JPH0255696A - Flux cored wire for gas shielded arc welding - Google Patents
Flux cored wire for gas shielded arc weldingInfo
- Publication number
- JPH0255696A JPH0255696A JP20414788A JP20414788A JPH0255696A JP H0255696 A JPH0255696 A JP H0255696A JP 20414788 A JP20414788 A JP 20414788A JP 20414788 A JP20414788 A JP 20414788A JP H0255696 A JPH0255696 A JP H0255696A
- Authority
- JP
- Japan
- Prior art keywords
- flux
- welding
- amount
- wire
- spatter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 54
- 230000004907 flux Effects 0.000 title claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 14
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910001632 barium fluoride Inorganic materials 0.000 abstract description 7
- 230000003247 decreasing effect Effects 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000011777 magnesium Substances 0.000 description 14
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 12
- 239000011324 bead Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910002551 Fe-Mn Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 229910017086 Fe-M Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
Landscapes
- Nonmetallic Welding Materials (AREA)
Abstract
Description
(産業上の利用分野)
本発明は、ガスシールドアーク溶接フラックス入りワイ
ヤに係り、特に低電流においてスパッタ発生量が少ない
ことを特長とし、軟鋼及び高張力鋼等の溶接、特に薄板
等の溶接に好適なガスシールドアーク溶接フラックス入
りワイヤに関するものである。
(従来の技術及び解決しようとする課題)ガスシールド
アーク溶接フラックス入りワイヤは、溶接作業性(スパ
ッタ、アーク安定性等)及び溶接能率が良好であること
に加え、優れたビード外観を有する等の利点を有してい
るため、その使用量はますます増加する傾向にある。
しかし乍ら1通常のフラックス入りワイヤは溶接電流範
囲が必ずしも広くなく、特に低電流域では良好なスプレ
ーアークを得ることが難しかった。
そのため、薄板溶接などの低電流(100〜200A位
)での溶接施工においてはスパッタの発生量が多く、溶
接作業性は良好とは云えなかった。
本発明は、かSる事情のもとでなされたものであって、
特に広い電流範囲にわたって安定したスプレーアークが
可能で溶接作業性が良好なガスシールドアーク溶接フラ
ックス入りワイヤを提供することを目的とするものであ
る。
(課題を解決するための手段)
前記目的を達成するため、本発明者等は、内包フラック
スの組成に重点を置いて様々な方面から研究を進めた結
果、殊に特定組成のフラックスを充填し、且つ直流正極
性で用いることにより可能であることを見い出すに至っ
たものである。
すなわち、本発明は、外皮金属で囲まれた腔部に、フラ
ックス全重量当たり、BaF、:3〜10%、An:3
〜30%1Mg:1〜10%、Fe:40〜80%、M
n:5〜15%及びSi:2〜15%からなる組成のフ
ラックスをフラックス充填率10〜30%にて充填して
なることを特徴とする直流正極性用ガスシールドアーク
溶接フラックス入りワイヤ、を要旨とするものである。
本発明のガスシールドアーク溶接フラックス入りワイヤ
は上記構成を有するが、その特長は、直流正極性用ガス
シールドワイヤとして、充填フラックスとしてBaF、
、Al、Mg等を限定することにより、低スパツタ等の
特性を発揮するところにある。すなわち、「特に低電流
での溶接においても安定したスプレーアークが可能でス
パッタの発生が少ない」という特性を発揮させるには、
次の■〜■によるところが最も重要である。
■溶接に当たり直流正極性を適用すること。
■フラックス中に主成分としてBaF2、Afl、Mg
を同時に添加したこと。
以下に本発明を更に詳細に説明する。
まず、本発明におけるフラックス成分の限定理由につい
て説明する。なお、各成分の量はフラックス全重量に対
する割合である。
本発明者等は、ガスシールドアーク溶接フラックス入り
ワイヤのフラックス組成について種々検討の結果、まず
フッ化物について着目し、フラックス中のフッ化物とス
パッタ発生量及び溶接作業性との関係を調べた。なお、
実験における供試ワイヤ及び溶接条件は以下の■、■の
とおりとし、スパッタの捕集は、第1図に示すように、
溶接トーチ2の移動を妨げない個所のみを開放した銅製
中空の捕集器1で試験板4を覆い、この捕集器1内で溶
接した後のスパッタを捕集する方法によった。
Ω−供湛j畳仁竺
外皮金属:軟鋼
フラックス及びフラックス率=(後述実施例のNa 1
2をベースにフッ化物量及び種類を変え、フッ化物量に
応じてFeJlを増減させた。他の成分はNα12と同
じ)
ワイヤ断面形状:第7図中の(A)
ワイヤ径:1.4n+s+φ
蛮」劃え4庄
溶接電流:150A、
DCEN(直流正極性)
アーク電圧 :18v
溶接速度=40c謙/■in
シールトガX: 100%C02
(流量20 Q /a+in)
ワイヤ突出し長さ:2Qm+w
被溶接材料 :5M50A(寸法20■tX1 0 0
+amWX 6 0 0m+nQ)姿 勢 :下向
゛(前進角、後退角=O°)以上の試験の結果を第2図
及び第3図に示す。
なお、第2図は添加すべきフッ化物の種類について種々
検討した結果を示しており、第3図は第2図の結果によ
り必須成分として選択したBaF、の適正添加量を調査
するためにその添加量を増減させた場合の試験結果を示
している6
まず、フッ化物の種類を変えて検討したところ、第2図
に示すように、アルカリ金属或いはアルカリ土類金属の
フッ化物が良好な結果を示し、中でもBaF、がスパッ
タ等の面から最も良好であったため、添加するフッ化物
としてはBaF、を必須とした。
また、第3図から明らかな如く、スパッタ発生量はフラ
ックス中にBaF、を3〜10%添加することにより著
しく低下する傾向にあり、またその範囲では溶接作業性
も非常に良好であるが、3%未満ではスパッタ発生量が
多く作業性が良くなく、10%を超えるとビード外観が
良好でなかった。
したがって、フラックス中のBaF、の量は3〜10%
の範囲に止める必要があることが判明した。
(2)へ1五p四罰
Al及びMgは、脱酸作用によって溶接金属の物性を高
めるのに有効な成分であることは従来より知られている
が5本発明においては、安定したアーク溶接を行うため
にはどちらも欠くべからざるフラックス原料である。
更に、本発明者等は、種々検討の結果、Al、Mgを添
加することによってスパッタを低減できるとの知見を得
た。
そこでAl、Mgの適正添加量を見出すためにフラック
スワイヤ中のAl量及びMg量とスパッタ発生量等の関
係を調べた。なお、供試ワイヤ及び溶接条件は前述の条
件■、■及び第1図に準じた。
その結果、まず、第4図に示すように、ワイヤ中のAl
量が全フラックスに対して3%未満ではアークが不安定
でスパッタの発生量も非常に多い。
しかし、30%を超えると脱酸過剰となることや、溶接
金属中のAl量が増し、靭性が低下すること及びビード
外観が好ましくなくなる等の問題が生ずる。したがって
、フラックス中のアルミニウム量は3〜30%の範囲と
する。
また、第5図に示すように、ワイヤ中のマグネシウム量
が全フラックスに対して1%未満ではアークが不安定で
スパッタの発生量も多い。しかし、10%を超えるとア
ークの吹付けが強くなりすぎ、薄板溶接に不向きとなる
ことや、脱酸過剰による溶接金属性能の低下、ビード外
観の悪化等を惹き起こす。したがって、マグネシウム量
は1〜10%の範囲とする。
なお、Al、Mgの代表的な添加形態としては純Al、
Fe−Al、純Mg、 Fe−Mg、 A Q −Mg
等の粉末が挙げられる。
(3) Fe
Feは溶着金属量を増大して溶接能率を高める作用があ
るため、溶接金属に対するスラグ発生量を相対的に低く
する効果がある。そのためには40%以上を添加する必
要がある。しかし、Feiが80%を超えると、他の成
分である脱酸剤、フッ化物、Al1.Mg等の量が相対
的に減少し、作業性(特に、スパッタ)、性能等の面の
悪化を来たす。したがって、Feff1は40〜80%
の範囲とする。なお、Feは主として鉄粉として添加す
るが、Fe−Mn、Fe−8L、Fe−kQ、Fe−M
g等の合金の形で添加する場合も含まれることは勿論で
ある。
(4) Mn
Mnは脱酸反応とともに溶接金属中に歩留って靭性を付
与し、衝撃性能を良好にする。その作用のためには少な
くともフラックス全量に対して5%以上の添加が必要で
ある。しかし、15%を超える量の添加は溶接金属の強
度の異常上昇を招いたり、Alとの共存状態で脱酸過剰
を生じたりして好ましくない。したがって、Mnの量は
5〜15%の範囲とする。なお、Mnは金属Mnの形態
で添加するだけでなく、Fe−Mn等合金の形態で添加
しても良いのは勿論である。
(5) 5i
SLはMnと同様に性能面の確保のために必要である他
に、母材と溶接金属のなじみを良くし、またスラグの粘
度を調整してフラットで良好なビードを実現するために
添加する。そのためには少なくとも2%は必要である。
しかし、15%を超える量の添加は、溶接金属の靭性を
阻害して衝撃性能を悪化させる。したがって、Siの量
は2〜15%の範囲とする。なお、Siは金属Siの形
態だけでなく、Fe−5i、Cu−5L等の合金の形態
で添加して良いのは勿論である。
(6)ユ二り孟久充埋農
外皮金属に対するフラックスの充填率は、10〜30%
の範囲が好ましい。10%未満では十分な量の金属粉や
スラブ形成剤等を充填することができず、本来の性能を
発揮できない。一方、30%を超えると外皮金属を薄肉
にしなければならず、ワイヤが柔らかくなり、送給性が
低下するほか。
通電性及びアーク安定性も悪化してアンダーカット等が
発生し易くなる。したがって、フラックス充填率は10
〜30%の範囲とする。
(7)その他の条件(フラックス成分、金属外皮)上記
のように、本発明においては、BaF、、A Q 、
Mg、 Fe、 Mn及びSiを必須のフラックス成分
とするが、これら必須成分以外に必要に応じてアーク安
定剤、スラグ生成剤、合金成分等を添加できるのは勿論
である。
例えば、フッ化物については、BaF、以外に他のフッ
化物を添加しても良いのは勿論であるが、添加する場合
には、本発明の目的から考えた場合、アルカリ金属或い
はアルカリ土類金属のフッ化物とすることが望ましく、
また添加量についても全フッ化物中のBaF2が50%
以上となるように他のフッ化物を添加することが推奨さ
れる。
更に、ワイヤ中のC量についても、多すぎるとヒユーム
、スパッタの発生量に影響を与える。その影響はBaF
、、Al21Mgよりは度合いが小さいが、ワイヤ全重
量当たり0.08%以下に抑えることが推奨される。
(8)糧」J斂1と1−
本発明においては、溶接において直流正極性を用いるこ
とが必須である。
極性については交流と直流があり、直流の場合には、直
流逆極性(DCEP)と直流正極性(DCEN)の2種
類があり、一般的には直流逆極性が用いられている。し
かし、本発明のワイヤにおいては、溶接に際しての極性
として、溶接作業性(アーク安定性、スパッタ等)の面
から、直流正極性でなければならず、交流及び直流逆極
性では実用上溶接施工ができない。
すなわち、極性の効果の一例を第6図(前述の試験の場
合の溶接条件■に準じて行なった結果である)に示すよ
うに、本発明系のワイヤでは、直流正極性でのみ良好な
作業性(スパッタ発生量等)を示すことがわかる。この
ことは本発明の大きな特長の1つである。これは以下の
ように考察される。
一般に、溶接ワイヤをDC(−)で使用する(直流正極
性)と、ワ゛イヤ先端に陽イオンによる*12力が溶滴
に加わるため、溶滴の離脱が妨げられ。
その結果、溶接作業性(スパッタ、アーク安定性等)が
悪い。しかし、本発明によるフッ化バリウム系のフラッ
クス入りワイヤの場合、正極性特有の陽イオンによる衝
撃力に加えて、高蒸気圧のBaF、等の蒸発による大き
な反作用力が溶滴に働くため、ワイヤ先端の溶滴がこれ
らの合力により衝撃を受け、小さな溶滴粒に変化して母
材へとスムーズな移行を行う、したがって、DC(−)
において良好な作業性(スパッタ、アーク安定性等)を
示すのである。
なお、ワイヤの断面形状は何ら制限されず、例えば第7
図(A)〜(D)に示す種々の形状のものが使用できる
。(D)の形状(継目無)の場合にはワイヤ表面にAΩ
、Cu等のメツキ処理を施してもよく、メツキ量(ワイ
ヤ全重量に対する重量%)は0005〜0.20%が望
ましい、0.05%以下では耐錆性、送給性、通電性等
の面での効果が少なく、0.20%以上になると生産性
の低下、溶接金属の靭性低下を来たすので望ましくない
。
また、ワイヤ径も何ら制限されず、用途に応じて 1.
2mm、 1.4mm、 1.6ms+、 2.0+
m、 2.4mm、3.2mm等の中から適宜法める
ことができるが、薄板溶接の面やアーク安定性の面から
は1゜2〜1.6m膳φが望ましい。
更に、シールドガスとしては、CO3及びAr−CO2
混合ガス等のいずれも使用可能である。
また、適用鋼種としては、本発明では軟鋼及び高張力鋼
を対象とするのが好適であるが、他の鋼種に適用可能な
ことは勿論である。本発明は特に薄板の溶接に好適であ
る。また、全姿勢溶接が可能である。
次に本発明の実施例を示す。
(実施例)
第1表及び第2表に示す各種のフラックス組成を有する
フラックス入りワイヤ(ワイヤ径:1.4■φ、外皮:
軟鋼、ワイヤ断面形状:第7図(A)の形状)を作製し
、以下の溶接条件にて軟鋼母材(板厚:6mm)にガス
シールドアーク溶接を行った。スパッタ発生量及びその
他の溶接作業性を評価した結果を第3表に示す。
′ 条 −′
溶接電流:150A
アーク電圧 :19v
溶接速度:約40cm/1lin
シールドガス:CO,(流量: 20 Q /win)
ワイヤ突出し長さ:20n+m
極 性: DCENC直流正極性)姿 勢
:水平すみ肉
第3表に示すように5本発明例はいずれもスパッタ発生
量を主とした溶接作業性に優れており、ワイヤ製造時に
も問題がなかった。一方、本発明範囲外の条件による比
較例は、スパッタが多く。
或いはスパッタが少ない場合には作業性等(ビード外観
、溶接能率)が劣っている。(Industrial Application Field) The present invention relates to a gas-shielded arc welding flux-cored wire, which is characterized by low spatter generation especially at low currents, and is suitable for welding mild steel and high-strength steel, especially welding thin plates, etc. The present invention relates to a suitable gas-shielded arc welding flux-cored wire. (Prior art and problems to be solved) Gas-shielded arc welding flux-cored wire has good welding workability (spatter, arc stability, etc.) and welding efficiency, as well as excellent bead appearance. Due to its advantages, its usage tends to increase more and more. However, 1. Normal flux-cored wires do not necessarily have a wide welding current range, and it is difficult to obtain a good spray arc, especially in the low current range. Therefore, in welding work using a low current (approximately 100 to 200 A) such as thin plate welding, a large amount of spatter is generated, and welding workability cannot be said to be good. The present invention was made under the following circumstances, and
It is an object of the present invention to provide a gas-shielded arc welding flux-cored wire that enables stable spray arc over a particularly wide current range and has good welding workability. (Means for Solving the Problems) In order to achieve the above object, the present inventors conducted research from various directions with emphasis on the composition of the included flux. , and it has been discovered that this is possible by using DC with positive polarity. That is, in the present invention, BaF: 3 to 10%, An: 3, based on the total weight of the flux, are added to the cavity surrounded by the outer metal.
~30% 1Mg: 1-10%, Fe: 40-80%, M
A flux-cored wire for gas-shielded arc welding for direct current positive polarity, characterized in that it is filled with a flux having a composition of n: 5-15% and Si: 2-15% at a flux filling rate of 10-30%. This is a summary. The gas-shielded arc welding flux-cored wire of the present invention has the above-mentioned configuration, and its features include that as a DC positive polarity gas-shielded wire, BaF is used as the filling flux;
, Al, Mg, etc., it is possible to exhibit characteristics such as low spatter. In other words, in order to achieve the characteristics of ``a stable spray arc and less spatter generation, even when welding at low currents,''
The following ■ to ■ are the most important. ■Apply DC positive polarity when welding. ■BaF2, Afl, Mg as main components in flux
were added at the same time. The present invention will be explained in more detail below. First, the reasons for limiting the flux components in the present invention will be explained. Note that the amount of each component is a ratio to the total weight of the flux. As a result of various studies on the flux composition of flux-cored wire for gas-shielded arc welding, the present inventors first focused on fluoride and investigated the relationship between fluoride in flux and the amount of spatter generated and welding workability. In addition,
The test wire and welding conditions in the experiment were as shown in ■ and ■ below, and spatter was collected as shown in Figure 1.
A method was used in which the test plate 4 was covered with a copper hollow collector 1 that was open only in areas that did not impede the movement of the welding torch 2, and the spatter after welding was collected in the collector 1. Ω - Furnace metal: Mild steel flux and flux rate = (Na 1 in the examples described below)
The amount and type of fluoride were changed based on No. 2, and FeJl was increased or decreased according to the amount of fluoride. Other components are the same as Nα12) Wire cross-sectional shape: (A in Figure 7) Wire diameter: 1.4n+s+φ 4-sho welding current: 150A, DCEN (direct current positive polarity) Arc voltage: 18v Welding speed = 40c Ken/■in Seal gas
+ amW Furthermore, Figure 2 shows the results of various studies on the types of fluoride that should be added, and Figure 3 shows the results of various studies on the types of fluoride that should be added, and Figure 3 shows the results for investigating the appropriate addition amount of BaF, which was selected as an essential component based on the results of Figure 2. The test results are shown when the amount of addition is increased or decreased.6 First, when different types of fluoride were examined, as shown in Figure 2, good results were obtained with alkali metal or alkaline earth metal fluorides. Among them, BaF was the best in terms of sputtering, etc., so BaF was essential as the fluoride to be added. Furthermore, as is clear from Fig. 3, the amount of spatter generated tends to be significantly reduced by adding 3 to 10% BaF to the flux, and welding workability is also very good within this range. When it was less than 3%, the amount of spatter generated was large and workability was poor, and when it exceeded 10%, the bead appearance was poor. Therefore, the amount of BaF in the flux is 3-10%
It turned out that it was necessary to stop the temperature within the range of . (2) 15P4 Punishment Al and Mg have been known to be effective components for improving the physical properties of weld metal through their deoxidizing action, but in the present invention, stable arc welding is possible. Both are indispensable flux raw materials to carry out this process. Furthermore, as a result of various studies, the present inventors have found that spatter can be reduced by adding Al and Mg. Therefore, in order to find the appropriate amounts of Al and Mg to be added, we investigated the relationship between the amount of Al and Mg in the flux wire and the amount of spatter generated. Note that the test wires and welding conditions were in accordance with the conditions ① and ① described above and in Fig. 1. As a result, first, as shown in FIG.
If the amount is less than 3% of the total flux, the arc will be unstable and the amount of spatter generated will be very large. However, if it exceeds 30%, problems such as excessive deoxidation, increased Al content in the weld metal, decreased toughness, and unfavorable bead appearance occur. Therefore, the amount of aluminum in the flux is in the range of 3 to 30%. Further, as shown in FIG. 5, if the amount of magnesium in the wire is less than 1% of the total flux, the arc is unstable and a large amount of spatter is generated. However, if it exceeds 10%, the arc blowing becomes too strong, making it unsuitable for welding thin plates, and excessive deoxidation causes deterioration of weld metal performance and deterioration of bead appearance. Therefore, the amount of magnesium is in the range of 1 to 10%. Note that typical addition forms of Al and Mg include pure Al,
Fe-Al, pure Mg, Fe-Mg, AQ-Mg
Examples include powders such as. (3) Fe Since Fe has the effect of increasing the amount of deposited metal and increasing welding efficiency, it has the effect of relatively reducing the amount of slag generated with respect to the weld metal. For that purpose, it is necessary to add 40% or more. However, when Fei exceeds 80%, other components such as deoxidizer, fluoride, Al1. The amount of Mg etc. decreases relatively, resulting in deterioration of workability (especially sputtering) and performance. Therefore, Feff1 is 40-80%
The range shall be . Note that Fe is mainly added as iron powder, but Fe-Mn, Fe-8L, Fe-kQ, Fe-M
Of course, this also includes the case where it is added in the form of an alloy such as g. (4) Mn Mn is retained in the weld metal through deoxidation reaction, imparts toughness, and improves impact performance. In order to achieve this effect, it is necessary to add at least 5% or more of the total amount of flux. However, addition of more than 15% is not preferable because it causes an abnormal increase in the strength of the weld metal or causes excessive deoxidation in coexistence with Al. Therefore, the amount of Mn is in the range of 5 to 15%. It goes without saying that Mn may be added not only in the form of metal Mn but also in the form of an alloy such as Fe-Mn. (5) Like Mn, 5i SL is necessary to ensure performance, but it also improves the compatibility between the base metal and weld metal, and adjusts the viscosity of the slag to achieve a flat and good bead. Add for. For this purpose, at least 2% is necessary. However, addition of more than 15% impairs the toughness of the weld metal and deteriorates impact performance. Therefore, the amount of Si is in the range of 2 to 15%. It goes without saying that Si may be added not only in the form of metal Si but also in the form of alloys such as Fe-5i and Cu-5L. (6) The filling rate of flux to the outer skin metal of Yuniri Menghisa is 10 to 30%.
A range of is preferred. If it is less than 10%, it will not be possible to fill a sufficient amount of metal powder, slab forming agent, etc., and the original performance will not be exhibited. On the other hand, if it exceeds 30%, the outer metal must be made thinner, the wire becomes softer, and the feedability deteriorates. Electricity conductivity and arc stability are also deteriorated, and undercuts and the like are more likely to occur. Therefore, the flux filling factor is 10
The range is 30%. (7) Other conditions (flux component, metal sheath) As mentioned above, in the present invention, BaF, , A Q ,
Although Mg, Fe, Mn, and Si are essential flux components, it is of course possible to add arc stabilizers, slag forming agents, alloy components, etc. in addition to these essential components as necessary. For example, with regard to fluoride, it is of course possible to add other fluorides in addition to BaF, but if added, considering the purpose of the present invention, an alkali metal or alkaline earth metal It is desirable to use fluoride of
Also, regarding the amount added, BaF2 in the total fluoride is 50%.
It is recommended to add other fluorides to achieve the above. Furthermore, if the amount of C in the wire is too large, it will affect the amount of fume and spatter generated. The effect is BaF
Although the degree is smaller than that of Al21Mg, it is recommended to suppress it to 0.08% or less based on the total weight of the wire. (8) In the present invention, it is essential to use DC positive polarity in welding. Regarding polarity, there are alternating current and direct current, and in the case of direct current, there are two types: direct current reverse polarity (DCEP) and direct current positive polarity (DCEN), and generally DC reverse polarity is used. However, in the wire of the present invention, the polarity during welding must be DC positive polarity from the viewpoint of welding workability (arc stability, spatter, etc.), and AC and DC reverse polarity are not practical for welding. Can not. In other words, as an example of the effect of polarity is shown in Figure 6 (results were carried out according to welding conditions ① in the above test), with the wire of the present invention, good work was achieved only with DC positive polarity. It can be seen that the characteristics (amount of spatter generated, etc.) are shown. This is one of the major features of the present invention. This can be considered as follows. Generally, when a welding wire is used with DC (-) (direct current positive polarity), a *12 force is applied to the droplet by cations at the tip of the wire, which prevents the droplet from detaching. As a result, welding workability (spatter, arc stability, etc.) is poor. However, in the case of the barium fluoride-based flux-cored wire according to the present invention, in addition to the impact force caused by the cations peculiar to positive polarity, a large reaction force due to the evaporation of high vapor pressure BaF, etc. acts on the droplet, so the wire The droplet at the tip is impacted by the resultant force, transforms into a small droplet grain, and smoothly transfers to the base material. Therefore, DC(-)
It shows good workability (spatter, arc stability, etc.). Note that the cross-sectional shape of the wire is not limited in any way; for example,
Various shapes shown in FIGS. (A) to (D) can be used. In the case of shape (D) (seamless), AΩ is applied to the wire surface.
, Cu, etc. may be applied, and the amount of plating (wt% relative to the total weight of the wire) is preferably 0.005 to 0.20%. If it is less than 0.05%, rust resistance, feedability, electrical conductivity, etc. If it exceeds 0.20%, productivity and toughness of the weld metal will decrease, which is not desirable. In addition, the wire diameter is not limited at all and can be adjusted depending on the application.
2mm, 1.4mm, 1.6ms+, 2.0+
The diameter can be set as appropriate from m, 2.4 mm, 3.2 mm, etc., but from the viewpoint of thin plate welding and arc stability, a diameter of 1°2 to 1.6 m is desirable. Furthermore, CO3 and Ar-CO2 are used as shielding gases.
Any mixed gas etc. can be used. Further, as for applicable steel types, the present invention is preferably applied to mild steel and high-strength steel, but it is of course applicable to other steel types. The present invention is particularly suitable for welding thin plates. In addition, all-position welding is possible. Next, examples of the present invention will be shown. (Example) Flux-cored wires having various flux compositions shown in Tables 1 and 2 (wire diameter: 1.4 φ, outer sheath:
A wire cross-sectional shape of mild steel (the shape shown in FIG. 7(A)) was prepared, and gas-shielded arc welding was performed on a mild steel base material (thickness: 6 mm) under the following welding conditions. Table 3 shows the results of evaluating the amount of spatter generated and other welding workability. ' Article -' Welding current: 150A Arc voltage: 19v Welding speed: Approx. 40cm/1lin Shielding gas: CO, (Flow rate: 20 Q/win)
Wire protrusion length: 20n+m Polarity: DCENC (DC positive polarity) Posture: Horizontal fillet As shown in Table 3, all five examples of the present invention are excellent in welding workability, mainly in terms of the amount of spatter generated. There were no problems during manufacturing. On the other hand, in comparative examples under conditions outside the scope of the present invention, there was a lot of spatter. Alternatively, if there is little spatter, workability, etc. (bead appearance, welding efficiency) is poor.
(発明の効果)
以上詳述したように、本発明によれば、特定組成のフラ
ックスを所定のフラックス率で充填したフラックス入す
ワイヤを直流正極性にて用いるので、通常のフラックス
入りワイヤ及びソリッドワイヤよりも溶接電流範囲が広
く、特に低電流域まで安定したスプレーアークで低スパ
ツタの溶接が可能である。(Effects of the Invention) As detailed above, according to the present invention, since a flux-cored wire filled with a flux of a specific composition at a predetermined flux rate is used with direct current positive polarity, it is possible to The welding current range is wider than that of wire, and low spatter welding is possible with a spray arc that is stable even in the low current range.
第1図(a)〜(c)はスパッタの捕集器(銅製中空)
の概略(構造、寸法(、、+n、))を示す図で、(a
)は平面図、(b)は側面図、(c)は正面図であり、
第2図は各種フシ化物をフラックス原料として用いた場
合(添加量5%)のスパッタ発生量を示す図、
第3図はフラックス全量に占めるB a F z II
とスパッタ発生量の関係を示す図、
第4図はフラックス全量に占めるAl量とスパッタ発生
量の関係を示す図、
第5図はフラックス全量に占めるMg量とスパッタ発生
量の関係を示す図、
第6図はワイヤ極性(直流逆極性、直流正極性。
交流)とスパッタ発生量の関係を示す図。
第7図(A)〜(D)はそれぞれフラックス入りワイヤ
の断面形状の一例を示す図である。
1・・・スパッタ捕集器、2・・・溶接トーチ、3・・
・ワイヤ、4・・・試験板(被溶接材料)、F・・・フ
ラックス、M・・・外皮金属。
特許出顕人 株式会社神戸製鋼所
代理人弁理士 中 村 尚
第1図
第2図
第3図
各種フッ化甥
第4図
AJLq (WT−7aノ
フ・l化靭t(wt%)
第5図
第7図
(A)
(B)
第6図
手続補正帯
昭和63年09月17日Figures 1 (a) to (c) are spatter collectors (copper hollow)
A diagram showing the outline (structure, dimensions (,,+n,)) of
) is a plan view, (b) is a side view, (c) is a front view,
Figure 2 shows the amount of spatter generated when various fusilides are used as flux raw materials (addition amount: 5%), and Figure 3 shows the proportion of B a F z II in the total amount of flux.
Figure 4 is a diagram showing the relationship between the amount of Al in the total amount of flux and the amount of spatter generated. Figure 5 is a diagram showing the relationship between the amount of Mg in the total amount of flux and the amount of spatter generated. FIG. 6 is a diagram showing the relationship between wire polarity (DC reverse polarity, DC positive polarity, AC) and the amount of spatter generated. FIGS. 7A to 7D are diagrams each showing an example of the cross-sectional shape of a flux-cored wire. 1... Spatter collector, 2... Welding torch, 3...
-Wire, 4...Test plate (material to be welded), F...Flux, M...Sheath metal. Patent author Takashi Nakamura, Patent attorney representing Kobe Steel, Ltd. Fig. 1 Fig. 2 Fig. 3 Various fluoride compounds Fig. 4 AJLq (WT-7a nof l oxidation toughness t (wt%)) Fig. 5 Figure 7 (A) (B) Figure 6 Procedure Amendment Band September 17, 1986
Claims (1)
BaF_2:3〜10%、Al:3〜30%、Mg:1
〜10%、Fe:40〜80%、Mn:5〜15%及び
Si:2〜15%からなる組成のフラックスをフラック
ス充填率10〜30%にて充填してなることを特徴とす
る直流正極性用ガスシールドアーク溶接フラックス入り
ワイヤ。In the cavity surrounded by the outer metal, per total weight of flux,
BaF_2: 3-10%, Al: 3-30%, Mg: 1
-10%, Fe: 40-80%, Mn: 5-15%, and Si: 2-15% at a flux filling rate of 10-30%. Flux-cored wire for gas shielded arc welding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63204147A JP2578483B2 (en) | 1988-08-17 | 1988-08-17 | Gas shielded arc welding flux cored wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63204147A JP2578483B2 (en) | 1988-08-17 | 1988-08-17 | Gas shielded arc welding flux cored wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0255696A true JPH0255696A (en) | 1990-02-26 |
JP2578483B2 JP2578483B2 (en) | 1997-02-05 |
Family
ID=16485615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63204147A Expired - Lifetime JP2578483B2 (en) | 1988-08-17 | 1988-08-17 | Gas shielded arc welding flux cored wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2578483B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0897774A1 (en) * | 1997-08-22 | 1999-02-24 | KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. | Gas shielded arc welding flux cored wire |
JPH1158070A (en) * | 1997-08-22 | 1999-03-02 | Kobe Steel Ltd | One side welding method not using backing metal |
JP2008119748A (en) * | 2006-10-19 | 2008-05-29 | Kobe Steel Ltd | Flux-cored wire for gas-shielded arc welding for creep-resisting steel |
WO2020226148A1 (en) | 2019-05-09 | 2020-11-12 | 株式会社神戸製鋼所 | Flux-cored wire, welding method, and weld metal |
WO2020255808A1 (en) * | 2019-06-20 | 2020-12-24 | 株式会社神戸製鋼所 | Flux-cored wire and welding method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5526957A (en) * | 1978-08-15 | 1980-02-26 | Matsushita Electric Works Ltd | Mustache scrap cleaning waring device of electric razor |
JPS58148095A (en) * | 1982-02-27 | 1983-09-03 | Kobe Steel Ltd | Wire for self-shielded arc welding |
-
1988
- 1988-08-17 JP JP63204147A patent/JP2578483B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5526957A (en) * | 1978-08-15 | 1980-02-26 | Matsushita Electric Works Ltd | Mustache scrap cleaning waring device of electric razor |
JPS58148095A (en) * | 1982-02-27 | 1983-09-03 | Kobe Steel Ltd | Wire for self-shielded arc welding |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0897774A1 (en) * | 1997-08-22 | 1999-02-24 | KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. | Gas shielded arc welding flux cored wire |
JPH1158070A (en) * | 1997-08-22 | 1999-03-02 | Kobe Steel Ltd | One side welding method not using backing metal |
US6441334B1 (en) | 1997-08-22 | 2002-08-27 | Kabushiki Kaisha Kobe Seiko Sho | Gas shielded arc welding flux cored wire |
JP2008119748A (en) * | 2006-10-19 | 2008-05-29 | Kobe Steel Ltd | Flux-cored wire for gas-shielded arc welding for creep-resisting steel |
WO2020226148A1 (en) | 2019-05-09 | 2020-11-12 | 株式会社神戸製鋼所 | Flux-cored wire, welding method, and weld metal |
KR20210145801A (en) | 2019-05-09 | 2021-12-02 | 가부시키가이샤 고베 세이코쇼 | Flux Cored Wire, Welding Method and Welding Metal |
WO2020255808A1 (en) * | 2019-06-20 | 2020-12-24 | 株式会社神戸製鋼所 | Flux-cored wire and welding method |
JP2021000646A (en) * | 2019-06-20 | 2021-01-07 | 株式会社神戸製鋼所 | Flux-cored wire and welding method |
Also Published As
Publication number | Publication date |
---|---|
JP2578483B2 (en) | 1997-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2105243B1 (en) | Metal-based flux cored wire for Ar-CO2 mixed gas shielded arc welding | |
CA2526778C (en) | Cored electrode for reducing diffusible hydrogen | |
EP0595337A1 (en) | Flux cored arc welding electrode | |
US11426824B2 (en) | Aluminum-containing welding electrode | |
JP2002103084A (en) | Flux cored wire for gas shielded arc welding | |
US10799974B2 (en) | Electrodes for forming austenitic and duplex steel weld metal | |
KR20020090575A (en) | Flux cored wire for gas shielded arc welding of high tensile strength steel | |
JPH05329684A (en) | Basic flux cored wire for gas shielded arc welding | |
JPH0255696A (en) | Flux cored wire for gas shielded arc welding | |
JP2711077B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2614967B2 (en) | Gas shielded arc welding metal flux cored wire | |
JP3017055B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP3718323B2 (en) | Flux-cored wire for multi-electrode vertical electrogas arc welding for extra heavy steel | |
JPH03294092A (en) | Flux cored wire electrode for gas shielded arc welding | |
JPH0521677B2 (en) | ||
JP3017054B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP7244399B2 (en) | Flux-cored wire for gas-shielded arc welding | |
JPS61180696A (en) | Iron powder type large-diameter flux-cored wire | |
JP3877843B2 (en) | Single-sided welding method without backing material | |
JP7247081B2 (en) | Metallic flux-cored wire for gas-shielded arc welding | |
JP3463346B2 (en) | Flux-cored wire for gas shielded arc welding | |
JPH07276078A (en) | Gas shield arc welding metal type flux cored wire | |
JP2795992B2 (en) | Flux-cored wire for gas shielded arc welding | |
JPS63183795A (en) | Flux cored wire for gas shielded arc welding | |
JPH07276087A (en) | Gas shield arc welding metal-flux cored wire |