JPH0249915A - Method for purifying exhaust gas from stationary diesel engine - Google Patents
Method for purifying exhaust gas from stationary diesel engineInfo
- Publication number
- JPH0249915A JPH0249915A JP63197723A JP19772388A JPH0249915A JP H0249915 A JPH0249915 A JP H0249915A JP 63197723 A JP63197723 A JP 63197723A JP 19772388 A JP19772388 A JP 19772388A JP H0249915 A JPH0249915 A JP H0249915A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- combustion
- air
- fuel
- boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000002485 combustion reaction Methods 0.000 claims abstract description 32
- 239000000446 fuel Substances 0.000 claims abstract description 16
- 239000004071 soot Substances 0.000 claims abstract description 10
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 7
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 5
- 238000007664 blowing Methods 0.000 claims description 5
- 230000002829 reductive effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 30
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は定置型ディーゼル機関から排出される高1度の
NO,及びすすの効果的かつ経済的な浄化方法及びその
際のディーゼル排ガスの吹き込み方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an effective and economical method for purifying high 1 degree NO and soot discharged from a stationary diesel engine, and a method for blowing diesel exhaust gas therein.
定置型ディーゼル機関から排出されるN08は大略80
0〜1300ppmであり、ボイラ等のばい煙発生施設
に比較し同−燃料使用量当りの窒素酸化物の排出量が非
常に多い。従来、ディーゼル排ガスは、大気汚染防止法
の規制対象外であったため未処理のまま大気へ放出され
ていたが、今般規制対象となり、大気保全の必要性から
大気へ放出される前に浄化しなければならない、すでに
、ディーゼル機関内でのN08抑制法は検討されている
が、ディーゼル排ガスの後処理については未だあまり検
討されていない。ボイラ等のばい煙発生施設の脱硝法は
確立されているので、その脱硝設備を使用することも可
能であるが、ディーゼル排ガス中にはNOxの他にすす
も混在しているため従来の脱硝設備が必ずしもそのまま
適用できるとは考え難い。N08 emitted from stationary diesel engines is approximately 80
The amount of nitrogen oxides is 0 to 1,300 ppm, and compared to soot-producing facilities such as boilers, the amount of nitrogen oxides emitted per unit of fuel used is extremely large. In the past, diesel exhaust gas was released into the atmosphere untreated as it was not subject to the Air Pollution Control Act, but now it is now subject to regulations and must be purified before being released into the atmosphere due to the need for air conservation. Although methods for suppressing N08 in diesel engines have already been considered, the after-treatment of diesel exhaust gas has not yet been studied much. Denitrification methods for soot and smoke generating facilities such as boilers have been established, so it is possible to use such denitrification equipment, but since diesel exhaust gas contains soot in addition to NOx, conventional denitrification equipment is not suitable. It is difficult to imagine that it can necessarily be applied as is.
本方法は、ボイラ等の燃焼装置がディーゼル機関の近く
に設置されていること、あるいは設置可能なことを前提
としている。ディーゼル排ガス中には、多量の残存酸素
く約13%)が含まれており、このディーゼル排ガスを
ボイラ等の燃焼装置の燃焼用空気の一部として使用し、
炭化水素燃料を燃焼させると同時にディーゼル排ガス中
の高濃度NOX及びすすを低減させるものである。This method assumes that a combustion device such as a boiler is installed or can be installed near the diesel engine. Diesel exhaust gas contains a large amount of residual oxygen (approximately 13%), and this diesel exhaust gas is used as part of the combustion air for combustion equipment such as boilers.
It burns hydrocarbon fuel and at the same time reduces the high concentration of NOx and soot in diesel exhaust gas.
本発明のもとになる概念図を第1図に示す。A conceptual diagram on which the present invention is based is shown in FIG.
第1図はディーゼル排ガスとボイラ等の燃焼器とを組み
合わせたプラントを示したもので、1はディーゼル機関
、2はディーゼル排ガスのダクトライン、3はボイラで
ある。4はバーナ風箱、5はバーナである。ディーゼル
機関lより排出された排ガスは、排ガスのダクトライン
2を通ってボイラ3のバーナ5に導入され、燃料の二次
燃焼用空気中に導入され燃料の燃焼用空気として使用さ
れる。この場合ディーゼル排ガスは燃料を還元雰囲気下
で燃焼させる必要があり、燃焼反応帯より前流側に導入
する必要がある。すなわち、ディーゼル排ガス中のNO
8の燃料(炭化水素)による還元を燃焼反応帯及びそれ
より後流側にて行なわせる。ディーゼル排ガス温度はボ
イラ導入部人口で180℃以上であればそのまま使用し
て差し支えない。なお、排ガスの導入方法は、バーナの
二次燃焼用空気に導入することが好ましいが、それが不
可能な場合はバーナ軸に並行して燃焼反応帯に吹き込ん
でもよい。ディーゼル排ガス吹き込みによるバーナ火炎
の安定性はディーゼル排ガスのみを燃焼用空気としてい
るのではなく空気□も併用しているため火炎の安定性は
良い。FIG. 1 shows a plant that combines diesel exhaust gas and a combustor such as a boiler, where 1 is a diesel engine, 2 is a duct line for diesel exhaust gas, and 3 is a boiler. 4 is a burner-like box, and 5 is a burner. Exhaust gas discharged from the diesel engine 1 is introduced into the burner 5 of the boiler 3 through the exhaust gas duct line 2, and is introduced into the air for secondary combustion of fuel and used as air for combustion of the fuel. In this case, the diesel exhaust gas must be introduced upstream of the combustion reaction zone because the fuel needs to be combusted in a reducing atmosphere. That is, NO in diesel exhaust gas
The reduction using the fuel (hydrocarbon) of No. 8 is carried out in the combustion reaction zone and on the downstream side thereof. As long as the diesel exhaust gas temperature is 180°C or higher at the boiler introduction part, it can be used as is. Note that it is preferable to introduce the exhaust gas into the secondary combustion air of the burner, but if this is not possible, the exhaust gas may be blown into the combustion reaction zone in parallel with the burner axis. The stability of the burner flame due to diesel exhaust gas injection is good because it uses not only diesel exhaust gas as combustion air but also air□.
燃焼反応帯における空気比は、第2図に示すことく還元
雰囲気におき燃料を不完全燃焼させる状態にしておく必
要があり、本領域における未燃分あるいは未反応ガスは
二段燃焼用の空気を付加することにより完全燃焼させる
。As shown in Figure 2, the air ratio in the combustion reaction zone must be such that the fuel is incompletely combusted in a reducing atmosphere. Complete combustion is achieved by adding
また、ディーゼル排ガス中のすすは燃料を燃焼する際に
発生するすすとともに二段燃焼により空気比1゜1以上
、温度900℃以上にて再燃焼すれはほとんど除去する
ことが可能である。Further, soot in diesel exhaust gas, as well as soot generated when burning fuel, can be almost completely removed by two-stage combustion at an air ratio of 1.1 or more and a temperature of 900°C or more.
第2図は1本のバーナを有する試験炉によりディーゼル
排ガスの浄化についてディーゼル排ガスを燃焼用二次空
気に混入して実験した結果の一例である。ディーゼル排
ガス中のN08の初期濃度は1520ppmである。空
気比は燃焼に使用された実際の空気量と理論空気量の比
であり、Wを質量濃度、添え字Fを燃料、0を酸化剤、
expを設定条件、5toichを化学量論条件とする
とき、1 (WF/WCI)、、。FIG. 2 shows an example of the results of an experiment for purifying diesel exhaust gas by mixing diesel exhaust gas into secondary air for combustion using a test furnace having one burner. The initial concentration of N08 in diesel exhaust gas is 1520 ppm. The air ratio is the ratio between the actual amount of air used for combustion and the theoretical amount of air, where W is the mass concentration, F is the fuel, 0 is the oxidizer,
When exp is the setting condition and 5toich is the stoichiometric condition, 1 (WF/WCI).
λ (”IVF/ Wo) st。1゜。λ (“IVF/Wo) st. 1°.
て定義される。Defined as
ここで−次空気比とはバーナ単独燃焼の際の空気比を意
味し、全空気比とは一次空気比と二段燃焼用空気などを
加味したtotalの空気比を表わす。本実験の場合に
は一次空気比が0.84の時最小NO,il1度となり
、全空気比11〜1.3においてNOxは160= 1
80ppm+となり、NOx除去率は88〜89%と非
常によく抑制できる。Here, the secondary air ratio means the air ratio during burner combustion alone, and the total air ratio represents the total air ratio taking into account the primary air ratio, the air for second stage combustion, etc. In the case of this experiment, when the primary air ratio is 0.84, the minimum NO, il is 1 degree, and when the total air ratio is 11 to 1.3, NOx is 160 = 1
80 ppm+, and the NOx removal rate is 88 to 89%, which can be suppressed very well.
第3図は火炎帯の中にディーゼル排ガスを吹き込んだ場
合の実験の結果の一例である。この場合は空気比の低い
場合の方がNoX#tj率は高いが、この吹へ込み方法
の相違はあっても一次空気比が還元雰囲気下にあるとき
はディーゼル排ガス中のNOxは非常によく還元でき、
特にバーナの二次燃焼用空気とともにディーゼル排ガス
を吹き込んだ時の方がN08抑制率は高い結果が得られ
る。Figure 3 shows an example of the results of an experiment in which diesel exhaust gas was blown into the flame zone. In this case, the NoX #tj rate is higher when the air ratio is low, but even though there is a difference in the blowing method, when the primary air ratio is in a reducing atmosphere, NOx in diesel exhaust gas is very low. Can be returned,
In particular, a higher N08 suppression rate can be obtained when diesel exhaust gas is blown in together with the burner's secondary combustion air.
以上のことは、NOxの抑制の原理からすれは炭化水素
によるNO8の抑制技術、排ガス再循環によるN Ox
抑制技術、二段燃焼によるN08抑制技術と多岐にわた
るNO8抑制技術を駆使したディーゼル排ガス抑制法で
ある。The above is based on the principle of NOx suppression, NO8 suppression technology using hydrocarbons, and NOx suppression technology using exhaust gas recirculation.
This is a diesel exhaust gas control method that makes full use of a wide range of NO8 suppression technologies, including N08 suppression technology using two-stage combustion.
この様に、デイ−セル排ガスをボイラ等の燃焼装置の燃
焼用空気の一部として炭化水素燃料を燃焼させると高濃
度のNO8及びすすを効果的に抑制でき、且つ他の脱硝
設備等を付加することもないので経済的な方法である。In this way, if hydrocarbon fuel is burned using day cell exhaust gas as part of the combustion air of a combustion device such as a boiler, high concentrations of NO8 and soot can be effectively suppressed, and other denitrification equipment can be added. This is an economical method as there is nothing to do.
第1図は本発明のもとになる概念を示す構成図てあり、
定置型デイ−セル機関排ガスをボイラ内に導入し燃焼さ
せるプラントを示す。第2図及び第3図は当該吹き込み
方法によりディーゼルスを浄化した場合の実施例のグラ
フである。
l・・・ディーゼル機関
2・・・ディーゼル排ガスのダクトライ3・・・ボイラ
4・・・バーナ瓜箱
5・・・バーナ
第2図FIG. 1 is a block diagram showing the concept underlying the present invention.
This shows a plant that introduces stationary day cell engine exhaust gas into a boiler and burns it. FIGS. 2 and 3 are graphs of examples in which diesel is purified by the blowing method. l... Diesel engine 2... Diesel exhaust gas duct line 3... Boiler 4... Burner melon box 5... Burner 2nd diagram
Claims (3)
気の一部として使用し炭化水素燃料を燃焼することによ
りディーゼル排ガス中のNO_x及びすすを低減するこ
とを特徴とする定置型ディーゼル排ガス機関からの排ガ
スの浄化方法(1) From a stationary diesel exhaust gas engine characterized by reducing NO_x and soot in diesel exhaust gas by using diesel exhaust gas as part of the combustion air of a combustor such as a boiler and burning hydrocarbon fuel. How to purify exhaust gas
ラ等におけるバーナの二次空気として吹き込むことを特
徴とする定置型ディーゼル機関からの排ガス浄化方法(2) A method for purifying exhaust gas from a stationary diesel engine, characterized by blowing diesel exhaust gas as part of the combustion air and as secondary air of a burner in a boiler, etc.
ラ等のバーナ軸に並行して燃焼反応帯に吹き込むことを
特徴とする定置型ディーゼル機関からの排ガス浄化方法(3) A method for purifying exhaust gas from a stationary diesel engine, characterized by blowing diesel exhaust gas as part of combustion air into a combustion reaction zone in parallel with the burner shaft of a boiler or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63197723A JPH0249915A (en) | 1988-08-08 | 1988-08-08 | Method for purifying exhaust gas from stationary diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63197723A JPH0249915A (en) | 1988-08-08 | 1988-08-08 | Method for purifying exhaust gas from stationary diesel engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0249915A true JPH0249915A (en) | 1990-02-20 |
JPH0549807B2 JPH0549807B2 (en) | 1993-07-27 |
Family
ID=16379278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63197723A Granted JPH0249915A (en) | 1988-08-08 | 1988-08-08 | Method for purifying exhaust gas from stationary diesel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0249915A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5234586A (en) * | 1975-06-20 | 1977-03-16 | Cgr Mev | Device for monitoring high frequency radiation measuring instrument operation |
-
1988
- 1988-08-08 JP JP63197723A patent/JPH0249915A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5234586A (en) * | 1975-06-20 | 1977-03-16 | Cgr Mev | Device for monitoring high frequency radiation measuring instrument operation |
Also Published As
Publication number | Publication date |
---|---|
JPH0549807B2 (en) | 1993-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5224334A (en) | Low NOx cogeneration process and system | |
JP2693101B2 (en) | A method for reducing the amount of nitrogen oxides generated during combustion | |
US5022226A (en) | Low NOx cogeneration process and system | |
JPS5623615A (en) | Burning method for low nox | |
TW222018B (en) | ||
US7473095B2 (en) | NOx emissions reduction process and apparatus | |
JP3078513B2 (en) | Method for reducing NOx and dioxin in combustion exhaust gas | |
JPH0249915A (en) | Method for purifying exhaust gas from stationary diesel engine | |
JP3059995B2 (en) | Fluidized bed combustion method for simultaneous reduction of nitrous oxide and nitrogen oxides | |
US6602067B1 (en) | Method for improving fuel efficiency in combustion chambers | |
JP2634279B2 (en) | Method for burning NOx-containing gas | |
JPS5450471A (en) | Treating method for nitrogen oxides contained in exhaust gas | |
JPS58128126A (en) | Method for introducing reducing agent | |
JP2781684B2 (en) | Two-stage combustion method | |
RU2037099C1 (en) | Method of fuel burning | |
JPS58182003A (en) | Combustion method for pulverized coal and burner for pulverized coal combustion | |
JPS5813906A (en) | Combustion method for generating low nitrogen oxide exhaust | |
RU2078284C1 (en) | Method of burning fuel | |
JPS61223411A (en) | Catalyst burning method for pulverized coal | |
JPH0250017A (en) | Exhaust gas application burner | |
FR2376685A1 (en) | Removing nitrogen oxide(s) from waste combustion gas - by adding ammonia and then hydrogen, in two stage process | |
JPS5836620B2 (en) | Method for reducing nitrogen oxides in combustion exhaust gas | |
JPS58138906A (en) | Low nox combustion device | |
JPS5735925A (en) | Method for decreasing nox in combustion exhaust gas | |
JPS53109233A (en) | Low nox combustion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |