JPH0248431A - Rare earth element-doped fiber - Google Patents
Rare earth element-doped fiberInfo
- Publication number
- JPH0248431A JPH0248431A JP63197345A JP19734588A JPH0248431A JP H0248431 A JPH0248431 A JP H0248431A JP 63197345 A JP63197345 A JP 63197345A JP 19734588 A JP19734588 A JP 19734588A JP H0248431 A JPH0248431 A JP H0248431A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- core
- earth element
- doped
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 26
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 12
- 239000000835 fiber Substances 0.000 title abstract description 18
- 239000011521 glass Substances 0.000 claims abstract description 17
- 239000013307 optical fiber Substances 0.000 claims abstract description 5
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 abstract description 14
- 230000003321 amplification Effects 0.000 abstract description 3
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 3
- 230000010355 oscillation Effects 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000005253 cladding Methods 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、コアに希土類元素をドーピングした希土類元
素ドープファイバに関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a rare earth element-doped fiber whose core is doped with a rare earth element.
(従来の技術)
従来、S10゜ガラスを主成分とするコアに希土類元素
をドーピングした希土類元素ドープファイバはよく知ら
れている。すなわち、従来の希土類元素ドープファイバ
のコアは、S 102ガラスを主成分としており、Ge
02ガラスをせいぜい20〜30重量%程度含んでいる
ものであった。(Prior Art) A rare earth element-doped fiber in which a core mainly composed of S10° glass is doped with a rare earth element is well known. That is, the core of conventional rare earth element-doped fiber is mainly composed of S102 glass, and Ge
It contained at most about 20 to 30% by weight of 02 glass.
(発明が解決しようとする課題)
上記従来の構成では、1〜2μm程度の波長の光を発振
あるいは増幅させることができるものの、2〜3μm程
度の波長の光を効率よく発振あるいは増幅させることが
できなかった。(Problems to be Solved by the Invention) Although the conventional configuration described above can oscillate or amplify light with a wavelength of about 1 to 2 μm, it cannot efficiently oscillate or amplify light with a wavelength of about 2 to 3 μm. could not.
(課題を解決するための手段)
上記課題を解決するため、本発明の希土類元素ドープフ
ァイバは、G eO2ガラスを主成分とするコアを有す
る光ファイバにおいて、前記コアに少なくとも1f!I
!類の希土類元素をドーピングしたものである。(Means for Solving the Problems) In order to solve the above problems, the rare earth element-doped fiber of the present invention is an optical fiber having a core mainly composed of GeO2 glass, in which the core has at least 1 f! I
! It is doped with a class of rare earth elements.
(作用)
SiO2ガラスを主成分とするコアは、 1.8μm程
度の波長の光に対して減衰率が最も小さいのに対して、
G eO2ガラスを主成分とするコアは、2.5μm程
度の波長の光に対して減衰率が最も小さい。したがって
、G eO2ガラスを主成分とするコアに希土類元素を
ドーピングすることにより、2〜3μm程度の波長の光
を効率よく発振あるいは増幅させることができる。(Function) The core whose main component is SiO2 glass has the smallest attenuation rate for light with a wavelength of about 1.8 μm;
The core whose main component is GeO2 glass has the smallest attenuation rate for light with a wavelength of about 2.5 μm. Therefore, by doping a core mainly composed of GeO2 glass with a rare earth element, it is possible to efficiently oscillate or amplify light with a wavelength of about 2 to 3 μm.
(実施例) 以下、本発明の一実施例を第1図に基づいて説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.
第1図は本発明の一実施例における希土類元素ドープフ
ァイバの断面図で、1はコア、2はクラッドである。コ
ア1は、GeO2ガラスを90重量%以上含んでおり、
またネオジム(Nd)やエルビウム(Er)やホルミウ
ム()to)等の希土類元素が1種類ドーピングされて
いる。さらにコア1は、中心から外周にかけて屈折率が
次第に減少するグレーデッド形に構成されている。クラ
ッド2は、例えば5102ガラスを主成分としている。FIG. 1 is a cross-sectional view of a rare earth element-doped fiber in one embodiment of the present invention, where 1 is a core and 2 is a cladding. Core 1 contains 90% by weight or more of GeO2 glass,
Further, one type of rare earth element such as neodymium (Nd), erbium (Er), or holmium () is doped. Further, the core 1 has a graded shape in which the refractive index gradually decreases from the center to the outer periphery. The cladding 2 has, for example, 5102 glass as its main component.
次に作用を説明する。S i O2ガラスを主成分とす
るコアは、1.6μm程度の波長の光に対して減衰率が
最も小さいが、GeO2ガラスを主成分とするコア1は
、2.5μm程度の波長の光に対して減衰率が最も小さ
い。したがって、G eo 2ガラスを主成分とするコ
ア1に希土類元素をドーピングすることにより、2〜3
μm程度の波長の光を効率よく発振あるいは増幅させる
ことができる。例えば、従来の8102ガラスを主成分
とするコアにErをドーピングした場合、最も効率よく
発振あるいは増幅する光の波長はl、55μmであるが
、Ge02ガラスを主成分とするコア1にErをドーピ
ングした場合、最も効率よく発振あるいは増幅する光の
波長は2.9μmであった。またコア】にNdをドーピ
ングした場合、最も効率よく発振あるいは増幅する光の
波長は1.08μmであり、コア1にHoをドーピング
した場合、最も効率よく発振あるいは増幅する光の波長
は2,1μmであった。Next, the effect will be explained. The core whose main component is SiO2 glass has the lowest attenuation rate for light with a wavelength of about 1.6 μm, but the core 1, whose main component is GeO2 glass, has the lowest attenuation rate for light with a wavelength of about 2.5 μm. In contrast, the attenuation rate is the smallest. Therefore, by doping the core 1 mainly composed of Geo 2 glass with a rare earth element, 2 to 3
Light with a wavelength on the order of μm can be efficiently oscillated or amplified. For example, when a conventional core whose main component is 8102 glass is doped with Er, the wavelength of light that is most efficiently oscillated or amplified is l, 55 μm. In this case, the wavelength of light most efficiently oscillated or amplified was 2.9 μm. Furthermore, when core 1 is doped with Nd, the wavelength of light that is most efficiently oscillated or amplified is 1.08 μm, and when core 1 is doped with Ho, the wavelength of light that is most efficiently oscillated or amplified is 2.1 μm. Met.
このように、コア1とクラッド2とからなる上記希土類
元素ドープファイバを、レーザファイバあるいは光直接
増幅用ファイバ等として用いることにより、従来の希土
類元素ドープファイバよりも長波長の光を効率よく発振
あるいは増幅させることができるので、医療、通信、加
工等、あ1〕・ゆる分野において新たな用途に供し得る
。In this way, by using the rare earth element doped fiber consisting of the core 1 and the cladding 2 as a laser fiber or optical direct amplification fiber, it is possible to oscillate or emit light with a longer wavelength more efficiently than conventional rare earth element doped fibers. Since it can be amplified, it can be used for new purposes in all fields, such as medicine, communications, processing, etc.
(別の実施例)
上記実施例においては、コア1に1種類の希土類元素を
ドーピングした例について説明したが、コア1に2種類
以上の希土類元素を1乙−ピングしてもよく、このよう
にすれば、複数の波長の光を効率よく発振あるいは増幅
させることができる。(Another Example) In the above example, an example was explained in which the core 1 was doped with one type of rare earth element, but the core 1 may be doped with two or more types of rare earth elements. By doing so, it is possible to efficiently oscillate or amplify light of multiple wavelengths.
また上記実施例においては、コア1の屈折率の変化をグ
レーデッド形にした例について説明したが、ステップ形
にしてもよいことは勿論である。Further, in the above embodiment, an example was explained in which the refractive index of the core 1 changes in a graded type, but it goes without saying that it may also be changed in a step type.
(発明の効果)
以上説明したように本発明によれば、GeO。ガラスを
主成分とするコアをaする光ファイバにおいて、前記コ
アに少なくとも1種類の希土類元素をドーピングしたの
で、この希土類元素ドープファイバを、レーザファイバ
あるいは光直接増幅用ファイバ等、として用いることに
より、従来の希土類元素ドープファイバよりも長波長の
2〜3μm程度の波長の光を効率よ(発振あるいは増幅
させることができることから、医療、通信、加工等、あ
らゆる分野において新たな用途に倶し得る。(Effects of the Invention) As explained above, according to the present invention, GeO. In an optical fiber having a core mainly composed of glass, the core is doped with at least one kind of rare earth element, so that this rare earth element-doped fiber can be used as a laser fiber or a fiber for direct optical amplification, etc. Since it can efficiently oscillate or amplify light at a wavelength of about 2 to 3 μm, which is longer than conventional rare earth element-doped fibers, it has new applications in various fields such as medicine, communications, and processing.
第1図は本発明の一実施例における希土類元素ドープフ
ァイバの断面図である。
1・・・コアFIG. 1 is a cross-sectional view of a rare earth element-doped fiber in one embodiment of the present invention. 1... Core
Claims (1)
ァイバにおいて、前記コアに少なくとも1種類の希土類
元素をドーピングしたことを特徴とする希土類元素ドー
プファイバ。1. A rare earth element-doped optical fiber having a core mainly composed of GeO_2 glass, characterized in that the core is doped with at least one type of rare earth element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63197345A JPH0248431A (en) | 1988-08-08 | 1988-08-08 | Rare earth element-doped fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63197345A JPH0248431A (en) | 1988-08-08 | 1988-08-08 | Rare earth element-doped fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0248431A true JPH0248431A (en) | 1990-02-19 |
Family
ID=16372933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63197345A Pending JPH0248431A (en) | 1988-08-08 | 1988-08-08 | Rare earth element-doped fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0248431A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994001374A1 (en) * | 1992-07-06 | 1994-01-20 | Infrared Fiber Systems, Inc. | Heavy metal-oxide glass optical fibers for use in laser medical surgery and process of making |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4990147A (en) * | 1972-12-26 | 1974-08-28 | ||
JPS5727940A (en) * | 1980-07-24 | 1982-02-15 | Furukawa Electric Co Ltd:The | Infrared transmitting path |
JPS60200208A (en) * | 1984-03-23 | 1985-10-09 | Fujitsu Ltd | Optical fiber |
-
1988
- 1988-08-08 JP JP63197345A patent/JPH0248431A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4990147A (en) * | 1972-12-26 | 1974-08-28 | ||
JPS5727940A (en) * | 1980-07-24 | 1982-02-15 | Furukawa Electric Co Ltd:The | Infrared transmitting path |
JPS60200208A (en) * | 1984-03-23 | 1985-10-09 | Fujitsu Ltd | Optical fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994001374A1 (en) * | 1992-07-06 | 1994-01-20 | Infrared Fiber Systems, Inc. | Heavy metal-oxide glass optical fibers for use in laser medical surgery and process of making |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4559504B2 (en) | Articles having fiber Raman devices | |
US6950586B2 (en) | Fiber for enhanced energy absorption | |
JPH11223734A (en) | Cladding excitation fiber | |
US5259046A (en) | Article comprising an optical waveguide containing a fluorescent dopant | |
JPH11112070A (en) | Fiber laser | |
JPH10107345A (en) | Device with clad-layer pump fiber laser | |
JPH04369280A (en) | Fiber-optic amplifier | |
JPH10284777A (en) | Optical fiber laser | |
JP2020183977A (en) | Optical coupler and optical output device | |
US5877890A (en) | Optical-fiber amplifier having high-saturation output | |
JP4947853B2 (en) | Rare earth element doped fiber | |
JP2774963B2 (en) | Functional optical waveguide medium | |
JPH0563259A (en) | Optical fiber amplifier | |
JP2979329B2 (en) | Optical amplification fiber | |
JP2948656B2 (en) | Method of manufacturing active element-doped optical fiber component | |
JP2007537118A (en) | Glass for optical amplifier fiber | |
JP3827819B2 (en) | Fiber laser | |
KR920008511A (en) | Optical functional glass, fiber optics, amplifiers and lasers | |
JPH0248431A (en) | Rare earth element-doped fiber | |
JPH02132422A (en) | Optical fiber amplifier | |
JPH09205239A (en) | Optical fiber for amplification | |
JP2749647B2 (en) | Optical amplification fiber | |
JPH0521874A (en) | Optical active device | |
JP2717218B2 (en) | Laser oscillation device | |
JP3001675B2 (en) | Fiber amplifier and waveguide element amplifier |