JPH0249741A - Method for purifying and concentrating aqueous solution of crude ethanol - Google Patents
Method for purifying and concentrating aqueous solution of crude ethanolInfo
- Publication number
- JPH0249741A JPH0249741A JP63199800A JP19980088A JPH0249741A JP H0249741 A JPH0249741 A JP H0249741A JP 63199800 A JP63199800 A JP 63199800A JP 19980088 A JP19980088 A JP 19980088A JP H0249741 A JPH0249741 A JP H0249741A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- extractant
- ethanol
- carbon dioxide
- extract
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 180
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims description 42
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 74
- 238000000605 extraction Methods 0.000 claims abstract description 64
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 37
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 35
- 239000007788 liquid Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000000926 separation method Methods 0.000 claims description 5
- 239000012141 concentrate Substances 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 72
- 239000012535 impurity Substances 0.000 description 28
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 230000002209 hydrophobic effect Effects 0.000 description 12
- 238000001816 cooling Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000004821 distillation Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- IWTBVKIGCDZRPL-LURJTMIESA-N 3-Methylbutanol Natural products CC[C@H](C)CCO IWTBVKIGCDZRPL-LURJTMIESA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 4
- 238000000855 fermentation Methods 0.000 description 4
- 230000004151 fermentation Effects 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 lowobanol Chemical compound 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は粗製エタノール水溶液を精製するとともに濃縮
する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for purifying and concentrating a crude ethanol aqueous solution.
エタノールは、糖蜜等の糖類を発酵させることにより、
又はエチレンの水和反応により製造されている。これら
の発酵工程や水和工程から得られるエタノールは、多種
類の不純物が混入した粗製エタノール水溶液である。発
酵工程から得られる粗製エタノール水溶液に含まれる主
な不純物は、メタノール、アセトアルデヒド、n−プロ
パツール、酢酸エチル、3−メチルブタノール等であり
、その不純物の数は多い。Ethanol is produced by fermenting sugars such as molasses.
Alternatively, it is produced by the hydration reaction of ethylene. Ethanol obtained from these fermentation steps and hydration steps is a crude ethanol aqueous solution containing many types of impurities. The main impurities contained in the crude ethanol aqueous solution obtained from the fermentation process are methanol, acetaldehyde, n-propatol, ethyl acetate, 3-methylbutanol, etc., and the number of impurities is large.
一方、エチレンの水和工程から得られる粗製エタノール
水溶液に含まれる主な不純物は、アセトアルデヒド、ジ
エチルエーテル、アセトン、インプロパツール、n−プ
ロパツール、第2級ブタノール、n−ブタノール、クロ
トンアルデヒド等であり、同様にその不純物の数は多い
。On the other hand, the main impurities contained in the crude ethanol aqueous solution obtained from the ethylene hydration process are acetaldehyde, diethyl ether, acetone, impropatol, n-propatol, secondary butanol, n-butanol, crotonaldehyde, etc. Yes, and the number of impurities is also large.
粗製エタノール水溶液中に含まれる不純物は、前記のよ
うに多種類にわたり、しかも微量であることから、その
除去は非常に困難である。Since the impurities contained in the crude ethanol aqueous solution are of various kinds as described above and are in trace amounts, it is very difficult to remove them.
前記の如き多種の不純物を含む粗製エタノール水溶液を
精製するためには、蒸留処理方法が一般に用いられてい
る。この処理には、多くの蒸留塔を用い、その蒸留用に
多大のスチームを消費している。また、各蒸留塔は、抽
出蒸留方式で操作され、いったん蒸留濃縮されたエタノ
ールに再び水を多量添加し、蒸留塔に送って処理してい
る。したがって、従来のエタノール精製方法は、エネル
ギー効率の著しく悪いものとなっている。Distillation treatment methods are generally used to purify crude ethanol aqueous solutions containing various impurities as described above. This process uses many distillation columns and consumes a large amount of steam for distillation. In addition, each distillation column is operated using an extractive distillation method, in which a large amount of water is added again to the ethanol that has been distilled and concentrated, and the ethanol is sent to the distillation column for treatment. Therefore, conventional ethanol purification methods have extremely poor energy efficiency.
特開昭60−41627号公報によれば、前記のような
蒸留法に見られるエネルギー効率の問題を改博するため
に、液状又は超臨界状態の炭酸ガスにより、粗製エタノ
ールを得る方法が提案されている。しかし、この方法は
、不純物中にメタノールを含まない粗製エタノール水溶
液を対象としており、メタノールを含まない水和工程法
等によるエタノールには適用できるが、酵酵法エタノー
ル等メタノールを含むものについては不十分である。According to Japanese Patent Application Laid-Open No. 60-41627, a method for obtaining crude ethanol using liquid or supercritical carbon dioxide gas was proposed in order to solve the energy efficiency problem seen in the above-mentioned distillation method. ing. However, this method is intended for crude ethanol aqueous solutions that do not contain methanol among impurities, and is applicable to ethanol produced by hydration process methods that do not contain methanol, but is not applicable to ethanol containing methanol, such as fermentation ethanol. It is enough.
本発明者らの研究結果では、不純物中のメタノールはラ
フィネートへの残存率が多く、前記方法では不十分であ
ることが判明した。According to the research results of the present inventors, methanol among impurities has a high residual rate in the raffinate, and it has been found that the above method is insufficient.
本発明者らは、従来技術に見られる前記欠点を除去し、
エネルギー効率にすぐれたエタノール精製方法を提供す
ることを目的とする。The present inventors have removed the said drawbacks found in the prior art,
The purpose is to provide an ethanol purification method with excellent energy efficiency.
本発明者らは、前記目的を達成すべき鋭意研究を重ねた
結果、高圧下の液状炭酸ガス又は超臨界状態の炭酸ガス
を抽出剤として用いる抽出処理を2段階で採用するとと
もに、各段の抽出処理を特定の抽出剤/水溶液比の条件
で行うことにより、その目的を達成し得ることを見出し
、本発明を完成するに到った。As a result of extensive research to achieve the above objective, the present inventors adopted a two-stage extraction process using liquid carbon dioxide under high pressure or supercritical carbon dioxide as an extractant, and each stage. The present inventors have discovered that the objective can be achieved by performing the extraction treatment under conditions of a specific extractant/aqueous solution ratio, and have completed the present invention.
即ち、本発明によれば、第1のプロセスとして。That is, according to the invention, as a first process.
粗製エタノール水溶液を精製するとともに濃縮する方法
において、
(i)該粗製エタノール水溶液を、高圧下の液状炭酸ガ
ス又は超臨界状態の炭酸ガスを抽出剤として用い、該抽
出剤/水溶液重量比が10未満の条件で抽出処理する第
1抽出処理工程、(n)該第1抽出処理工程で得られた
ラフィネートを、高圧下の液状炭酸ガス又は超臨界状態
の炭酸ガスを抽出剤として用い、該抽出剤/水溶液重量
比が】0以上の条件で抽出処理して精製エタノールをエ
クストラクトとして回収する第2抽出処理工程、
からなることを特徴とする粗製エタノール水溶液の精製
濃縮方法が提供される。In a method for purifying and concentrating a crude ethanol aqueous solution, (i) the crude ethanol aqueous solution is extracted using liquid carbon dioxide gas under high pressure or carbon dioxide gas in a supercritical state as an extractant, and the weight ratio of the extractant/aqueous solution is less than 10. a first extraction treatment step in which the raffinate obtained in the first extraction treatment step is extracted under the conditions of (n) using liquid carbon dioxide under high pressure or carbon dioxide in a supercritical state as an extractant; There is provided a method for purifying and concentrating a crude ethanol aqueous solution, comprising: a second extraction step of performing extraction under conditions where the weight ratio of ethanol/aqueous solution is equal to or greater than 0 and recovering purified ethanol as an extract.
また、本発明によれば、第2のプロセスとして、粗製エ
タノール水溶液を精製するとともに濃縮する方法におい
て、
(i)該粗製エタノール水溶液を、高圧下の液状炭酸ガ
ス又は超臨界状態の炭酸ガスを抽出剤として用い、該抽
出剤/水溶液重量比が10以上の条件で抽出処理する第
1抽出処理工程、(ii)該1抽出処理工程から得られ
たエキストラクトからそれに含まれる抽出剤を、該抽出
剤/水溶液重量比が10未満になるように分離する抽出
剤分離工程、
(iii)該抽出剤分離工程で得られた抽出剤の分離さ
れたエキストラクトを、該抽出剤/水溶液が10未満の
条件で抽出処理して精製エタノールをラフィネートとし
て回収する第2抽出処理工程、からなることを特徴とす
る粗製エタノールの精製濃縮方法が提供される。Further, according to the present invention, in the second process, in a method of purifying and concentrating a crude ethanol aqueous solution, (i) extracting liquid carbon dioxide gas or supercritical carbon dioxide gas from the crude ethanol aqueous solution under high pressure; (ii) extracting the extract contained in the extract obtained from the first extraction step; (ii) extracting the extract obtained from the first extraction step; (iii) separating the separated extract of the extractant obtained in the extractant separation step so that the weight ratio of the extractant/aqueous solution is less than 10; There is provided a method for purifying and concentrating crude ethanol, which is characterized by comprising a second extraction treatment step of performing an extraction treatment under certain conditions and recovering purified ethanol as a raffinate.
本発明において原料として用いる粗製エタノ−コ
ル水溶液は、主として発酵工程等から得られたものであ
る。この水溶液のエタノール濃度は、通常、5〜40重
量%である。The crude ethanol aqueous solution used as a raw material in the present invention is mainly obtained from a fermentation process or the like. The ethanol concentration of this aqueous solution is usually 5 to 40% by weight.
本発明において用いる抽出剤は、高圧下の液状炭酸ガス
又は超臨界状態の炭酸ガスである。本発明では、圧力4
0〜150kg7d、温度20〜60℃の条件に保持さ
れた炭酸ガスが好ましく用いられる。The extractant used in the present invention is liquid carbon dioxide gas under high pressure or carbon dioxide gas in a supercritical state. In the present invention, pressure 4
Carbon dioxide gas maintained at conditions of 0 to 150 kg7d and a temperature of 20 to 60°C is preferably used.
本発明者らの研究によれば、このような加圧状態の液状
炭酸ガス又は超臨界状態の炭酸ガスは、粗製エタノール
水溶液からそれに含まれる不純物を抽出処理により分離
除去するための抽出剤として非常にすぐれた作用を示す
ことが見出された。According to the research of the present inventors, such pressurized liquid carbon dioxide gas or supercritical state carbon dioxide gas is extremely effective as an extractant for separating and removing impurities contained in a crude ethanol aqueous solution through extraction processing. It was found that it exhibits excellent effects.
即ち、このような炭酸ガスを抽出剤として用いる時は、
炭酸ガス(抽出剤)と粗製エタノール水溶液(本明細書
では、単に水溶液とも言う)との重量比が10未満の条
件下では、水溶液中に含まれている疎水性の物質(例え
ば、アセトアルデヒド、酢酸エチル、ジエチルエーテル
、アセトン、プロパツール、ブタノール等)が抽出剤に
選択的に抽出されてエキストラクト相に移行し、水溶液
中のエタノールの大部分は、親水性不純物としてのメタ
ノールとともにラフィネート相に移行する。一方、抽出
剤/水溶液重量比が10以上の条件下では、水溶液中の
エタノールの大部分は、疎水性物質とともにエキストス
トラクト相に移行し、親水性物質としてのメタノールは
ラフィネート相に移行する。That is, when using such carbon dioxide gas as an extractant,
Under conditions where the weight ratio of carbon dioxide gas (extractant) and crude ethanol aqueous solution (herein also simply referred to as aqueous solution) is less than 10, hydrophobic substances contained in the aqueous solution (for example, acetaldehyde, acetic acid) ethyl, diethyl ether, acetone, propatool, butanol, etc.) are selectively extracted by the extractant and transferred to the extract phase, and most of the ethanol in the aqueous solution is transferred to the raffinate phase along with methanol as a hydrophilic impurity. do. On the other hand, under conditions where the extractant/aqueous solution weight ratio is 10 or more, most of the ethanol in the aqueous solution transfers to the extract phase together with hydrophobic substances, and methanol as a hydrophilic substance transfers to the raffinate phase.
本発明はこれらの知見に基づいてなされたものである。The present invention has been made based on these findings.
次に本発明を図面とともに説明する。Next, the present invention will be explained with reference to the drawings.
第1図は1本発明の第1のプロセスについてのフローシ
ートを示す。FIG. 1 shows a flow sheet for the first process of the present invention.
第1図において、エタノール及び不純物を含む水溶液は
、ライン3を通って抽出塔1の上部に導入され、抽出塔
1の下部には炭酸ガスからなる抽出剤がライン4を通っ
て導入され、ここで、水溶液と抽出剤とは向流接触され
る。In FIG. 1, an aqueous solution containing ethanol and impurities is introduced into the upper part of extraction tower 1 through line 3, and an extractant consisting of carbon dioxide gas is introduced into the lower part of extraction tower 1 through line 4. Then, the aqueous solution and the extractant are brought into contact with each other in a countercurrent manner.
抽出塔1における抽出剤と水溶液との重量比は10未満
、好ましくは0.5〜9、さらに好ましくは1〜5であ
る。このような条件下では、水溶液中に含まれる不純物
のうち、疎水性物質(03以上のアルコール、C2以上
の含酸素化合物)はエクストラクト相に移行し、少量の
エタノールとこれら疎水性物質と水からなるエクストラ
クトが得られ、このものはライン5を通って排出される
。The weight ratio of the extractant to the aqueous solution in the extraction column 1 is less than 10, preferably 0.5-9, more preferably 1-5. Under such conditions, among the impurities contained in the aqueous solution, hydrophobic substances (alcohols of 03 or higher, oxygenated compounds of C2 or higher) move to the extract phase, and a small amount of ethanol and these hydrophobic substances and water An extract consisting of is obtained which is discharged through line 5.
一方、水溶液中のエタノールと不純物のうちの親水性物
質(メタノール)は、ラフィネート相に移イ
行し、エタノールとメタノールと水とからなる水幕
溶液と少量の抽出剤からなるラフィネートが得られ、こ
のものはライン6を通って次の第2抽出塔2の上部に導
入され、ここで、第2抽出塔の下部からライン7を通っ
て導入される抽出剤と向流接触される。On the other hand, the ethanol in the aqueous solution and the hydrophilic substance (methanol) among the impurities are transferred to the raffinate phase, and a raffinate is obtained that consists of a water curtain solution consisting of ethanol, methanol, and water and a small amount of extractant. This is introduced through line 6 into the upper part of the next second extraction column 2, where it is brought into countercurrent contact with the extractant introduced through line 7 from the lower part of the second extraction column.
抽出塔2における抽出剤と水溶液との重量比は10以上
、通常、10〜25、好ましくは10〜15である。The weight ratio of the extractant to the aqueous solution in the extraction column 2 is 10 or more, usually 10-25, preferably 10-15.
このような条件下では、水溶液中のエタノールはエキス
トラクト相に移行し、メタノールはラフィネート相に移
行し、エタノールと水からなるエキストラクトとメタノ
ールと水からなるラフィネートが得られる。エキストラ
クトはライン8を通って回収された後、減圧され、抽出
剤から分離されて精製エタノール水溶液として回収され
る。一方、ラフィネートはライン9を通して分離除去さ
れる。Under such conditions, ethanol in the aqueous solution is transferred to the extract phase, and methanol is transferred to the raffinate phase, yielding an extract consisting of ethanol and water and a raffinate consisting of methanol and water. After the extract is recovered through line 8, it is depressurized, separated from the extractant, and recovered as a purified aqueous ethanol solution. Meanwhile, the raffinate is separated and removed through line 9.
この第1のプロセスにおいて、抽出塔1に供給される原
料水溶液中のエタノール濃度は、通常、5〜40重量%
である。また、第1抽出塔及び第2抽出塔の操作条件は
、温度: 20−60℃、圧カニ40−]、50kg/
a#である。In this first process, the ethanol concentration in the raw material aqueous solution supplied to the extraction column 1 is usually 5 to 40% by weight.
It is. In addition, the operating conditions of the first extraction tower and the second extraction tower are: temperature: 20-60°C, pressure crab 40-], 50 kg/
It is a#.
この第1のプロセスにおいて、製品として回収されるエ
タノール水溶液は、エタノール濃度90重量X以上のも
のである。従って、このプロセスに°よれば、粗製エタ
ノール水溶液の精製と同時に、その濃縮も同時に達成す
ることができる。In this first process, the ethanol aqueous solution recovered as a product has an ethanol concentration of 90% by weight or more. Therefore, according to this process, it is possible to simultaneously purify and concentrate the crude ethanol aqueous solution.
第2図は、本発明の第2のプロセスのフローシートを示
す。FIG. 2 shows a flow sheet for the second process of the invention.
1第2図において、粗製エタノール水溶液は、うt
〜イン12を通って第1抽出塔10の上部に導入され、
抽出剤はライン13を通って第1抽出塔10の下部に導
入され、ここで両者は向流接触される。1 In FIG. 2, the crude ethanol aqueous solution is introduced into the upper part of the first extraction column 10 through the inlet 12,
The extractant is introduced into the lower part of the first extraction column 10 through line 13, where they are brought into countercurrent contact.
抽出塔10における抽出剤と水溶液との重量比は10以
上、通常、10〜25、好ましくは10〜15である。The weight ratio of the extractant to the aqueous solution in the extraction column 10 is 10 or more, usually 10-25, preferably 10-15.
このような条件下では、水溶液中のエタノール及び疎水
性不純物はエキストラクト相に移行し、エタノール、疎
水性不純物及び水を含むエキストラクトが得られ、この
ものはライン14を通って、抽出剤分離器16に導入さ
れる。Under these conditions, the ethanol and hydrophobic impurities in the aqueous solution migrate to the extract phase, yielding an extract containing ethanol, hydrophobic impurities and water, which is passed through line 14 for extractant separation. It is introduced into the container 16.
一方、粗製エタノール水溶液中の親水性物質としてのメ
タノールは、ラフィネート相に移行し、メタノール、水
及び少量のエタノールを含むラフィネートが得られ、こ
のものは、ライン15を通って分離除去される。On the other hand, methanol as a hydrophilic substance in the crude ethanol aqueous solution is transferred to the raffinate phase, and a raffinate containing methanol, water and a small amount of ethanol is obtained, which is separated and removed through line 15.
ライン14を通って抽出剤分離器16に導入されたエキ
ストラクトは、ここで、その中に含まれる抽出剤がライ
ン17を通って除去され、エキストラクト中の抽出剤/
水溶液重量比が10未満、好ましくはO=5〜9に調節
される。このエキストラクトからの抽出剤の分離は、(
1)減圧、(2)冷却、(3)水の添加及び(4)それ
らの組合せによって行うことが“ゼきる。The extract introduced through line 14 into the extractant separator 16 is where the extractant contained therein is removed through line 17 and the extractant/extractant in the extract is removed through line 17.
The aqueous solution weight ratio is adjusted to less than 10, preferably O=5-9. Separation of the extractant from this extract is carried out by (
This can be done by 1) vacuuming, (2) cooling, (3) adding water, and (4) a combination thereof.
減圧による方法は、抽出剤分離器16において、圧力を
減圧し、エキストラクト中の炭酸ガスを気化分離させる
方法である。The method using reduced pressure is a method in which the pressure is reduced in the extractant separator 16 and carbon dioxide gas in the extract is vaporized and separated.
また、冷却法は、エキストラクトを冷却し、これをエタ
ノールが主成分で、水、炭酸ガス及び少量の疎水性不純
物を含む重質相と、炭酸ガスが主成分で、疎水性物質及
び少量のエタノールを含む軽質相との2相に分離し、重
質相を次の第2抽出塔11に送る方法である。この冷却
法において、冷却手段としては、減圧膨張による冷却(
減圧により炭酸ガスを気化膨張させる時の吸熱による冷
却)や、冷媒による冷却等があり、その冷却温度は、通
常、10〜20℃である。In addition, the cooling method cools the extract and separates it into a heavy phase that is mainly composed of ethanol and contains water, carbon dioxide, and a small amount of hydrophobic impurities, and a heavy phase that is mainly composed of carbon dioxide and contains hydrophobic substances and small amounts of hydrophobic impurities. This is a method of separating into two phases, a light phase containing ethanol, and a heavy phase, and sending the heavy phase to the next second extraction column 11. In this cooling method, the cooling means is cooling by decompression expansion (
Cooling by heat absorption during vaporization and expansion of carbon dioxide gas under reduced pressure), cooling by a refrigerant, etc., and the cooling temperature thereof is usually 10 to 20°C.
水添加による方法は、エキストラクトに水を加え、それ
によって再び相分離させる方法である。The water addition method is a method in which water is added to the extract, thereby causing phase separation again.
また、エキストラクト中の水含量が著しく減少している
場合には、抽出剤分離器16に導入されたエキストラク
トに水を添加してから減圧する方法も用いられる。この
場合、水添加により相分離が助長される。Furthermore, if the water content in the extract is significantly reduced, a method may also be used in which water is added to the extract introduced into the extractant separator 16 and then the pressure is reduced. In this case, the addition of water promotes phase separation.
門前記のようにして、抽出剤/水溶液の重量比が16未
満に調節されたエキストラクトは第2抽出塔1′1に導
入され、ここで抽出処理される。この場合。The extract whose extractant/aqueous solution weight ratio has been adjusted to less than 16 as described above is introduced into the second extraction column 1'1, where it is extracted. in this case.
・第2抽出塔11に対する抽出剤の添加は必要とはされ
ないが、抽出塔11における抽出剤/水溶液重量比が1
0未満の範囲内において、ライン21を通して抽出塔1
1に対して抽出剤を導入することができる。- Although it is not necessary to add an extractant to the second extraction column 11, if the extractant/aqueous solution weight ratio in the extraction column 11 is 1
Extraction column 1 through line 21 within a range less than 0
An extractant can be introduced for 1.
以上のようにして第2抽出処理を行うことにより、水溶
液中の疎水性不純物は、エキストラクト相(炭酸ガス相
)に移行し、ライン20から疎水性不純物の除去された
精製エタノール水溶液からなるラフィネートが得られる
。By performing the second extraction process as described above, the hydrophobic impurities in the aqueous solution are transferred to the extract phase (carbon dioxide phase), and a raffinate consisting of the purified ethanol aqueous solution from which the hydrophobic impurities have been removed is transferred from the line 20. is obtained.
この第2のプロセスにおいては、第1抽出塔10の操作
は、温度20〜60℃、圧力40−150kg/cdで
一般的に行われる。第2抽出塔11の操作は、温度10
〜60℃、圧力50〜120kg/c11で行われるが
、抽出剤分離器16において減圧が使用される時には、
50〜60kg/、:dの圧力が採用される。In this second process, the first extraction column 10 is generally operated at a temperature of 20 to 60°C and a pressure of 40 to 150 kg/cd. The second extraction column 11 is operated at a temperature of 10
~60° C. and a pressure of 50 to 120 kg/c11, but when reduced pressure is used in the extractant separator 16,
A pressure of 50-60 kg/, :d is employed.
本発明による前記第1及び第2のプロセスにおいて採用
される抽出塔としては従来公知のもの、例えば、目皿板
や回転円板等の接触機構を内蔵したものが用いられる。As the extraction tower employed in the first and second processes according to the present invention, a conventionally known one, for example, one having a built-in contact mechanism such as a perforated plate or a rotating disk, is used.
また、抽出塔の操作に際しては、エキストラクトの一部
を塔上部に還流したり、あるいは塔の上部と下部に温度
差を設ける等の方法により、効率的な抽出処理を行うこ
とができる。Furthermore, when operating the extraction column, efficient extraction processing can be carried out by refluxing a portion of the extract to the upper part of the column, or by providing a temperature difference between the upper and lower parts of the column.
本発明により得られる精製エタノール水溶液は、精製と
同時に水の除去されたもの、即ち、濃縮されたものであ
る。このようなエタノール水溶液は、これに通常の蒸留
処理や、吸着処理を施すことによって、無水エタノール
又は95voQ%以上の含水エタノールとすることがで
きる。The purified aqueous ethanol solution obtained by the present invention is one in which water is removed at the same time as purification, that is, it is concentrated. Such an aqueous ethanol solution can be converted into anhydrous ethanol or ethanol with a water content of 95 voQ% or more by subjecting it to normal distillation treatment or adsorption treatment.
本発明の方法は、抽出処理を基本とするプロセスである
ことから、エネルギー効率的にもすぐれた方法であり、
その産業的意義は多大である。Since the method of the present invention is a process based on extraction processing, it is also an excellent method in terms of energy efficiency.
Its industrial significance is enormous.
次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.
参考例1
アセトアルデヒド、メタノール、ロープロバノール、酢
酸エチル及び3−メチルブタノールの5成分をそれぞれ
0.5重量%添加したエタノール濃度32重量%のエタ
ノール水溶液150ccを耐圧セルに仕込み、このセル
にさらに液体炭酸ガスを65g/dの圧力で約300c
c封入した。これを20℃の恒温槽に入れ、混合した後
、重質相と軽質相の2相に分離し、両相をガスクロマド
グラフトにより分析した。重質・1
相は主にエタノールと水からなる相で、軽質相は寥
−主に炭酸ガスからなる相であった。Reference Example 1 150 cc of an ethanol aqueous solution with an ethanol concentration of 32% by weight to which 0.5% by weight each of the five components of acetaldehyde, methanol, lowobanol, ethyl acetate and 3-methylbutanol were added was charged into a pressure cell, and liquid carbonate was further added to the cell. Approximately 300c of gas at a pressure of 65g/d
c was enclosed. This was placed in a constant temperature bath at 20° C., mixed, and then separated into two phases, a heavy phase and a light phase, and both phases were analyzed by gas chromatografting. The heavy phase 1 was a phase mainly composed of ethanol and water, and the light phase was a phase mainly composed of carbon dioxide gas.
次に、軽質相に含まれる成分の組成(重量ダ)を重質相
に含まれる対応する成分の組成(重量%)で除して、軽
質相への各成分の分配比を求めた。さらに、エタノール
の分配比で各成分の分配比を除して、抽出選択率を求め
た。その結果を次表に示す。Next, the distribution ratio of each component to the light phase was determined by dividing the composition (weight %) of the components contained in the light phase by the composition (weight %) of the corresponding component contained in the heavy phase. Furthermore, the extraction selectivity was determined by dividing the distribution ratio of each component by the distribution ratio of ethanol. The results are shown in the table below.
表−1
参考例2
参考例1において、エタノール水溶液としてエタノール
濃度13重量Xのものを用いた以外は同様にして実験を
行った。その結果を表−2に示す。Table 1 Reference Example 2 An experiment was conducted in the same manner as in Reference Example 1 except that an ethanol aqueous solution having an ethanol concentration of 13 weight X was used. The results are shown in Table-2.
表−2
前記参考例1及び2で示した結果から、不純物のうち、
親水性不純物としてのメタノールの抽出選択率はエタノ
ールの抽出選択率よりも小さく、それ以外の疎水性不純
物はエタノールの抽出選択率よりも著しく大きいことが
わかる。Table 2 From the results shown in Reference Examples 1 and 2 above, among the impurities,
It can be seen that the extraction selectivity of methanol as a hydrophilic impurity is lower than that of ethanol, and the extraction selectivity of other hydrophobic impurities is significantly higher than that of ethanol.
従って、このような抽出選択率から、炭酸ガスを抽出剤
として用いて不純物を含むエタノール水溶液を抽出処理
すると、抽出選択率が1より大きい゛不純物はエキスト
ラクト相として、及び抽出選択率が1以下のメタノール
はラフィネート相としてそれぞれ分離し得ることがわか
る。また、不純物としてメタノールを含むエタノールは
、これを炭酸ガスを抽出剤として用いて抽出処理するこ
とにより、エタノールをエキストラクト相として、及び
メタノールをラフィネート相としてそれぞれ分離し得る
ことがわかる。Therefore, from such an extraction selectivity, if an ethanol aqueous solution containing impurities is extracted using carbon dioxide gas as an extractant, the extraction selectivity will be greater than 1. The impurities will be treated as an extract phase and the extraction selectivity will be less than 1. It can be seen that methanol can be separated as a raffinate phase. Furthermore, it can be seen that ethanol containing methanol as an impurity can be separated as an extract phase and methanol as a raffinate phase by extracting it using carbon dioxide gas as an extractant.
さらに、表−1の結果と表−2の結果を対比検討するこ
とにより、エタノール水溶液中の水濃度を増加させるこ
とにより、不純物の抽出選択率を向上させ得ることがわ
かる。Further, by comparing the results in Table 1 and Table 2, it can be seen that the extraction selectivity of impurities can be improved by increasing the water concentration in the ethanol aqueous solution.
実施例1
バッフルトレイ30枚を内蔵した内径25mm、高さ3
mの塔出塔を用いて、粗製エタノール水溶液の抽出処理
を行った。この場合、粗製エタノール水溶液としては、
エタノール濃度10重量%のエタノール水溶液に、不純
物生成として、メタノール、n−プロパツール、酢酸エ
チル及び3−メチルブタノールをそれぞれ0.5重量%
添加したものを用いた。Example 1 Inner diameter 25mm, height 3 with built-in 30 baffle trays
Extraction treatment of the crude ethanol aqueous solution was carried out using the extraction column. In this case, the crude ethanol aqueous solution is
To an ethanol aqueous solution with an ethanol concentration of 10% by weight, 0.5% by weight each of methanol, n-propertool, ethyl acetate, and 3-methylbutanol were added as impurities.
The one added was used.
原料エタノールは、抽出塔の上部から500g/hrで
供給し、液状炭酸ガスからなる抽出剤は、塔下部から所
定の抽出剤/水溶液重量比が得られるよτう)1に供給
した。塔内圧力は100kg/ cxlとし、塔全体゛
1
溶液を得た。一方、塔底部からラフィネートを抜出し、
これを減圧処理し、抽出剤のみを気化させてエタノール
水溶液を得た。Raw material ethanol was supplied from the upper part of the extraction tower at a rate of 500 g/hr, and an extractant consisting of liquid carbon dioxide was supplied from the lower part of the tower at a rate of 1) such that a predetermined extractant/aqueous solution weight ratio was obtained. The pressure inside the column was 100 kg/cxl, and a total of 1 solution was obtained in the column. Meanwhile, the raffinate was extracted from the bottom of the tower.
This was treated under reduced pressure to vaporize only the extractant to obtain an aqueous ethanol solution.
以上のようにして行った抽出実験における各成分のエキ
ストラクト抽出率を表−3に示す。Table 3 shows the extract extraction rate of each component in the extraction experiment conducted as described above.
表−3
実施例2
実施例1の実験翫1において圧力容器に回収したラフィ
ネートを、実施例1と同様の第2抽出塔に導入し、塔下
部より抽出剤を供給して抽出処理した。Table 3 Example 2 The raffinate collected in the pressure vessel in the experimental column 1 of Example 1 was introduced into the same second extraction column as in Example 1, and an extractant was supplied from the bottom of the column for extraction treatment.
この場合、第2抽出塔における抽出剤/水溶液の重量比
は15、塔内圧力100kg/cJ、温度40℃、に保
持した。その結果、水8.6重量2、エタノール86.
3重量%、メタノール3.6重量%、n−プロパツール
1.67重量%の組成のエキストラクトを回収するとと
も−・−11
−・ル0.24重量算の組成のラフィネートを回収した
。In this case, the weight ratio of extractant/aqueous solution in the second extraction tower was maintained at 15, the internal pressure of the tower was 100 kg/cJ, and the temperature was 40°C. As a result, water was 8.6% by weight, ethanol was 86% by weight.
An extract having a composition of 3% by weight of methanol, 3.6% by weight of methanol, and 1.67% by weight of n-propanol was recovered, and a raffinate having a composition of 0.24% by weight of -.-11-.L was recovered.
ニー実施例3
実施例】の実験Nα3で回収したエキストラクトを耐圧
容器に導入するとともに、この容器内にエキストラクト
全量に対して約1.6重量%の水を圧入し、その容器上
部の減圧弁から抽出剤を気化分離させ、残量中の溶剤(
炭酸ガス)対アルコール水溶液の重量比が2となるよう
に調製した。Example 3 The extract recovered in Experiment Nα3 of Example was introduced into a pressure-resistant container, and about 1.6% by weight of water was pressurized based on the total amount of the extract, and the pressure at the top of the container was reduced. The extractant is vaporized and separated from the valve, and the remaining solvent (
The weight ratio of carbon dioxide gas to the aqueous alcohol solution was adjusted to 2.
次に5この溶剤混合物を実施例1で示したと同様の第2
抽出塔に導入し、抽出処理した。この第2抽出塔の温度
は、40℃、圧力100kg/cJであった。5 This solvent mixture was then poured into a second solution similar to that shown in Example 1.
The mixture was introduced into an extraction column and subjected to extraction treatment. The temperature of this second extraction column was 40° C. and the pressure was 100 kg/cJ.
第2抽出塔から、水5.87重量%、エタノール36.
2重量%、メタノール0.74重量%、n−プロパツー
ル19.0重量%、酢酸メチル11.3重量%及び3メ
チルブタノール25.4重量%の組成のエキストラクト
を回収し、一方、水61.8重量%、エタノール35.
5重量で、メタノール1.05重量%、n−プロパツー
ル1.68重量%、酢酸エチル130重量ppm、及び
3メチルブタノ一ル440重量ppmの組成のラフィネ
ートを回収した。From the second extraction column, 5.87% by weight of water and 36% by weight of ethanol were extracted.
2% by weight of methanol, 0.74% by weight of methanol, 19.0% by weight of n-propanol, 11.3% by weight of methyl acetate and 25.4% by weight of 3-methylbutanol, while 61% by weight of water. .8% by weight, ethanol 35.
A raffinate with a composition of 1.05% by weight methanol, 1.68% by weight n-propanol, 130 ppm by weight ethyl acetate, and 440 ppm by weight 3-methylbutanol was recovered.
第1図は本発明の第1のプロセスのフローシー特許出願
人 通商産業省基礎産業局局長畠 山 襄Figure 1 shows the flow sheet of the first process of the present invention Patent applicant: Jo Hatakeyama, Director-General, Basic Industries Bureau, Ministry of International Trade and Industry
Claims (3)
る方法において、 (i)該粗製エタノール水溶液を、高圧下の液状炭酸ガ
ス又は超臨界状態の炭酸ガスを抽出剤として用い、該抽
出剤/水溶液重量比が10未満の条件で抽出処理する第
1抽出処理工程、 (ii)該第1抽出処理工程で得られたラフィネートを
、高圧下の液状炭酸ガス又は超臨界状態の炭酸ガスを抽
出剤として用い、該抽出剤/水溶液重量比が10以上の
条件で抽出処理して精製エタノールをエクストラクトと
して回収する第2抽出処理工程、 からなることを特徴とする粗製エタノール水溶液の精製
濃縮方法。(1) In a method of purifying and concentrating a crude ethanol aqueous solution, (i) the crude ethanol aqueous solution is extracted using liquid carbon dioxide gas under high pressure or carbon dioxide gas in a supercritical state as an extractant, and the weight ratio of the extractant/aqueous solution is (ii) the raffinate obtained in the first extraction treatment step, using liquid carbon dioxide gas under high pressure or carbon dioxide gas in a supercritical state as an extractant; A method for purifying and concentrating a crude ethanol aqueous solution, comprising: a second extraction treatment step of performing an extraction treatment under conditions where the extractant/aqueous solution weight ratio is 10 or more and recovering purified ethanol as an extract.
る方法において、 (i)該粗製エタノール水溶液を、高圧下の液状炭酸ガ
ス又は超臨界状態の炭酸ガスを抽出剤として用い、該抽
出剤/水溶液重量比が10以上の条件で抽出処理する第
1抽出処理工程、 (ii)該第1抽出処理工程から得られたエキストラク
トからそれに含まれる抽出剤を、該抽出剤/水溶液重量
比が10未満になるように分離する抽出剤分離工程、 (iii)該抽出剤分離工程で得られた抽出剤の分離さ
れたエキストラクトを、該抽出剤/水溶液が10未満の
条件で抽出処理して精製エタノールをラフィネートとし
て回収する第2抽出処理工程、からなることを特徴とす
る粗製エタノールの精製濃縮方法。(2) In a method of purifying and concentrating a crude ethanol aqueous solution, (i) the crude ethanol aqueous solution is extracted using liquid carbon dioxide gas under high pressure or carbon dioxide gas in a supercritical state as an extractant, and the weight ratio of the extractant/aqueous solution is (ii) removing the extractant contained in the extract from the extract obtained from the first extraction step so that the weight ratio of the extractant/aqueous solution is less than 10; (iii) extracting the separated extract of the extractant obtained in the extractant separation step under conditions where the extractant/aqueous solution is less than 10 to raffinate purified ethanol; A method for purifying and concentrating crude ethanol, comprising a second extraction step of recovering as ethanol.
トに水を添加してから減圧して抽出剤を分離する請求項
2の方法。(3) The method according to claim 2, wherein in the extractant separation step (ii), water is added to the extract and then the extractant is separated by reducing the pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63199800A JPH0249741A (en) | 1988-08-12 | 1988-08-12 | Method for purifying and concentrating aqueous solution of crude ethanol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63199800A JPH0249741A (en) | 1988-08-12 | 1988-08-12 | Method for purifying and concentrating aqueous solution of crude ethanol |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0249741A true JPH0249741A (en) | 1990-02-20 |
JPH0512332B2 JPH0512332B2 (en) | 1993-02-17 |
Family
ID=16413835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63199800A Granted JPH0249741A (en) | 1988-08-12 | 1988-08-12 | Method for purifying and concentrating aqueous solution of crude ethanol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0249741A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992021638A1 (en) * | 1991-06-07 | 1992-12-10 | Japan As Represented By Director-General, Basic Industries Bureau Of Ministry Of International Trade And Industry | Process for purifying aqueous crude ethanol solution |
US5185481A (en) * | 1990-04-16 | 1993-02-09 | Japan As Represented By Ministry Of International Trade And Industry, Director-General | Method for the separation of impurities from crude ethanol aqueous solution |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59141528A (en) * | 1983-02-02 | 1984-08-14 | Mitsubishi Kakoki Kaisha Ltd | Method for concentrating aqueous solution of ethanol |
JPS6041627A (en) * | 1983-06-09 | 1985-03-05 | ロ−ヌ−プ−ラン・シミ・ド・バ−ズ | Purification of mixture comprising water/c1-c2 alcohol/ impurities produced from ethanol industrial manufacture process with extracting agent |
JPS61254177A (en) * | 1985-05-02 | 1986-11-11 | Hitachi Zosen Corp | Extraction of ethanol from ethanol-containing liquid |
JPS6225985A (en) * | 1985-07-29 | 1987-02-03 | Mitsubishi Heavy Ind Ltd | Method of concentrating and purifying alcohol |
JPS6225984A (en) * | 1985-07-29 | 1987-02-03 | Mitsubishi Heavy Ind Ltd | Method of concentrating and purifying alcohol |
JPS6225983A (en) * | 1985-07-29 | 1987-02-03 | Mitsubishi Heavy Ind Ltd | Method of concentrating and purifying alcohol |
JPS6229990A (en) * | 1985-07-31 | 1987-02-07 | Kobe Steel Ltd | Purification of ethanol |
JPS6229988A (en) * | 1985-07-31 | 1987-02-07 | Kobe Steel Ltd | Purification of ethanol from aqueous solution thereof |
-
1988
- 1988-08-12 JP JP63199800A patent/JPH0249741A/en active Granted
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59141528A (en) * | 1983-02-02 | 1984-08-14 | Mitsubishi Kakoki Kaisha Ltd | Method for concentrating aqueous solution of ethanol |
JPS6041627A (en) * | 1983-06-09 | 1985-03-05 | ロ−ヌ−プ−ラン・シミ・ド・バ−ズ | Purification of mixture comprising water/c1-c2 alcohol/ impurities produced from ethanol industrial manufacture process with extracting agent |
JPS61254177A (en) * | 1985-05-02 | 1986-11-11 | Hitachi Zosen Corp | Extraction of ethanol from ethanol-containing liquid |
JPS6225985A (en) * | 1985-07-29 | 1987-02-03 | Mitsubishi Heavy Ind Ltd | Method of concentrating and purifying alcohol |
JPS6225984A (en) * | 1985-07-29 | 1987-02-03 | Mitsubishi Heavy Ind Ltd | Method of concentrating and purifying alcohol |
JPS6225983A (en) * | 1985-07-29 | 1987-02-03 | Mitsubishi Heavy Ind Ltd | Method of concentrating and purifying alcohol |
JPS6229990A (en) * | 1985-07-31 | 1987-02-07 | Kobe Steel Ltd | Purification of ethanol |
JPS6229988A (en) * | 1985-07-31 | 1987-02-07 | Kobe Steel Ltd | Purification of ethanol from aqueous solution thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5185481A (en) * | 1990-04-16 | 1993-02-09 | Japan As Represented By Ministry Of International Trade And Industry, Director-General | Method for the separation of impurities from crude ethanol aqueous solution |
WO1992021638A1 (en) * | 1991-06-07 | 1992-12-10 | Japan As Represented By Director-General, Basic Industries Bureau Of Ministry Of International Trade And Industry | Process for purifying aqueous crude ethanol solution |
US5284983A (en) * | 1991-06-07 | 1994-02-08 | Basic Industries Bureau of Ministry of International Trade and Industry | Process for purifying aqueous crude ethanol solution |
Also Published As
Publication number | Publication date |
---|---|
JPH0512332B2 (en) | 1993-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5185481A (en) | Method for the separation of impurities from crude ethanol aqueous solution | |
US5284983A (en) | Process for purifying aqueous crude ethanol solution | |
EP0231072B1 (en) | Method and apparatus for removing water from ethanol | |
US4492808A (en) | Method for separating ethanol from an ethanol containing solution | |
JPH07206745A (en) | Separating method for oxygen-containing compound from hydrocarbon comprising distillation and transmission and its method by etherification | |
CN107253901A (en) | A kind of separation of high-purity isopropanol and purification method | |
JPS6135190B2 (en) | ||
WO2013177056A1 (en) | Process and adsorbent for separating ethanol and associated oxygenates from a biofermentation system | |
US20130197279A1 (en) | Water and Contaminants Removal from Butanol Fermentation Solutions and/or Broths Using a Brine Solution | |
US5489366A (en) | Recovery of purified and substantially anhydrous propylene oxide | |
JPH0249741A (en) | Method for purifying and concentrating aqueous solution of crude ethanol | |
JPS6229988A (en) | Purification of ethanol from aqueous solution thereof | |
JPH01203375A (en) | Separation of aldehyde impurity from ethylene oxide | |
JPS6229990A (en) | Purification of ethanol | |
US5571387A (en) | Continuous single vessel distillation and adsorption process | |
CN109550359B (en) | Utilization method for recovering components in purge gas by using efficient absorbent | |
JP2726828B2 (en) | Apparatus and method for concentration and separation of polyunsaturated fatty acids or their esters | |
JPS6225985A (en) | Method of concentrating and purifying alcohol | |
CN114315546B (en) | Method for treating waste electronic solvent containing water, propylene glycol methyl ether and cyclopentanone | |
CN115611783B (en) | Device and method for safely recycling dimethyl sulfoxide solvent containing octogen | |
CN110343044A (en) | Synthesizing vinyl acetate ester reaction solution separating technology | |
CN110078592A (en) | A method of the solvent slop of recycling ethyl alcohol, butanol and isopropyl acetate | |
JPS63192737A (en) | Purification and recovery of methyl ethyl ketone | |
JPS62135440A (en) | Method for concentrating and purifying alcohol | |
JPS63135342A (en) | Purification of ethanol or methanol liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |