation in the air-fuel ratio is detected from the result of the above integral processing for each state of the engine, a correction coefficient corresponding to this value is stored in memory, and a correction coefficient corresponding to each state of the engine and the above Learning control has been proposed to control the amount of fuel supplied to the engine based on the results of integral processing.
In this case, the feedback control described above cannot be performed in the open loop zone which requires an air-fuel ratio higher than the stoichiometric air-fuel ratio, and therefore the learning control cannot be performed. For this reason, it is conceivable to control the air-fuel ratio in the open loop zone using a correction coefficient for the closed loop zone in which the feedback control is performed in the vicinity of the open loop zone. However, normally in the closed loop zone, exhaust gas recirculation control (EGR control)
is also performed at the same time, and EGR control is not performed in the open loop zone, so there is a possibility that the above-mentioned correction coefficient will be affected by the EGR control, resulting in a problem in which the air-fuel ratio in the open loop zone cannot be properly controlled.

〔発明の概要〕[Summary of the invention]

本発明は、上記の不具合を解決するためになさ
れたもので、上記閉ループゾーン内の上記開ルー
プゾーンに隣接して排気ガス還流を常に行わない
領域を設け、該領域における補正係数により開ル
ープゾーンの空燃比を適切に制御するようにした
ものである。
The present invention has been made to solve the above-mentioned problems, and includes providing an area adjacent to the open loop zone in the closed loop zone where exhaust gas recirculation is not always performed, and adjusting the correction coefficient in the area to adjust the open loop zone to the open loop zone. The air-fuel ratio of the engine is controlled appropriately.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図に示す一実施例につき説明す
る。第1図は本発明の構成の一例を示すもので、
機関1はエアクリーナー21、吸気管2、吸気管
2の途中に設けられたスロツトルバルブ23を介
して燃焼用の空気を吸入する。機関1に必要な燃
料はスロツトルバルブ23の上流に設けられたイ
ンジエクター22により供給され、該インジエク
ター22の開弁時間を制御することにより供給燃
料量が制御される。制御装置4は圧力センサ2
4、機関1の冷却水温度を検出する水温センサ2
5の出力から運転ゾーン判定手段41により機関
1の運転ゾーンを判定しEGR制御バルブ12を
制御してEGR通路13を介して機関1の排気管
3を流れる排気ガスの一部を吸気管2のスロツト
ルバルブ23の下流へ流すか否かを制御し、吸気
管2のスロツトルバルブ23の下流の圧力を電圧
に変換する圧力センサ24の出力と機関1の回転
数をパルス信号に変換する回転センサ11の出力
から駆動時間決定手段42で、インジエクター2
2の駆動時間T0を決定する。駆動時間補正手段
43は、運転ゾーン検出手段41の出力と排気管
3の集合部に設けられ、排気ガス中の酸素濃度を
検出するO2センサ31の出力より上記駆動時間
T0を補正し、駆動時間制御手段44によりイン
ジエクター22を制御する。
The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 shows an example of the configuration of the present invention.
The engine 1 takes in air for combustion through an air cleaner 21, an intake pipe 2, and a throttle valve 23 provided in the middle of the intake pipe 2. The fuel necessary for the engine 1 is supplied by an injector 22 provided upstream of a throttle valve 23, and the amount of fuel supplied is controlled by controlling the opening time of the injector 22. The control device 4 is a pressure sensor 2
4. Water temperature sensor 2 that detects the cooling water temperature of engine 1
The operating zone determining means 41 determines the operating zone of the engine 1 based on the output of the engine 5, controls the EGR control valve 12, and directs a portion of the exhaust gas flowing through the exhaust pipe 3 of the engine 1 via the EGR passage 13 to the intake pipe 2. The output of the pressure sensor 24 that controls whether or not the flow flows downstream of the throttle valve 23 and converts the pressure downstream of the throttle valve 23 in the intake pipe 2 into voltage and the rotation speed that converts the rotation speed of the engine 1 into a pulse signal. Based on the output of the sensor 11, the driving time determining means 42 determines the injector 2.
Determine the driving time T 0 of No. 2. The driving time correcting means 43 calculates the driving time based on the output of the driving zone detecting means 41 and the output of the O2 sensor 31, which is installed at the collecting part of the exhaust pipe 3 and detects the oxygen concentration in the exhaust gas.
T 0 is corrected, and the injector 22 is controlled by the drive time control means 44.

第2図に、制御装置4の構成の詳細を示す。フ
イルター45は圧力センサ24の出力を平滑化
し、インタフエース46は水温センサ25の出力
を電圧に変換し、フイルター47はO2センサ3
1の出力を平滑化する。ADコンバータ48はフ
イルター45,47、インタフエース46の出力
を順次デイジタル値に変換してマイクロプロセツ
サ53に出力する。比較器49は回転センサ11
の出力を波形整形し、Dフリツプフロツプ50の
クロツク端子に出力する。Dフリツプフロツプ5
0の出力は、比較器49の出力の立上りに同期し
て「L」レベルとなり、マイクロコンピユータ5
3の第1の割込端子に第1の割込信号を出力し、
マイクロコンピユータ53によりプリセツトされ
「H」レベルとなり、したがつて機関1の回転数
に相当する周期に対応して「L」レベルとなる。
カウンタ51は発振器52の出力をDフリツプフ
ロツプ50の出力が「L」レベルの間計数し、こ
の計数値T0よりマイクロコンピユータ53は機
関1の回転数Nを計算する。タイマー58は、一
定時間(例えば5msec)毎にマイクロコンピユ
ータ53の第2の割込端子に割込信号を出力す
る。マイクロコンピユータ53はROM60、
RAM61を内蔵し、ROM60に記憶されてい
るプログラムにより処理を実行し、処理結果の一
部を不揮発性RAM59に記憶する。不揮発性
RAM59は、制御装置4の電源がOFFとなつて
も記憶内容を保持するもので、例えばザイコー社
のEEPROM×2804Aを使用すれば良い。タイマ
ー54はマイクロプロセツサ53が出力する設定
値に対応して発振器55の出力をカウントし、駆
動時間補正手段43の出力に対応したパルス幅を
作り、ドライバー56によりインジエクター22
を駆動する。上記の駆動時間制御手段44には、
タイマー54、発振器55、ドライバー56が含
まれる。ドライバー57はマイクロコンピユータ
53の出力に基づきEGR制御バルブ12を駆動
する。
FIG. 2 shows details of the configuration of the control device 4. The filter 45 smoothes the output of the pressure sensor 24, the interface 46 converts the output of the water temperature sensor 25 into voltage, and the filter 47 smoothes the output of the O 2 sensor 3.
Smooth the output of 1. The AD converter 48 sequentially converts the outputs of the filters 45, 47 and the interface 46 into digital values and outputs them to the microprocessor 53. Comparator 49 is rotation sensor 11
The output of the D flip-flop 50 is waveform-shaped and output to the clock terminal of the D flip-flop 50. D flip flop 5
The output of 0 becomes "L" level in synchronization with the rise of the output of the comparator 49, and the output of the microcomputer 5
output a first interrupt signal to the first interrupt terminal of 3;
It is preset to the "H" level by the microcomputer 53, and then becomes the "L" level in response to a cycle corresponding to the rotational speed of the engine 1.
The counter 51 counts the output of the oscillator 52 while the output of the D flip-flop 50 is at "L" level, and the microcomputer 53 calculates the rotational speed N of the engine 1 from this counted value T0 . The timer 58 outputs an interrupt signal to the second interrupt terminal of the microcomputer 53 at fixed time intervals (for example, 5 msec). The microcomputer 53 has a ROM60,
It has a built-in RAM 61, executes processing according to a program stored in the ROM 60, and stores a part of the processing results in the nonvolatile RAM 59. non-volatile
The RAM 59 retains its stored contents even when the power of the control device 4 is turned off, and for example, an EEPROM x 2804A manufactured by Xiko Corporation may be used. The timer 54 counts the output of the oscillator 55 in accordance with the set value output by the microprocessor 53, creates a pulse width corresponding to the output of the drive time correction means 43, and uses the driver 56 to control the injector 22.
to drive. The drive time control means 44 includes:
A timer 54, an oscillator 55, and a driver 56 are included. The driver 57 drives the EGR control valve 12 based on the output of the microcomputer 53.

次に、マイクロコンピユータ53の動作を第3
図のフローチヤートに従い説明する。制御装置4
に電源が供給されるとマイクロコンピユータ53
は、ステツプ70でRAM61、出力信号等を初期
状態に設定する。次にステツプ72〜78、84による
運転ゾーン判定動作が行われる。ステツプ71で、
t0秒経過していればステツプ72へ、そうでなけれ
ばt0秒経過するまで待つ。t0秒は、5msec毎に処
理される第2の割込処理ルーチンによりカウント
されてつくられる。ステツプ72でAD変換器48
により圧力センサ24、水温センサ25、O2
ンサ31の出力を順次デイジタル値に変換し、
RAM61に記憶する。この記憶したデータを
各々圧力データP、水温データW、O2データA
とする。ステツプ73で、カウンター51の計数値
T0、定数Cより回転数NをN=C/T0で計算す
る。ステツプ74で、所定の回転数Naと所定の吸
気管2の圧力Pa、Pbにより運転ゾーンを第4図
の様にZ1〜Z6の6ゾーンに区分したいずれのゾー
ンで運転しているかを判定する。ここで運転ゾー
ンZ1〜Z4が閉ループゾーンで、Z5,Z6が開ループ
ゾーンである。ステツプ75で、t0秒前の運転ゾー
ンと今回の運転ゾーンを比較し、一致しなければ
ステツプ76で積分値Iの積算値SIを零とし、一致
していればステツプ77へ進む。ステツプ77で圧力
データPがPbより小さければステツプ78へ、大
きければステツプ84へ進む。ステツプ78で、
EGR制御バルブ12をONとし、排気ガスの一部
を吸気管2へ還流させる様にし、ステツプ79でイ
ンジエクター22の駆動時間T0をEGR制御バル
ブ12がONの場合において圧力データP、回転
数Nに対してあらかじめ第5図の様にROM60
に記憶されたデータから選択し、ステツプ80で水
温データWが所定値より小さければ、つまり水温
が高ければステツプ81へ、そうでなければステツ
プ88へ進む。このステツプ79及びステツプ85が駆
動時間決定手段である。次にステツプ81〜97によ
り駆動時間補正動作を行う。ステツプ81で、O2
データAが所定値(例えば0.5V相当)より小さ
ければリーン、そうでなければリツチと判定し、
リーンならステツプ82で積分値Iに定数L1を加
算し、リツチならステツプ83で積分値Iから定数
L2を減じて新しい積分値とする。次にステツプ
89で、t0秒前のO2データAの判定結果(リーン又
はリツチ)と今回の判定結果を比較し、反転(リ
ツチからリーン又はリーンからリツチ)していれ
ばステツプ90で積算値SIに積分値Iを加算してス
テツプ91、そうでなければステツプ95へ進む。ス
テツプ91で、積算値SIに積分値Iを8回加算した
かを判定し、8回加算していればステツプ92で積
算値SI/8を補正量K1とし、ステツプ93で積算
値SIを零とし、ステツプ94で補正量K1をRAM5
9のステツプ74で判定した運転ゾーンに対応した
番地に記憶する。
Next, the operation of the microcomputer 53 is controlled by the third
The explanation will be given according to the flowchart shown in the figure. Control device 4
When power is supplied to the microcomputer 53
In step 70, the RAM 61, output signals, etc. are set to the initial state. Next, the operation zone determination operation in steps 72 to 78 and 84 is performed. At step 71,
If t 0 seconds have elapsed, proceed to step 72; otherwise, wait until t 0 seconds have elapsed. t 0 seconds is counted and created by the second interrupt processing routine that is processed every 5 msec. AD converter 48 in step 72
The outputs of the pressure sensor 24, water temperature sensor 25, and O2 sensor 31 are sequentially converted into digital values by
Store in RAM61. These stored data are respectively pressure data P, water temperature data W, and O2 data A.
shall be. At step 73, count value of counter 51
From T 0 and constant C, calculate the rotation speed N as N=C/T 0 . In step 74, the operating zone is divided into six zones Z 1 to Z 6 as shown in Fig. 4, and it is determined in which zone the engine is being operated based on the predetermined rotational speed Na and the predetermined pressures Pa and Pb of the intake pipe 2. judge. Here, operating zones Z 1 to Z 4 are closed loop zones, and Z 5 and Z 6 are open loop zones. In step 75, the operating zone t0 seconds before and the current operating zone are compared, and if they do not match, the integrated value SI of the integral value I is set to zero in step 76, and if they match, the process proceeds to step 77. If the pressure data P is smaller than Pb in step 77, the process proceeds to step 78; if it is larger, the process proceeds to step 84. At step 78,
The EGR control valve 12 is turned on, a part of the exhaust gas is recirculated to the intake pipe 2, and in step 79, the drive time T0 of the injector 22 is set to the pressure data P and the rotation speed N when the EGR control valve 12 is turned on. ROM60 as shown in Figure 5 in advance.
In step 80, if the water temperature data W is smaller than a predetermined value, that is, if the water temperature is high, the process proceeds to step 81; otherwise, the process proceeds to step 88. Step 79 and step 85 are drive time determining means. Next, a driving time correction operation is performed in steps 81 to 97. In step 81, O 2
If data A is smaller than a predetermined value (for example, equivalent to 0.5V), it is determined to be lean, otherwise it is determined to be rich,
If it is lean, a constant L1 is added to the integral value I in step 82, and if it is rich, a constant L1 is added from the integral value I in step 83.
Subtract L 2 to get the new integral value. Next step
At step 89, compare the judgment result (lean or rich) of O 2 data A 0 seconds before t with the current judgment result, and if the result is reversed (rich to lean or lean to rich), the integrated value SI is changed to step 90. The integral value I is added and the process proceeds to step 91; otherwise, the process proceeds to step 95. In step 91, it is determined whether the integral value I has been added 8 times to the integrated value SI. If it has been added 8 times, in step 92 the integrated value SI/8 is set as the correction amount K1 , and in step 93, the integrated value SI is added to the integrated value SI. 0, and in step 94, set the correction amount K1 to RAM5.
It is stored at the address corresponding to the driving zone determined in step 74 of 9.

ここで、運転ゾーンが第4図においてZ3の場合
には、RAM59のゾーンZ5に相当する番地に補
正量K1を記憶し、また運転ゾーンがZ4の場合に
はRAM59のゾーンZ6に相当する番地に補正量
K1を記憶する。従つて、ゾーンZ3とZ5及びゾー
ンZ4とZ6のRAM59に記憶される補正量は同一
となる。RAM59に補正量を記憶後はステツプ
95に進む。
Here, when the operating zone is Z 3 in FIG. 4, the correction amount K 1 is stored in the address corresponding to zone Z 5 of RAM 59, and when the operating zone is Z 4 , the correction amount K 1 is stored in the address corresponding to zone Z 6 of RAM 59. Correction amount to the address corresponding to
Remember K 1 . Therefore, the correction amounts stored in the RAM 59 for zones Z 3 and Z 5 and zones Z 4 and Z 6 are the same. After storing the correction amount in RAM59, step
Go to 95.

また、ステツプ89でO2データAの判定結果が
反転していなければステツプ95へ進み、ステツプ
91で8回加算していない場合もステツプ95へ進
む。ステツプ95でステツプ74において判定したゾ
ーンに対応するRAM59内の補正量を読み出し
て補正量K2とし、ステツプ96で補正量K2に積分
値Iを加算して補正係数K3としステツプ97で上
記駆動時間T0に補正係数K3を乗じ、駆動時間T1
とし、ステツプ98でこの駆動時間データT1をタ
イマー54へ設定し、ステツプ71へ戻る。ステツ
プ77で、圧力データPが所定値Pbより大きけれ
ばステツプ84でEGR制御バルブ12をOFFにし、
排気ガスの還流を停止させ、ステツプ85でインジ
エクター22の駆動時間T0をEGR制御バルブ1
2がOFFの場合において圧力データP、回転数
Nに対してあらかじめ第6図の様にROM60に
記憶されたデータから選択し、ステツプ86で圧力
データが第4図のPaより大きければ駆動時間T0
にエンリツチ係数KEを乗じて駆動時間T0を所定
の割合だけ長くして新しい駆動時間T0とし、ス
テツプ88で積分値Iを零としてステツプ88へ進
む。ステツプ86で圧力データPがPa以下の場合
はステツプ80へ進む。
Also, if the judgment result of O2 data A is not reversed in step 89, the process advances to step 95 and
If 8 times have not been added in step 91, proceed to step 95. In step 95, the correction amount in the RAM 59 corresponding to the zone determined in step 74 is read out and set as the correction amount K2 , and in step 96, the integral value I is added to the correction amount K2 to obtain the correction coefficient K3 , and in step 97, the above Drive time T 0 is multiplied by correction coefficient K 3 , drive time T 1
Then, in step 98, this driving time data T1 is set in the timer 54, and the process returns to step 71. If the pressure data P is greater than the predetermined value Pb in step 77, the EGR control valve 12 is turned OFF in step 84.
The recirculation of exhaust gas is stopped, and in step 85, the operating time T0 of the injector 22 is changed to the EGR control valve 1.
2 is OFF, the pressure data P and rotation speed N are selected from the data previously stored in the ROM 60 as shown in Fig. 6, and if the pressure data is greater than Pa in Fig. 4 at step 86, the drive time T is selected. 0
is multiplied by the enrichment coefficient KE to lengthen the driving time T0 by a predetermined percentage to obtain a new driving time T0 , and in step 88, the integral value I is set to zero and the process proceeds to step 88. If the pressure data P is less than or equal to Pa in step 86, the process advances to step 80.

駆動時間制御動作はステツプ98でタイマー54
に駆動時間T1が設定され、第1の割込端子に割
込信号が入る毎に、つまり機関1の回転に同期し
てマイクロコンピユータ53はタイマー54にト
リガをかけて上記駆動時間T1に相当する期間、
インジエクター22を駆動することにより行われ
る。
The drive time control operation starts with the timer 54 in step 98.
A driving time T 1 is set, and every time an interrupt signal is input to the first interrupt terminal, that is, in synchronization with the rotation of the engine 1, the microcomputer 53 triggers the timer 54 to reach the driving time T 1. corresponding period,
This is done by driving the injector 22.

以上の処理を第4図を中心に説明すると、運転
ゾーンZ1,Z2,Z3,Z4にある時は、O2センサ3
1の出力に基づき積分値Iをステツプ82、83によ
り増減させ、また積分値Iのピーク値をステツプ
89〜94で積分値Iの平均値を各ゾーンの補正量と
してRAM59に記憶し、この補正量と積分値I
からステツプ95〜97で駆動時間T0を補正するこ
とにより機関1の空燃比を理論空燃比近傍に制御
する。運転ゾーンZ5,Z6では理論空燃比より濃い
空燃比を要求されるので、積分値Iによる駆動時
間T0の補正を行うことができないので、上記補
正量を計算することができない。そこで、ステツ
プ94において運転ゾーンZ5に対してはこのゾーン
に隣接する運転ゾーンZ3の補正量を、運転ゾーン
Z6に対してはこのゾーンに隣接する運転ゾーンZ4
の補正量を用いる様にRAM59に補正データを
記憶する。
The above process will be explained with reference to FIG .
Based on the output of 1, the integral value I is increased or decreased in steps 82 and 83, and the peak value of the integral value I is increased or decreased in steps 82 and 83.
89 to 94, the average value of the integral value I is stored in the RAM 59 as the correction amount for each zone, and this correction amount and the integral value I
Then, in steps 95 to 97, the air-fuel ratio of the engine 1 is controlled to be close to the stoichiometric air-fuel ratio by correcting the drive time T0 . Since an air-fuel ratio richer than the stoichiometric air-fuel ratio is required in the operating zones Z 5 and Z 6 , it is not possible to correct the drive time T 0 using the integral value I, and therefore the above-mentioned correction amount cannot be calculated. Therefore, in step 94, for operation zone Z5 , the correction amount of operation zone Z3 adjacent to this zone is changed to operation zone Z5.
Operating zone Z 4 adjacent to this zone for Z 6
Correction data is stored in the RAM 59 so that the correction amount is used.

ここで、補正量K1は積分値Iにより徐々に修
正されて、積分値Iは次第に零に近づき、補正量
K1は機関1の空燃比が理論空燃比になる様に補
正する値になる。排気ガス還流制御が行われてい
ると、この制御による機関1の空燃比のずれが生
ずるが、運転ゾーンZ3,Z4ではEGR制御バルブ
12をOFFとして排気ガス還流を停止させるの
で、排気ガス還流制御の影響を除いた時の補正量
K1を検出することができ、この時の補正量K1
運転ゾーンZ5,Z6に適用することにより、もしス
テツプ87の処理を行わないとした時に機関1の空
燃比を理論空燃比近傍に制御でき、従つてステツ
プ87におけるエンリツチ係数KEによる空燃比の
補正が適正に行われることになる。
Here, the correction amount K1 is gradually corrected by the integral value I, and the integral value I gradually approaches zero, and the correction amount
K1 is a value for correcting the air-fuel ratio of the engine 1 to the stoichiometric air-fuel ratio. When exhaust gas recirculation control is performed, a deviation occurs in the air-fuel ratio of the engine 1 due to this control, but in operating zones Z 3 and Z 4 , the EGR control valve 12 is turned OFF to stop exhaust gas recirculation, so that the exhaust gas Correction amount when excluding the influence of reflux control
K 1 can be detected, and by applying the correction amount K 1 at this time to the operating zones Z 5 and Z 6 , the air-fuel ratio of the engine 1 can be adjusted to the stoichiometric air-fuel ratio if the process in step 87 is not performed. Therefore, the air-fuel ratio can be corrected appropriately using the enrichment coefficient KE in step 87.

なお、上記の実施例では、回転数と吸気管2の
圧力で運転ゾーンを区分したが、回転数とスロツ
トルバルブ23の開度で区分しても良い。
In the above embodiment, the operating zones are divided based on the rotational speed and the pressure of the intake pipe 2, but they may be divided based on the rotational speed and the opening degree of the throttle valve 23.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかな様に、本発明によれば回
転数と吸気管圧力で機関への燃料供給量を決定す
るシステムにおいて、閉ループゾーン内に開ルー
プゾーンと隣接した排気ガス還流を常時行なわな
い領域を設け、この領域における積分値より補正
係数を求め、この補正係数を開ループゾーンに適
用することにより開ループゾーンの空燃比を精度
よく制御できるという効果がある。
As is clear from the above explanation, according to the present invention, in a system that determines the amount of fuel supplied to the engine based on the rotational speed and intake pipe pressure, exhaust gas recirculation adjacent to the open loop zone is not performed constantly within the closed loop zone. By providing a region, determining a correction coefficient from the integral value in this region, and applying this correction coefficient to the open loop zone, there is an effect that the air-fuel ratio in the open loop zone can be controlled with high accuracy.

また、閉ループゾーンにおいて途中でO2セン
サが故障して積分値Iによる空燃比が制御できな
くなつても、補正量により空燃比を適正に制御で
きるという効果がある。
Furthermore, even if the O 2 sensor fails midway through the closed loop zone and the air-fuel ratio cannot be controlled using the integral value I, the air-fuel ratio can be properly controlled using the correction amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は
制御装置4の詳細を示す構成図、第3図はマイク
ロコンピユータ53の制御を示すフローチヤー
ト、第4図は運転ゾーンの説明図、第5図、第6
図はインジエクター22の駆動時間データを示す
図である。 図中の符号1は機関、2は吸気管、3は排気
管、11は回転センサ、12はEGR制御バルブ、
22はインジエクター、24は圧力センサ、25
は水温センサ、31はO2センサ、48はADコン
バータ、51はカウンター、53はマイクロコン
ピユータ、54,58はタイマー、56,57は
ドライバーである。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a block diagram showing details of the control device 4, Fig. 3 is a flowchart showing control of the microcomputer 53, and Fig. 4 is an explanation of the operation zone. Figure, Figure 5, Figure 6
The figure is a diagram showing driving time data of the injector 22. In the figure, 1 is the engine, 2 is the intake pipe, 3 is the exhaust pipe, 11 is the rotation sensor, 12 is the EGR control valve,
22 is an injector, 24 is a pressure sensor, 25
31 is a water temperature sensor, 31 is an O 2 sensor, 48 is an AD converter, 51 is a counter, 53 is a microcomputer, 54 and 58 are timers, and 56 and 57 are drivers.

Claims (1)

【特許請求の範囲】[Claims] 1 機関の排気ガス成分により空燃比を検出する
空燃比センサの出力信号を積分処理する積分処理
ステツプと、この積分処理ステツプにて得られた
積分情報に基づいて修正される補正量を不揮発性
メモリに記憶させる記憶処理ステツプとを含み、
上記積分処理した積分情報と上記記憶された補正
量とに基づいて機関の空燃比を制御する手段を備
え、上記機関の運転領域を上記積分処理ステツプ
を行なう閉ループゾーンと該ステツプを行わない
開ループゾーンに区分し、上記閉ループゾーンで
排気ガス還流制御を行なうものにおいて、上記閉
ループゾーン内に上記開ループゾーンに隣接して
上記排気ガス還流を常時行なわない領域を設け、
該領域における上記補正量に基づいて上記開ルー
プゾーンにおける上記空燃比を制御することを特
徴とする機関の空燃比制御装置。
1. An integral processing step that integrates the output signal of the air-fuel ratio sensor that detects the air-fuel ratio based on the exhaust gas components of the engine, and a correction amount that is corrected based on the integral information obtained in this integral processing step, which is stored in a non-volatile memory. an amnestic step for storing the information in the memory;
A means for controlling the air-fuel ratio of the engine based on the integral information subjected to the integral processing and the stored correction amount is provided, and the operating range of the engine is divided into a closed loop zone where the integral processing step is performed and an open loop zone where the step is not performed. The method is divided into zones and performs exhaust gas recirculation control in the closed loop zone, wherein an area is provided in the closed loop zone adjacent to the open loop zone where the exhaust gas recirculation is not performed at all times,
An air-fuel ratio control device for an engine, characterized in that the air-fuel ratio in the open loop zone is controlled based on the correction amount in the region.
JP58208125A 1983-11-04 1983-11-04 Air-fuel ratio controller of engine Granted JPS6098150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58208125A JPS6098150A (en) 1983-11-04 1983-11-04 Air-fuel ratio controller of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208125A JPS6098150A (en) 1983-11-04 1983-11-04 Air-fuel ratio controller of engine

Publications (2)

Publication Number Publication Date
JPS6098150A JPS6098150A (en) 1985-06-01
JPH0256499B2 true JPH0256499B2 (en) 1990-11-30

Family

ID=16551048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208125A Granted JPS6098150A (en) 1983-11-04 1983-11-04 Air-fuel ratio controller of engine

Country Status (1)

Country Link
JP (1) JPS6098150A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3768780B2 (en) 2000-06-07 2006-04-19 三菱電機株式会社 Air-fuel ratio control device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954751A (en) * 1982-09-20 1984-03-29 Mazda Motor Corp Fuel controller of engine
JPS5963356A (en) * 1982-10-01 1984-04-11 Mazda Motor Corp Exhaust gas recirculator for engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954751A (en) * 1982-09-20 1984-03-29 Mazda Motor Corp Fuel controller of engine
JPS5963356A (en) * 1982-10-01 1984-04-11 Mazda Motor Corp Exhaust gas recirculator for engine

Also Published As

Publication number Publication date
JPS6098150A (en) 1985-06-01

Similar Documents

Publication Publication Date Title
US4442815A (en) Optimum air-fuel ratio control for internal combustion engine
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JPS6259220B2 (en)
JPS6332141A (en) Air-fuel ratio control device for internal combustion engine
JPH0256499B2 (en)
JPS6232338B2 (en)
JPH06108901A (en) Air fuel ratio control device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07127505A (en) Air-fuel ratio controller for internal combustion engine
JPS6232339B2 (en)
JPH01159447A (en) Electronic control unit for internal combustion engine
JPH0432935B2 (en)
JPS6313012B2 (en)
JPH0346659B2 (en)
JPH05149172A (en) Air-fuel ratio control device for internal combustion engine
JPS61190138A (en) Learning control device of internal-combustion engine
JPS6220646A (en) Air-fuel ratio controller for engine
JPH07269398A (en) Air-fuel ratio controller of internal combustion engine
JPH03179149A (en) Abnormal diagnoser in air-fuel ratio controller for internal combustion engine
JPS61185649A (en) Control device for engine
JPH03210038A (en) Learning type air-fuel ratio control unit for egr engine
JPS6395895A (en) Step-out adjustment device of step motor for internal combustion engine
JPH0573909B2 (en)
JPS61201832A (en) Exhaust reflux device of engine