JPH025001B2 - - Google Patents
Info
- Publication number
- JPH025001B2 JPH025001B2 JP58089355A JP8935583A JPH025001B2 JP H025001 B2 JPH025001 B2 JP H025001B2 JP 58089355 A JP58089355 A JP 58089355A JP 8935583 A JP8935583 A JP 8935583A JP H025001 B2 JPH025001 B2 JP H025001B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- glass
- voltage
- weight
- leakage current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 52
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 47
- 239000011787 zinc oxide Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 22
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 19
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 13
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 12
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052810 boron oxide Inorganic materials 0.000 claims description 10
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 10
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 9
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 6
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 6
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 6
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 5
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 5
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 5
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 14
- 230000008859 change Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- KAGOZRSGIYZEKW-UHFFFAOYSA-N cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Co+3].[Co+3] KAGOZRSGIYZEKW-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- VGTPKLINSHNZRD-UHFFFAOYSA-N oxoborinic acid Chemical compound OB=O VGTPKLINSHNZRD-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Description
本発明は酸化亜鉛を主成分とし、酸化ビスマ
ス、酸化コバルト、酸化マンガン、酸化アンチモ
ン、酸化クロムおよび二酸化ケイ素などを添加物
として含む混合物を焼結するに際し、特定のガラ
スを添加してなる電圧非直線抵抗体に関する。
近年、酸化亜鉛を主成分とし、これに酸化ビス
マス、酸化コバルト、酸化アンチモン、酸化マン
ガン、酸化クロムおよび二酸化ケイ素、さらに必
要に応じて酸化ホウ素、酸化鉛、酸化アルミニウ
ムなどの添加物を加えて成形、焼成した焼結体か
らなる電圧非直線抵抗体が電圧安定化素子、サー
ジアブソーバまたはアレスタなどに広く利用され
ている。前記のような電圧非直線抵抗体は酸化亜
鉛粒子の周囲に別の高抵抗を有する酸化ビスマス
を主成分とする境界層(粒界層)が取囲み、いわ
ば酸化亜鉛を粒界層で被覆したものを直並列に接
続したような構造を有しており、該電圧非直線抵
抗体に電圧を印加すると粒界層と酸化亜鉛粒子と
の間で形成される電気的障壁により、優れた電圧
非直線抵抗性が発現すると考えられている。
一般に電圧非直線抵抗体の電圧−電流特性は近
似的に式(1):
I=kV〓 (1)
(式中、Iは電流、kは定数、Vは電圧およびα
は非直線係数を表わす)で示される。前記のよう
な酸化亜鉛を主成分とする電圧非直線抵抗体はα
の値が5〜60というように従来の炭化ケイ素から
なる電圧非直線抵抗体のαの値3〜4よりも相当
大きく、また電流−電圧特性が平担な領域におい
ては酸化亜鉛粒子間にかかる電圧がほぼ一定であ
るため、単に電圧非直線抵抗体の厚さを変化させ
るだけで1mAの電流を流すのに要する電圧(以
下、V1nAという)を自由に変化させられるとい
う特徴を有しており、その用途はますます拡大さ
れつつある。
しかしながら前記のような利点を有する電圧非
直線抵抗体から作製される素子も直流または交流
の一定電圧を印加しつづけると一般には該素子に
流れるもれ電流が時間とともに増大し、もれ電流
の増大にともなう素子の発熱のために熱暴走現象
を示し、ついには素子破壊に至るなどといつた寿
命上での限界がある。とくにギヤツプレス酸化亜
鉛型避雷器のばあい、常時一定電圧が印加される
ため、もれ電流の増加による素子破壊が極めて重
要な問題であり、前記のような課電による素子の
劣化、すなわちもれ電流およびもれ電流の増加す
る経時変化ができるだけ小さい、寿命の長い素子
をうることが望ましい。
従来から電圧非直線抵抗体素子の課電寿命特性
を改善することを目的として、電圧非直線抵抗体
を製造するための酸化亜鉛を主成分とする混合物
に各種のガラス組成物をさらに添加したり、焼成
プロセスを改良するなどの検討がなされてきた
が、その結果は課電寿命特性には有効であつて
も、たとえば制限電圧比(大電流域での非直線性
を示したもので電圧非直線抵抗体素子に電流を
10kA流すのに要する電圧と1mA流すのに要す
る電圧との比であるV10kA/V1nAがよく用いられ
る)の値が大きくなるなどといつた欠点を伴うこ
とが多く、電力用避雷器に要請される特性を充分
満足するものではない。
本発明者らは前記のような電圧非直線抵抗体素
子の課電寿命特性および制限電圧比などの電気特
性における問題点を解消するため鋭意研究を重ね
た結果、酸化亜鉛を主成分とし、酸化ビスマス、
酸化コバルト、酸化マンガン、酸化アンチモン、
酸化クロムおよび二酸化ケイ素を添加物として含
む混合物を焼結するに際し、酸化亜鉛および酸化
ホウ素をそれぞれ40〜65%(重量%、以下同様)
および25〜40%含み、かつ酸化チタン、酸化ジル
コニウム、酸化タンタル、酸化ランタンおよび酸
化イツトリウムよりなる群からえらばれた少なく
とも1種を、ガラス全量に対する含量がそれぞれ
1〜10%、0.7〜18%、1〜35%、1〜35%およ
び1〜25%になるように含有するガラスを前記混
合物100部(重量部、以下同様)に対して0.004〜
0.6部添加して電圧非直線抵抗体を作製すること
により、従来から用いられている電圧非直線抵抗
体素子の課電寿命特性および制限電圧比などの電
気特性における問題点を解消するに至り、本発明
を完成した。
本発明に用いる酸化亜鉛(ZnO)、酸化ビスマ
ス(Bi2O3)、酸化コバルト(Co2O3)、酸化マン
ガン(MnO2)、酸化クロム(Cr2O3)、酸化アン
チモン(Sb2O3)および二酸化ケイ素(SiO2)は
それぞれ純度約99%以上の粉体であり、それらの
粉体を混合し、さらに必要に応じて酸化ホウ素、
酸化アルミニウムなどの添加物を加えて酸化亜鉛
を主成分とする混合物が調製される。
本発明に用いるガラスの製造に使用される酸化
亜鉛、酸化ホウ素(B2O3)、酸化チタン
(TiO2)、酸化ジルコニウム(ZrO2)、酸化タンタ
ル(Ta2O5)、酸化ランタン(La2O3)および酸
化イツトリウム(Y2O3)は純度がそれぞれ99%
以上の粉体であり、酸化ホウ素は充分乾燥してメ
タホウ酸を含まないものが好ましい。それらの使
用割合はガラス全量に対してガラスに必ず含まれ
る酸化亜鉛および酸化ホウ素がそれぞれ40〜65%
および25〜40%、それらに酸化チタン、酸化ジル
コニウム、酸化タンタル、酸化ランタンおよび酸
化イツトリウムよりなる群からえらばれた1種以
上の化合物が残りの量である。前記ガラスに含有
される酸化チタン、酸化ジルコニウム、酸化タン
タル、酸化ランタンおよび酸化イツトリウムのガ
ラス全量に対する含量はそれぞれ1〜10%、0.7
〜18%、1〜35%、1〜35%および1〜25%であ
り、この範囲をはずれると、直流課電時のもれ電
流の経時変化が大きくなり、課電寿命が短くなつ
たり、均一なガラスがえられなくなつたりし、結
果として作製される素子の直流課電時のもれ電流
の経時変化が大きくなつたりする。また、前記の
ガラスに必ず含まれる酸化亜鉛および酸化ホウ素
のガラス中における割合がそれぞれ40〜65%およ
び25〜40%の範囲をはずれるとガラス化が困難に
なるかガラス化しても一部分が結晶相になつたり
するなどのためにガラス添加による効果が減じ、
作製した電圧非直線抵抗体素子の制限電圧比特性
および課電寿命特性がわるくなり、電力用素子と
して不適当になる。
前記のガラスを製造するための成分はそれぞれ
をガラスにしない状態で酸化亜鉛を主成分とする
混合物と混合して焼成し、電圧非直線抵抗体を作
製してもよいが、通常の方法によりガラスにして
ガラス中に電圧非直線抵抗体の課電寿命を長くす
るなどの効果を有する成分を均一に分散させたの
ち粉砕などの方法により約400メツシユ以下の粉
体とし、酸化亜鉛を主成分とする混合物と混合し
て焼結すると前記効果を有する成分を焼結体中に
均一に分配させることができ、その結果、均一に
安定化した粒界層がえられ、課電寿命を一層長く
するなどの効果がえられる。なお前記ガラスを製
造するための成分をガラスにしないで用いたばあ
いの課電寿命を長くする効果はガラスにしたばあ
いの効果と比較して半減される。
本発明に用いる酸化亜鉛を主成分とする混合物
100部に対する本発明に用いるガラスの使用量は
0.004〜0.6部が好ましく、該ガラスの使用量が
0.004部未満になると該ガラスを使用する効果が
えられなくなり、その使用量が0.6部をこえて用
いても0.6部をこえて用いた量に対してほとんど
効果がえられなくなるのみならず、電気特性に悪
影響をおよぼす。
本発明に用いる酸化亜鉛を主成分とする混合物
と前記ガラスとを所定量混合したのち通常の方法
で造粒および加圧成型などを行ない、所定の条件
で焼成(たとえば1200℃、2時間、空気中)およ
び熱処理(たとえば550〜650℃、2時間、空気
中)などを行なつて本発明の電圧非直線抵抗体が
えられる。
つぎに本発明の電圧非直線抵抗体を製造例、実
施例および比較例を用いて説明する。
製造例 1
第1表に示す組成の粉末を約1200〜1300℃で約
2時間溶融後急冷してガラスをえた。えられたガ
ラスを粉砕し、400メツシユのふるいを通過する
粒径のそろつた微粉末をえた。
In the present invention, when sintering a mixture containing zinc oxide as a main component and additives such as bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, and silicon dioxide, the voltage Regarding linear resistors. In recent years, molding has been made using zinc oxide as the main component, and additives such as bismuth oxide, cobalt oxide, antimony oxide, manganese oxide, chromium oxide, and silicon dioxide, as well as boron oxide, lead oxide, and aluminum oxide, as needed. 2. Description of the Related Art Voltage nonlinear resistors made of fired sintered bodies are widely used in voltage stabilizing elements, surge absorbers, arresters, and the like. In the above-mentioned voltage nonlinear resistor, zinc oxide particles are surrounded by another boundary layer (grain boundary layer) mainly composed of bismuth oxide having high resistance, so to speak, the zinc oxide is covered with the grain boundary layer. When a voltage is applied to the voltage nonlinear resistor, an electrical barrier is formed between the grain boundary layer and the zinc oxide particles, resulting in an excellent voltage resistance. It is thought that linear resistance develops. In general, the voltage-current characteristics of a voltage nonlinear resistor are approximated by the formula (1): I=kV〓 (1) (where I is the current, k is a constant, V is the voltage and α
represents the nonlinear coefficient). The voltage nonlinear resistor whose main component is zinc oxide as described above is α
The value of α is 5 to 60, which is considerably larger than the value of α of 3 to 4 for conventional voltage nonlinear resistors made of silicon carbide, and in the region where the current-voltage characteristics are flat, the Since the voltage is almost constant, it has the characteristic that the voltage required to flow 1 mA of current (hereinafter referred to as V 1 nA ) can be freely changed simply by changing the thickness of the voltage nonlinear resistor. Its uses are increasingly being expanded. However, even with elements made from voltage non-linear resistors that have the above-mentioned advantages, if a constant DC or AC voltage is continuously applied, the leakage current flowing through the element generally increases over time, resulting in an increase in leakage current. There is a limit to the lifespan of the device, such as thermal runaway due to the heat generated by the device, which may eventually lead to device destruction. In particular, in the case of gear press zinc oxide type lightning arresters, a constant voltage is constantly applied, so element destruction due to increased leakage current is an extremely important problem. It is also desirable to obtain a long-life element in which the increase in leakage current over time is as small as possible. Conventionally, various glass compositions have been further added to a mixture containing zinc oxide as a main component for producing voltage nonlinear resistors with the aim of improving the energized life characteristics of voltage nonlinear resistor elements. , improvements to the firing process have been made, but although the results are effective for the charging life characteristics, for example, the limiting voltage ratio (which shows nonlinearity in a large current range and is Applying current to a linear resistor element
The ratio of the voltage required to flow 10 kA to the voltage required to flow 1 mA (V 10 kA / V 1 nA is often used) is often associated with disadvantages such as a large value, and it is not required for power surge arresters. However, it does not fully satisfy the characteristics described above. The inventors of the present invention have conducted intensive research to resolve the problems in the electrical characteristics such as the voltage application life characteristics and limiting voltage ratio of voltage nonlinear resistor elements as described above. bismuth,
cobalt oxide, manganese oxide, antimony oxide,
When sintering a mixture containing chromium oxide and silicon dioxide as additives, zinc oxide and boron oxide are each added in an amount of 40 to 65% (wt%, the same applies hereinafter).
and 25 to 40%, and at least one selected from the group consisting of titanium oxide, zirconium oxide, tantalum oxide, lanthanum oxide, and yttrium oxide, with a content of 1 to 10% and 0.7 to 18%, respectively, based on the total amount of glass, Glass containing 1 to 35%, 1 to 35%, and 1 to 25% is 0.004 to 100 parts (parts by weight, same hereinafter) of the above mixture.
By adding 0.6 parts of this to create a voltage non-linear resistor, we have solved the problems in the electrical properties of conventionally used voltage non-linear resistor elements, such as the energized life characteristics and limiting voltage ratio. The invention has been completed. Zinc oxide (ZnO), bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), manganese oxide (MnO 2 ), chromium oxide (Cr 2 O 3 ), antimony oxide (Sb 2 O) used in the present invention 3 ) and silicon dioxide (SiO 2 ) are powders with a purity of approximately 99% or higher, and these powders are mixed, and if necessary, boron oxide,
A zinc oxide based mixture is prepared with addition of additives such as aluminum oxide. Zinc oxide, boron oxide (B 2 O 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tantalum oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O 3 ) and yttrium oxide (Y 2 O 3 ) each have a purity of 99%.
Among the above powders, it is preferable that the boron oxide is sufficiently dried and does not contain metaboric acid. The ratio of their use is 40 to 65% each of zinc oxide and boron oxide, which are always included in glass, based on the total amount of glass.
and 25-40%, with the remaining amount being one or more compounds selected from the group consisting of titanium oxide, zirconium oxide, tantalum oxide, lanthanum oxide and yttrium oxide. The contents of titanium oxide, zirconium oxide, tantalum oxide, lanthanum oxide, and yttrium oxide contained in the glass are 1 to 10% and 0.7%, respectively, based on the total amount of the glass.
-18%, 1-35%, 1-35%, and 1-25%, and if it is out of this range, the leakage current changes over time during DC energization will increase, and the energized life will be shortened. It may become impossible to obtain a uniform glass, and as a result, the leakage current of the manufactured device when DC current is applied increases over time. In addition, if the proportions of zinc oxide and boron oxide, which are always included in the above-mentioned glass, are outside the ranges of 40-65% and 25-40%, respectively, it will be difficult to vitrify, or even if vitrified, a portion will remain in the crystalline phase. The effect of glass addition is reduced due to
The limited voltage ratio characteristics and the energized life characteristics of the fabricated voltage nonlinear resistor element deteriorate, making it unsuitable as a power element. The components for producing the glass described above may be mixed with a mixture containing zinc oxide as the main component and fired to produce a voltage nonlinear resistor. After uniformly dispersing components that have the effect of extending the energized life of voltage nonlinear resistors in the glass, it is made into a powder of approximately 400 mesh or less by a method such as pulverization, and the main component is zinc oxide. By mixing and sintering with a mixture that has the above effect, the components having the above effect can be uniformly distributed in the sintered body, resulting in a uniformly stabilized grain boundary layer, which further extends the energized life. Effects such as this can be obtained. It should be noted that the effect of lengthening the energized life when glass is not used as the component for manufacturing the glass is halved compared to the effect when glass is used. Mixture containing zinc oxide as a main component used in the present invention
The amount of glass used in the present invention per 100 parts is
The amount of glass used is preferably 0.004 to 0.6 parts.
If the amount is less than 0.004 part, the effect of using the glass will not be obtained, and even if the amount used exceeds 0.6 part, not only will there be almost no effect compared to the amount used, but also electricity Adversely affects properties. After mixing a predetermined amount of the zinc oxide-based mixture used in the present invention with the above-mentioned glass, granulation and pressure molding are carried out in the usual manner, followed by firing under predetermined conditions (e.g., 1200°C, 2 hours, air The voltage nonlinear resistor of the present invention is obtained by performing heat treatment (for example, at 550 to 650° C. for 2 hours in air) and the like. Next, the voltage nonlinear resistor of the present invention will be explained using manufacturing examples, examples, and comparative examples. Production Example 1 Glass was obtained by melting powders having the composition shown in Table 1 at about 1200 to 1300°C for about 2 hours and then rapidly cooling them. The resulting glass was crushed to obtain a fine powder with a uniform particle size that could pass through a 400-mesh sieve.
【表】
実施例1〜7および比較例1〜2
純度99%以上の酸化亜鉛、酸化ビスマス、酸化
コバルト、酸化マンガン、酸化クロム、酸化アン
チモンおよび二酸化ケイ素をそれぞれ91.0%、
2.7%、0.96%、0.67%、0.88%、3.38%および
0.41%混合した。えられた混合物(以下、混合物
Aという)100部に対して製造例1でえられた第
2表に示すガラスを第2表に示す量加え、充分混
合したのち噴霧乾燥により造粒し、直径40mm厚さ
12mmの円板に加圧成形したのち空気中、1200℃で
約2時間焼成し、ついで空気中、550〜650℃(実
施例1〜7においてはそれぞれ630℃、630℃、
600℃、600℃、570℃、650℃、630℃)で2時間
熱処理を行ない、焼結体をえた。えられた焼結体
にAl電極をとりつけ、電圧非直線抵抗体素子を
作製した。
えられた素子に対して印加電圧素子に1mA流
れるときの電圧で表わされる課電率を0.8、周囲
温度100℃の条件で直流課電を実施し、その際に
素子に流れるもれ電流の経時変化を測定した。そ
の結果を第1図に示す。
また、えられた素子に対する制限電圧比
V2.5kA/V100〓Aを測定した。その結果を第2表に
示す。[Table] Examples 1 to 7 and Comparative Examples 1 to 2 Zinc oxide, bismuth oxide, cobalt oxide, manganese oxide, chromium oxide, antimony oxide, and silicon dioxide each having a purity of 99% or more, 91.0%,
2.7%, 0.96%, 0.67%, 0.88%, 3.38% and
0.41% mixed. To 100 parts of the resulting mixture (hereinafter referred to as mixture A), add the glass shown in Table 2 obtained in Production Example 1 in the amount shown in Table 2, mix thoroughly, and then granulate it by spray drying. 40mm thickness
After pressure forming into a 12 mm disc, it was baked in air at 1200°C for about 2 hours, and then in air at 550 to 650°C (630°C, 630°C in Examples 1 to 7, respectively).
A sintered body was obtained by heat treatment at 600°C, 600°C, 570°C, 650°C, 630°C for 2 hours. An Al electrode was attached to the obtained sintered body to fabricate a voltage nonlinear resistor element. DC voltage was applied to the obtained device under the conditions that the applied voltage, expressed as the voltage when 1 mA flows through the device, was 0.8 and the ambient temperature was 100°C, and the leakage current flowing through the device at that time was measured over time. Changes were measured. The results are shown in FIG. Also, the limiting voltage ratio for the obtained element is
V 2.5kA /V 100 〓 A was measured. The results are shown in Table 2.
【表】
第1図に示すように酸化亜鉛、酸化ホウ素を主
成分とするガラスを添加しないで作製した比較例
2の素子は直流課電による初期もれ電流およびも
れ電流の経時変化が大きく、短時間で熱暴走現象
をおこすのに対して、ガラスを添加して作製した
実施例1〜5の素子はいずれも直流課電による初
期もれ電流が少なく、かつもれ電流の経時変化が
小さく、課電寿命特性が大幅に改善されているこ
とがわかる。一方、酸化亜鉛および酸化ホウ素か
らなるガラスを添加して作製した比較例1の素子
のもれ電流は比較例2の素子の特性に近く大きい
がそのもれ電流の経時変化は実施例1〜5の素子
の特性に近く小さく、酸化亜鉛および酸化ホウ素
からなるガラスの添加が素子への直流課電による
もれ電流の経時変化を小さくすることに有効であ
ることがわかる。また比較例1と実施例1〜5と
の比較からガラスに酸化チタン、酸化ジルコニウ
ム、酸化タンタル、酸化ランタンまたは酸化イツ
トリウムが含まれると素子の直流課電によるもれ
電流が少なくなり、前記酸化チタン、酸化ジルコ
ニウム、酸化タンタル、酸化ランタン、酸化イツ
トリウムを2種以上含んでいても均一なガラスを
形成することのできる組成であれば直流課電によ
るもれ電流が少なくなり、もれ電流の経時変化が
小さくなることが実施例6〜7の結果からわか
る。
なお第2表に示す制限電圧比もガラスを添加し
ない比較例2の素子と比較してガラスを添加した
実施例1〜7および比較例1の各素子は優れた特
性を示しており、ガラスを添加することにより電
力用避雷器として望ましい特性の素子がえられる
ことがわかる。
実施例8〜12および比較例3〜4および8〜9
実施例1でえられた混合物A100部に対して製
造例1でえられたガラスEを第3表に示す量添加
し、実施例8〜12においては焼成後の熱処理温度
をそれぞれ650℃、630℃、600℃、630℃、650℃
にしたほかは実施例1と同様にして素子を作製し
た。
えられた素子に対して実施例1と同様にして直
流課電を実施し、その際に素子に流れるもれ電流
の経時変化を測定した。その結果を第2図に示
す。
第2図に示すように混合物A100部に対して
0.005〜0.5部のガラスを添加して作製した素子は
直流課電によるもれ電流の経時変化が小さくな
り、課電寿命特性が改善されることがわかる。し
かしながら前記ガラスの添加量が0.003部(比較
例4)になるとガラスを添加しない比較例2のも
れ電流の経時変化に近くなり、課電寿命特性があ
まり改善されないことがわかる。
一方、素子の電流・電圧特性における制限電圧
比は第3表に示すようにガラスの添加量が0.7部
になるとわるくなり、電力用素子として不適当に
なる。
したがつて適正な前記ガラス添加量は0.004〜
0.6部、より好ましくは0.005〜0.5部である。[Table] As shown in Figure 1, the element of Comparative Example 2, which was manufactured without adding glass containing zinc oxide and boron oxide as main components, had a large initial leakage current and a large change in leakage current over time due to direct current application. , a thermal runaway phenomenon occurs in a short period of time, whereas the devices of Examples 1 to 5, which were prepared by adding glass, had a small initial leakage current due to direct current application, and the leakage current did not change over time. It can be seen that the charging life characteristics are significantly improved. On the other hand, the leakage current of the device of Comparative Example 1 prepared by adding glass made of zinc oxide and boron oxide is close to the characteristics of the device of Comparative Example 2, and is large, but the change over time of the leakage current is similar to that of Examples 1 to 5. It can be seen that the addition of glass consisting of zinc oxide and boron oxide is effective in reducing the change over time in leakage current due to direct current application to the element. Furthermore, from a comparison between Comparative Example 1 and Examples 1 to 5, when titanium oxide, zirconium oxide, tantalum oxide, lanthanum oxide, or yttrium oxide is contained in the glass, leakage current due to DC charging of the element is reduced, and the titanium oxide Even if the composition contains two or more of zirconium oxide, tantalum oxide, lanthanum oxide, and yttrium oxide, if the composition can form a uniform glass, the leakage current due to direct current application will be reduced, and the leakage current will change over time. It can be seen from the results of Examples 6 and 7 that the The limiting voltage ratio shown in Table 2 also shows that the elements of Examples 1 to 7 and Comparative Example 1 in which glass was added showed superior characteristics compared to the element of Comparative Example 2 in which glass was not added. It can be seen that by adding this element, an element with desirable characteristics as a power surge arrester can be obtained. Examples 8 to 12 and Comparative Examples 3 to 4 and 8 to 9 To 100 parts of the mixture A obtained in Example 1, glass E obtained in Production Example 1 was added in the amount shown in Table 3, and Example 8 For ~12, the heat treatment temperature after firing was 650℃, 630℃, 600℃, 630℃, and 650℃, respectively.
A device was produced in the same manner as in Example 1 except that Direct current was applied to the obtained device in the same manner as in Example 1, and the change over time in the leakage current flowing through the device was measured. The results are shown in FIG. For 100 parts of mixture A as shown in Figure 2
It can be seen that the element manufactured by adding 0.005 to 0.5 parts of glass has a smaller change in leakage current over time due to direct current charging, and the charging life characteristics are improved. However, when the amount of glass added is 0.003 part (Comparative Example 4), the leakage current change over time approaches that of Comparative Example 2, in which no glass is added, and it can be seen that the energized life characteristics are not improved much. On the other hand, as shown in Table 3, the limiting voltage ratio in the current/voltage characteristics of the device becomes poor when the amount of glass added is 0.7 parts, making it unsuitable as a power device. Therefore, the appropriate amount of glass added is 0.004~
It is 0.6 part, more preferably 0.005 to 0.5 part.
【表】【table】
【表】
実施例 13
実施例8〜12で用いたガラスEを酸化チタン、
酸化ジルコニウム、酸化タンタルまたは酸化ラン
タンを含有するガラスA、ガラスB、ガラスCま
たはガラスDに変えた以外は実施例8〜12と同様
にして課電寿命特性および制限電圧比を測定し
た。その結果は実施例8〜12と同様であつた。
実施例14〜19および比較例5〜7
第4表に示すガラス組成のガラスを製造例1と
同様にして調製した。えられたガラスを混合物
A100部に対して0.01部添加し、実施例14〜19に
おいては焼成後の熱処理温度をそれぞれ650℃、
630℃、600℃、570℃、570℃、650℃にしたほか
は実施例1と同様にして素子を作製した。なおガ
ラス中の酸化ジルコニウムの含量が20%になると
一部結晶相のガラスがえられた。
えられた素子に対して実施例1と同様にして直
流課電を実施し、その際に素子に流れるもれ電流
の経時変化を測定した。その結果を第3図に示
す。
第3図からガラス中の酸化ジルコニウムの含有
量が1〜15%のガラスを混合物Aに添加して作製
した実施例14、16および19の素子はもれ電流の経
時変化が小さくなり、課電寿命が長くなり、しか
も第4表に示すように制限電圧比特性も優れたも
のであることがわかる。
一方、比較例5のように酸化ジルコニウムの含
有量が0.5%まで低下すると直流課電時のもれ電
流の経時変化が大きくなり、課電寿命が短かくな
る。逆に酸化ジルコニウムの含有量が20%になる
と均一なガラスがえられなくなり、このガラスを
添加して作製される素子の直流課電時のもれ電流
の経時変化は大きくなり、電力用素子として不適
当になる。[Table] Example 13 Glass E used in Examples 8 to 12 was made of titanium oxide,
The charged life characteristics and limiting voltage ratio were measured in the same manner as in Examples 8 to 12, except that glass A, glass B, glass C, or glass D containing zirconium oxide, tantalum oxide, or lanthanum oxide was used. The results were similar to Examples 8-12. Examples 14 to 19 and Comparative Examples 5 to 7 Glass having the glass composition shown in Table 4 was prepared in the same manner as in Production Example 1. mixed glass
0.01 part was added to 100 parts of A, and in Examples 14 to 19, the heat treatment temperature after firing was 650℃,
Elements were produced in the same manner as in Example 1, except that the temperatures were 630°C, 600°C, 570°C, 570°C, and 650°C. Note that when the content of zirconium oxide in the glass was 20%, a glass with a partially crystalline phase was obtained. Direct current was applied to the obtained device in the same manner as in Example 1, and the change over time in the leakage current flowing through the device was measured. The results are shown in FIG. Figure 3 shows that the elements of Examples 14, 16, and 19, which were fabricated by adding glass with a zirconium oxide content of 1 to 15% to Mixture A, showed small changes in leakage current over time, and It can be seen that the life is longer and, as shown in Table 4, the limiting voltage ratio characteristics are also excellent. On the other hand, when the content of zirconium oxide is reduced to 0.5% as in Comparative Example 5, the leakage current changes with time during DC voltage application becomes large, and the life of the current application becomes short. On the other hand, when the content of zirconium oxide is 20%, it becomes impossible to obtain a uniform glass, and the leakage current changes over time when DC current is applied to devices manufactured by adding this glass increases, making it difficult to use as a power device. become inappropriate.
【表】
実施例 20
実施例14〜19の酸化ジルコニウムのかわりに酸
化チタン、酸化タンタル、酸化ランタンまたは酸
化イツトリウムを用い、焼成後の熱処理温度を
600℃にしたほかは実施例14〜19と同様にして直
流課電時のもれ電流の経時変化および制限電圧比
を求めた。その結果、ガラス中にしめる酸化チタ
ン、酸化タンタル、酸化ランタンおよび酸化イツ
トリウムの割合がそれぞれ1〜10%、1〜35%、
1〜35%および1〜25%の範囲が適正であること
が判明した。
実施例 21
実施例1〜20および比較例1〜9でえられた素
子について、直流課電のばあいと同様にして交流
課電を実施した。その結果、ガラスを添加して素
子を作製すると交流課電に対しても直流課電のば
あいと同様にもれ電流の経時変化が小さくなり、
良好な電力特性を示すことが判明した。[Table] Example 20 Titanium oxide, tantalum oxide, lanthanum oxide, or yttrium oxide was used instead of zirconium oxide in Examples 14 to 19, and the heat treatment temperature after firing was changed.
Except that the temperature was 600°C, the same procedure as in Examples 14 to 19 was carried out to determine the change in leakage current over time and the limiting voltage ratio during direct current application. As a result, the proportions of titanium oxide, tantalum oxide, lanthanum oxide, and yttrium oxide in the glass were 1 to 10%, 1 to 35%, respectively.
Ranges of 1-35% and 1-25% have been found to be suitable. Example 21 The elements obtained in Examples 1 to 20 and Comparative Examples 1 to 9 were subjected to alternating current charging in the same manner as in the case of direct current charging. As a result, when an element is made by adding glass, the change in leakage current over time becomes smaller even when AC voltage is applied, similar to when DC voltage is applied.
It was found that it exhibited good power characteristics.
第1図〜第3図はそれぞれ本発明の電圧非直線
抵抗体からえられた素子および比較として作製し
た電圧非直線抵抗体からえられた素子に直流課電
を実施したばあいの課電時間ともれ電流との関係
を示すグラフである。
Figures 1 to 3 show the charging times when direct current was applied to an element obtained from the voltage nonlinear resistor of the present invention and an element obtained from the voltage nonlinear resistor fabricated as a comparison, respectively. FIG.
Claims (1)
コバルト、酸化マンガン、酸化アンチモン、酸化
クロムおよび二酸化ケイ素を添加物として含む混
合物を焼結するに際し、酸化亜鉛および酸化ホウ
素をそれぞれ40〜65重量%および25〜40重量%含
み、かつ酸化チタン、酸化ジルコニウム、酸化タ
ンタル、酸化ランタンおよび酸化イツトリウムよ
りなる群からえらばれた少なくとも1種を、ガラ
ス全量に対する含量がそれぞれ1〜10重量%、
0.7〜18重量%、1〜35重量%、1〜35重量%お
よび1〜25重量%になるように含有するガラスを
前記混合物100重量部に対して0.004〜0.6重量部
添加したことを特徴とする電圧非直線抵抗体。1. When sintering a mixture containing zinc oxide as a main component and additives such as bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide and silicon dioxide, 40 to 65% by weight of zinc oxide and boron oxide and 25 to 40% by weight, and at least one selected from the group consisting of titanium oxide, zirconium oxide, tantalum oxide, lanthanum oxide, and yttrium oxide, each having a content of 1 to 10% by weight based on the total amount of glass,
It is characterized by adding 0.004 to 0.6 parts by weight of glass containing 0.7 to 18% by weight, 1 to 35% by weight, 1 to 35% by weight and 1 to 25% by weight per 100 parts by weight of the mixture. Voltage nonlinear resistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58089355A JPS59214204A (en) | 1983-05-19 | 1983-05-19 | Voltage nonlinear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58089355A JPS59214204A (en) | 1983-05-19 | 1983-05-19 | Voltage nonlinear resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59214204A JPS59214204A (en) | 1984-12-04 |
JPH025001B2 true JPH025001B2 (en) | 1990-01-31 |
Family
ID=13968398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58089355A Granted JPS59214204A (en) | 1983-05-19 | 1983-05-19 | Voltage nonlinear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59214204A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03114002U (en) * | 1990-03-07 | 1991-11-22 |
-
1983
- 1983-05-19 JP JP58089355A patent/JPS59214204A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03114002U (en) * | 1990-03-07 | 1991-11-22 |
Also Published As
Publication number | Publication date |
---|---|
JPS59214204A (en) | 1984-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0761622B1 (en) | Zinc oxide ceramics and method for producing the same and zinc oxide varistors | |
US3903226A (en) | Method of making voltage-dependent resistors | |
EP0115149B1 (en) | Varistor and method for manufacturing the same | |
JPH025001B2 (en) | ||
JP3323701B2 (en) | Method for producing zinc oxide based porcelain composition | |
JP2623188B2 (en) | Varistor and manufacturing method thereof | |
JPH0114682B2 (en) | ||
JP2546726B2 (en) | Voltage nonlinear resistor | |
JPH0128481B2 (en) | ||
JPH038765A (en) | Production of voltage-dependent nonlinear resistor porcelain composition and varistor | |
JPH06204006A (en) | Manufacture of zinc oxide varistor | |
JPS6028121B2 (en) | Manufacturing method of voltage nonlinear resistor | |
JPH10308302A (en) | Zinc oxide-based porcelain composition and its production and zinc oxide varistor | |
JPH0249521B2 (en) | ||
KR20040078915A (en) | Zinc Oxide Sintered Body, and Manufacturing Method thereof and Zinc Oxide Varistor | |
JP2985619B2 (en) | Method of manufacturing voltage non-linear resistor and lightning arrester | |
JPH0136681B2 (en) | ||
JPH0142609B2 (en) | ||
JPH03195003A (en) | Voltage-dependent nonlinear resistor | |
JPS6322602B2 (en) | ||
JPH09320815A (en) | Manufacture of zno varistor | |
JP2003077707A (en) | Method for manufacturing non linear resistor | |
JPS62208606A (en) | Manufacture of voltage nonlinear resistance device | |
JP2002226262A (en) | Zinc oxide ceramic composition and its manufacturing method, and zinc oxide varistor and zinc oxide varistor and zinc oxide varistor device using the same | |
JPH07249505A (en) | Manufacture of nonlinear resistor |