[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0242664A - Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them - Google Patents

Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them

Info

Publication number
JPH0242664A
JPH0242664A JP19250588A JP19250588A JPH0242664A JP H0242664 A JPH0242664 A JP H0242664A JP 19250588 A JP19250588 A JP 19250588A JP 19250588 A JP19250588 A JP 19250588A JP H0242664 A JPH0242664 A JP H0242664A
Authority
JP
Japan
Prior art keywords
magnetic
recording
magnetic layer
magnetic field
photothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19250588A
Other languages
Japanese (ja)
Inventor
Masahiro Orukawa
正博 尾留川
Masako Tamaki
玉木 昌子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19250588A priority Critical patent/JPH0242664A/en
Publication of JPH0242664A publication Critical patent/JPH0242664A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow simultaneous erasing and recording by the thermomagneto- optical recording medium consisting of two layers of magnetic layers, a light beam for recording and a magnetic field imparting means for applying adequate magnetic fields. CONSTITUTION:The magneto-optical disk is formed with a substrate 11, a dielectric film 12, a 1st magnetic layer 13, and a 2nd magnetic layer 14 successively from a light projecting surface side. The recording and reproducing device is constituted of the 1st magnetic field imparting means 23 provided to the position different from an optical head 22 in common use for recording and reproducing to the magneto-optical disk 21 and the 2nd magnetic field imparting means 24 provided in the position opposite to the optical head 22 with the disk in-between. Namely, the recording is executed by switching of the two different powers which increase the temp. of the magnetic film to the Curie point or above. The overwriting is allowed in this way without erasing the previously recorded information.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、情報の記録に用いられる光熱磁気記録媒体並
びにその記録装置及びこれらによる光熱磁気記録方式に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a photothermal magnetic recording medium used for recording information, a recording device thereof, and a photothermal magnetic recording method using these.

従来の技術 光磁気ディスクは書き換え可能な大容量光ディスクとし
て実用化が進められている。
2. Description of the Related Art Magneto-optical disks are being put into practical use as rewritable, large-capacity optical disks.

ところで光磁気ディスクの記録方法は、あらかじめ一方
向に着磁した光磁気膜に対し、永久磁石または電磁石で
バイアス磁界を与えながら、光磁気膜上に集光した光を
信号に応じて強度変調させる方法である。
By the way, the recording method for magneto-optical disks involves applying a bias magnetic field using a permanent magnet or electromagnet to a magneto-optical film that has been magnetized in one direction in advance, and modulating the intensity of light focused on the magneto-optical film in accordance with a signal. It's a method.

この方式では、記録する前に、あらかじめ一方向に着磁
する消去という動作を必要とし、単一光学ヘッドで再記
録を行う場合は、消去と記録の2回の動作が必要である
。また記録と消去で磁場の方向を切り換える必要があり
、永久磁石を用いても電磁石を用いてもいずれにおいて
も磁場の方向を瞬時に変えることができないという問題
点がある。
In this method, before recording, it is necessary to perform an erasing operation in which the disk is magnetized in one direction, and when re-recording is performed using a single optical head, two operations, erasing and recording, are required. Furthermore, it is necessary to switch the direction of the magnetic field for recording and erasing, and there is a problem in that the direction of the magnetic field cannot be changed instantaneously, whether using permanent magnets or electromagnets.

これらの問題点を解決するために既にいくつかの方式が
提案されている。それらを大別すると、磁界変調型と光
変調型である。特に後者に於いては、高速応答性、さら
にはディスクを貼り合わせた両面タイプへの適用性など
に優れ、注目されている。
Several methods have already been proposed to solve these problems. They can be roughly divided into magnetic field modulation type and light modulation type. In particular, the latter is attracting attention due to its excellent high-speed response and applicability to double-sided disks.

今までに提案された光変調型には、補償点での磁化反転
を利用する方法(特開昭62−154347号公報、米
国特許4,649,519号公報)、永久磁石層の加熱
による磁気特性変化を利用する方法(特開昭62−21
9203号公報)、2層間の交換結合を利用する方法(
特開昭62−175948号公報)等がある。
The light modulation type that has been proposed so far includes a method that utilizes magnetization reversal at a compensation point (Japanese Patent Laid-Open No. 154347/1983, U.S. Patent No. 4,649,519), and a method that uses magnetization by heating a permanent magnet layer. Method of utilizing characteristic changes
9203), a method using exchange coupling between two layers (
JP-A-62-175948), etc.

発明が解決しようとする課題 本発明は、これら従来に提案された方式とは異なる方式
による光変調記録を用いることにより、同時消録を行う
ものである。つまり、換言すると本発明が解決しようと
する課題は、両面タイプのディスクに通用可能な同時消
録を可能にすることである。
Problems to be Solved by the Invention The present invention performs simultaneous erasure by using optical modulation recording using a method different from these conventionally proposed methods. In other words, the problem to be solved by the present invention is to enable simultaneous erasure that can be applied to double-sided discs.

課題を解決するための手段 この課題を解決するため、本発明は2層の磁性層から成
る光熱磁気記録媒体と、記録のための光ビームと、適切
な磁界を与えるための磁界付与手段とで構成される。
Means for Solving the Problem In order to solve this problem, the present invention provides a photothermal magnetic recording medium consisting of two magnetic layers, a light beam for recording, and a magnetic field applying means for applying an appropriate magnetic field. configured.

中でも、2つの磁性層を有する上記光熱磁気記録媒体は
、光投入面側より順に第1の磁性層、第2の磁性層とす
るとき、第1の磁性層と第2の磁性層の関係は以下に述
べる条件を満足している。
In particular, in the photothermal magnetic recording medium having two magnetic layers, when the first magnetic layer and the second magnetic layer are arranged in order from the light input surface side, the relationship between the first magnetic layer and the second magnetic layer is as follows. The following conditions are satisfied.

その第一は、第1の磁性層の常温における保磁力は、第
2の磁性層の常温における保磁力よりも大きいことであ
る。ここで常温とは、光ビームの照射による加熱の影響
の受けない部位での媒体温度を意味するもので、通常記
録再生装置の動作温度範囲である0°C〜50°C程度
の範囲と考えることが妥当である。この温度範囲に於い
て第2の磁性層の保磁力は、光ビーム照射部以外に配置
された第1の磁界付与手段により与えられる磁界より小
さく、第1の磁性層の保磁力はそれより大きいことが必
要である。さらに前記第1の磁界付与手段が、小型の永
久磁石によって容易に実現し得るためには、5 koe
程度以下であることが望ましく、従って第2の磁性層の
保磁力は上記温度範囲において5 koe以下であるこ
とが望ましい。一方、第1の磁性層の保磁力は、前記磁
界付与手段に影響を受けないためには5 koe以上で
あることが必要であるが、さらに再生時の光ビーム照射
による加熱の影響を受は難(するためには、第1の磁性
層の保磁力は10koe以上であることが望ましい。
The first is that the coercive force of the first magnetic layer at room temperature is greater than the coercive force of the second magnetic layer at room temperature. Here, normal temperature means the temperature of the medium at a portion that is not affected by heating due to light beam irradiation, and is considered to be within the operating temperature range of a normal recording/reproducing device, approximately 0°C to 50°C. That is reasonable. In this temperature range, the coercive force of the second magnetic layer is smaller than the magnetic field applied by the first magnetic field applying means disposed outside the light beam irradiation part, and the coercive force of the first magnetic layer is larger. It is necessary. Furthermore, in order for the first magnetic field applying means to be easily realized by a small permanent magnet, a 5 koe
Therefore, it is desirable that the coercive force of the second magnetic layer be 5 koe or less in the above temperature range. On the other hand, the coercive force of the first magnetic layer needs to be 5 koe or more in order to be unaffected by the magnetic field applying means, but it is also not affected by heating due to light beam irradiation during reproduction. In order to achieve this, it is desirable that the coercive force of the first magnetic layer is 10 koe or more.

その第二は、第1の磁性層のキュリー点が第2の磁性層
のキュリー点よりも大きいか同程度である構成となって
おり、ここが公知例(特開昭62175948号公報)
と異なる点である。このキュリー点は、信号振幅と記録
感度のバランスポイントで決定されるもので150“C
以上250°C以下程度が望ましい。
The second is a structure in which the Curie point of the first magnetic layer is greater than or equal to that of the second magnetic layer, and this is a known example (Japanese Patent Laid-Open No. 62175948).
This is a different point. This Curie point is determined by the balance point between signal amplitude and recording sensitivity, and is 150"C.
It is desirable that the temperature is above 250°C or below.

その第三は、記録時のレーザー照射時において、第1の
磁性層により誘発される反磁界の大きさが、第1の磁性
層により誘発される反磁界の大きさよりも大きいことで
ある。このことは、常温からキュリー点に至る温度範囲
の中で、キュリー点近傍における残留磁化量が、第1の
磁性層のそれより第2の磁性層のそれを大きくならしめ
る組成を選択することにより実現することができる。ま
た、別の方法として、第1の磁性層の膜厚に対し、第2
の磁性層の膜厚を増加させる方法によっても実現できる
The third reason is that the magnitude of the demagnetizing field induced by the first magnetic layer is larger than the magnitude of the demagnetizing field induced by the first magnetic layer during laser irradiation during recording. This can be achieved by selecting a composition that makes the residual magnetization in the vicinity of the Curie point larger than that of the first magnetic layer in the temperature range from room temperature to the Curie point. It can be realized. In addition, as another method, the thickness of the second magnetic layer may be
This can also be achieved by increasing the thickness of the magnetic layer.

その第四は、第2の磁性層の補償温度は、室温からキュ
リー点に至るまでの温度範囲に存在しない構成となって
いる点であり、ここが公知例(特開昭62−15434
7号公報、米国特許4,649,519号公報)と異な
る点である。
The fourth point is that the compensation temperature of the second magnetic layer does not exist in the temperature range from room temperature to the Curie point, which is a known example (Japanese Patent Laid-Open No. 62-15434
No. 7, U.S. Pat. No. 4,649,519).

これ等の条件を満足する組合わせは、従来から光熱磁気
記録に用いられている希土類−遷移金属の非晶質フェリ
磁性膜では、例えばGd Tb FeCoを用い、第1
の磁性層は、第2の磁性層に比べ、Cdを多く含むと同
時にCoを少なく含み、さらに第1の磁性層の補償温度
を室温近傍に、第2の磁性層の補償温度を室温より低く
することにより実現できる。
A combination that satisfies these conditions is, for example, in the rare earth-transition metal amorphous ferrimagnetic film used for photothermal magnetic recording, for example, Gd Tb FeCo is used, and the first
The magnetic layer contains more Cd and less Co than the second magnetic layer, and also has a compensation temperature of the first magnetic layer near room temperature and a compensation temperature of the second magnetic layer lower than room temperature. This can be achieved by doing this.

記録のための光ビームは、記録時に高パワーと低パワー
に変調され、いずれのパワーに於いても、第1の磁性層
、第2の磁性層共にキュリー点以上に加熱される構成と
なっており、ここが前掲の公知例(特開昭62−154
347号公報、米国特許4.649,519号公報、特
開昭62−219203号公報、特開昭62−1759
48号公報)すべてと異なる点である。
The light beam for recording is modulated into high power and low power during recording, and at either power, both the first magnetic layer and the second magnetic layer are heated above the Curie point. This is the above-mentioned known example (Japanese Unexamined Patent Publication No. 62-154
No. 347, U.S. Patent No. 4,649,519, JP-A-62-219203, JP-A-62-1759
Publication No. 48) This is different from all others.

記録のための第1の磁界付与手段は、記録時光ビーム照
射部以外の部位に磁界を印加するための磁界付与手段に
より、構成されている。
The first magnetic field applying means for recording is constituted by a magnetic field applying means for applying a magnetic field to a portion other than the light beam irradiation part during recording.

この第1の磁界付与手段は、記録再生時を問わず、常に
一定の方向に磁界を印加するもので、公知例(特開昭6
2−154347号公報、米国特許4.649,519
号公報、特開昭62−219203号公報)とはこの点
で異なる。またこの第1の磁界付与手段は永久磁石にて
構成されることが、消費電力、小型化の観点から望まし
い、また、この第1の磁界付与手段は、第2磁性層を着
磁するに十分な磁界を与える必要性から、1 koe〜
5 koeの範囲が望ましい。
This first magnetic field applying means always applies a magnetic field in a fixed direction regardless of the time of recording and reproduction.
No. 2-154347, U.S. Patent No. 4.649,519
In this respect, the present invention is different from those of Japanese Patent Laid-Open No. 62-219203). In addition, it is desirable that the first magnetic field applying means be constituted by a permanent magnet from the viewpoint of power consumption and downsizing. Due to the need to provide a magnetic field of 1 koe~
A range of 5 koe is desirable.

また前記第1の磁界付与手段とは別に、記録時ビーム照
射部位に対する第2の磁界付与手段が補助的に設けられ
ることもある。ただし、第2の磁界付与手段は常に第1
の磁界付与手段と同方向に磁界を付与する構成となって
いる。したがって第1の磁界付与手段と第2の磁界付与
手段とは、同一の磁界付与手段にて兼用することもでき
る。またその強度は、第1の磁界付与手段により印加さ
れる磁界よりはるかに小さく、0〜1 koeの範囲が
望ましい。
Further, in addition to the first magnetic field applying means, a second magnetic field applying means for the beam irradiation area during recording may be auxiliary provided. However, the second magnetic field applying means is always
It is configured to apply a magnetic field in the same direction as the magnetic field applying means. Therefore, the same magnetic field applying means can serve as the first magnetic field applying means and the second magnetic field applying means. Further, the strength thereof is much smaller than the magnetic field applied by the first magnetic field applying means, and is preferably in the range of 0 to 1 koe.

作用 以上述べた構成により、記録を行う方法について光熱磁
気記録媒体の例として光磁気ディスクを用いて説明する
Operation A method of recording using the configuration described above will be explained using a magneto-optical disk as an example of a photothermal magnetic recording medium.

まず光磁気ディスク作製後、第1の磁性層を着磁する。First, after producing a magneto-optical disk, the first magnetic layer is magnetized.

この着磁方向は、記録時に第1の磁界付与手段により印
加される磁界方向とは逆である。
This magnetization direction is opposite to the direction of the magnetic field applied by the first magnetic field applying means during recording.

また、第1の磁性層の着磁は、第1の磁性層の保磁力よ
り大きな磁界で着磁しても良いし、それより小さな磁界
でも、光加熱を行うことによって着磁することもできる
。このときの着磁状態をビームの走行方向に対し垂直と
なる面から見た場合、状態lとなる。ここでは着磁方向
を↑とした。
Further, the first magnetic layer may be magnetized with a magnetic field larger than the coercive force of the first magnetic layer, or it may be magnetized with a smaller magnetic field by performing optical heating. . When the magnetized state at this time is viewed from a plane perpendicular to the traveling direction of the beam, it becomes state 1. Here, the magnetization direction is set to ↑.

次に、第1の磁界付与手段を有する記録装置に、光磁気
ディスクを装着し、回転させると、第1の磁界付与手段
により、第2の磁性層は逆向きに着磁され、状態2とな
る。
Next, when the magneto-optical disk is mounted on a recording device having a first magnetic field applying means and rotated, the second magnetic layer is magnetized in the opposite direction by the first magnetic field applying means, and is in state 2. Become.

ただし、この時、周囲からの反磁界は第1の磁性層より
第2の磁性層がはるかに大きい。ビーム照射から遠ざか
り冷却されるに従って、第2の磁性層の反磁界方向に沿
って両磁性層共に磁化される。
However, at this time, the demagnetizing field from the surroundings is much larger in the second magnetic layer than in the first magnetic layer. As the beam moves away from the beam irradiation and is cooled, both magnetic layers are magnetized along the direction of the demagnetizing field of the second magnetic layer.

(状態4) 次に、記録用のレーザービームが高パワーの場合と低パ
ワーの場合が生ずるがそれぞれ別個に説明する。
(State 4) Next, there are cases where the laser beam for recording has a high power and a case where the laser beam has a low power, which will be explained separately.

■〕低パワーの場合 第1の磁性層、第2の磁性層共に狭い範囲でキュリー点
以上になるように低パワーが照射される。
(2) In the case of low power, low power is irradiated to both the first magnetic layer and the second magnetic layer so that the temperature exceeds the Curie point in a narrow range.

その時、キュリー点以上の部分では磁化が消失し、周囲
からの反磁界がそこに生じる。(状態3)さらにディス
クが1回転する間に第1の磁界付与手段により第2の磁
性層は着磁され、状態5となり、これは状態2に一致す
る。
At that time, magnetization disappears in areas above the Curie point, and a demagnetizing field from the surroundings is generated there. (State 3) Furthermore, while the disk rotates once, the second magnetic layer is magnetized by the first magnetic field applying means, resulting in state 5, which corresponds to state 2.

2)高パワーの場合 前記の低パワーよりさらに高い高パワーの照射により第
1の磁性層、第2の磁性層共に広い範囲でキュリー点以
上になる。その時、キュリー点以上の部分では磁化が消
失し、周囲からの反磁界がそこに生ずる。(状態6) ただし、この時、周囲からの反磁界は第1の磁性層より
第2の磁性層がはるかに大きい。ビーム照射から遠ざか
り、冷却される際、温度の低い周辺部から先に冷却され
第2の磁性層の反磁界に沿って磁化が生じる。(状態7
) この時、冷却により新たに磁化された部分からキュリー
点以上の部分に対しては、新たに逆向きの反磁界が生じ
る。さらに冷却が進むと、それまでキュリー点以上であ
った中心部が新たな逆向きの反磁界に沿った向きに磁化
される。(状態8)さらにディスクが1回転する間に第
1の磁界付与手段により第2の磁性層は着磁され、状態
9となる。
2) In the case of high power: By irradiating with a high power even higher than the above-mentioned low power, both the first magnetic layer and the second magnetic layer become at or above the Curie point over a wide range. At that time, magnetization disappears in areas above the Curie point, and a demagnetizing field from the surroundings is generated there. (State 6) However, at this time, the demagnetizing field from the surroundings is much larger in the second magnetic layer than in the first magnetic layer. When moving away from the beam irradiation and being cooled, the lower temperature peripheral portion is cooled first and magnetization occurs along the demagnetizing field of the second magnetic layer. (state 7
) At this time, a new demagnetizing field in the opposite direction is generated from the part newly magnetized by cooling to the part above the Curie point. As cooling progresses further, the center, which had previously been above the Curie point, becomes magnetized in a direction aligned with a new, oppositely directed demagnetizing field. (State 8) Furthermore, while the disk rotates once, the second magnetic layer is magnetized by the first magnetic field applying means, resulting in state 9.

次に同一トラックを低パワーで照射した場合は、状態3
に移り、高パワーで照射した場合は状態6に移る。
Next time, if the same track is irradiated with low power, state 3
If irradiation is performed with high power, the state moves to state 6.

従って、高パワーと低パワーとで変調された光にて記録
されたドメインの再生時におけるパターンは、状態5と
状態9が記録情報に応じて繰り返す。
Therefore, when reproducing a domain recorded with light modulated with high power and low power, the pattern in which states 5 and 9 repeat depending on the recorded information.

尚、状態7において、新たに発生する反磁界の強さが中
心部の磁化を固着するに不十分な場合がある。そのとき
には、新たに発生する反磁界を助ける方向に、つまり第
1の磁界付与手段と同一方向に補助的な磁界を印加する
ための第2の磁界付与手段を設けることも有効である。
Note that in state 7, the strength of the newly generated demagnetizing field may be insufficient to fix the magnetization in the center. At that time, it is also effective to provide a second magnetic field applying means for applying an auxiliary magnetic field in a direction that helps the newly generated demagnetizing field, that is, in the same direction as the first magnetic field applying means.

ただし、これにより印加される磁界は、状態3における
反磁界の強度より小さくしなくてはならない。また、こ
の第2の磁界付与手段は、光学ヘッドピックアップの漏
れ磁界を利用することもできる。
However, the magnetic field applied thereby must be smaller than the strength of the demagnetizing field in state 3. Further, the second magnetic field applying means can also utilize the leakage magnetic field of the optical head pickup.

尚、第1の磁性層のキュリー点は、第2の磁性層のキュ
リー点より小さいと、低パワー記録時、高パワー記録時
双方共に、キュリー点以上に昇温した周辺部に逆向きに
磁化した輪郭が発生し、信販下本発明の一実施例につい
て図面を参照しながら説明する。第1図は、本発明の光
磁気ディスクの断面図である。光投入面側より、基板1
1.誘電体膜12.第1の磁性層13.第2の磁性層1
4の順に構成されている。基板11はガラス上にフォト
ポリマー法によりトラックガイド溝を形成した基板を用
いた。尚、トラックピッチは2.5μmである。
Note that if the Curie point of the first magnetic layer is smaller than the Curie point of the second magnetic layer, the peripheral area heated above the Curie point will be magnetized in the opposite direction during both low power recording and high power recording. An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a magneto-optical disk of the present invention. From the light input side, board 1
1. Dielectric film 12. First magnetic layer 13. second magnetic layer 1
It is configured in the order of 4. As the substrate 11, a glass substrate with track guide grooves formed by a photopolymer method was used. Note that the track pitch is 2.5 μm.

誘電体膜12は、ZnSを760人形成させている。第
1の磁性層13は、Cd Tb Fe Coから成り、
その膜厚は400人、保磁力は15koe以上、キュリ
ー点は240°Cである。また第2の磁性層14は、T
bFe Coから成り、その膜厚は800人、保磁力は
2〜3koe、キュリー点は250°Cであり、常温か
らキュリー点に至るまで、−様に遷移金属リッチである
The dielectric film 12 is made of 760 ZnS. The first magnetic layer 13 is made of CdTbFeCo,
The film thickness is 400 mm, the coercive force is 15 koe or more, and the Curie point is 240°C. Further, the second magnetic layer 14 has T
It is made of bFeCo, has a film thickness of 800 mm, a coercive force of 2 to 3 koe, and a Curie point of 250°C, and is rich in transition metals from room temperature to the Curie point.

実施例2 実施例1に示した光磁気ディスクの記録再生装置の一実
施例を第2図に示す。光磁気ディスク21に対し、記録
再生兼用の光学ヘッド22と異なる部位に第1の磁界付
与手段23と、光学ヘッド22に対しディスクを挟んで
対向する位置に設けられた第2の磁界付与手段24とで
構成されている。
Embodiment 2 An embodiment of the magneto-optical disk recording and reproducing apparatus shown in Embodiment 1 is shown in FIG. A first magnetic field applying means 23 is provided on the magneto-optical disk 21 at a location different from the optical head 22 for both recording and reproduction, and a second magnetic field applying means 24 is provided at a position facing the optical head 22 with the disk interposed therebetween. It is made up of.

第1の磁界付与手段23はSa+ Coの永久磁石から
成り磁性薄膜に対し3 koeの磁界を与えている。
The first magnetic field applying means 23 is made of a Sa+Co permanent magnet and applies a magnetic field of 3 koe to the magnetic thin film.

また第2の磁界付与手段24は、第1の磁界付与手段2
3と磁性薄膜に対し同一方向に400koeの磁界を与
えている。
Further, the second magnetic field applying means 24 is similar to the first magnetic field applying means 2.
A magnetic field of 400 koe is applied in the same direction to the magnetic thin film.

実施例3 実施例1に示した光磁気ディスクを、予め5 koeの
磁界中で基板側よりストロボ照射することにより第1の
磁性層を基板側をN極となるように着磁した。その後実
施例に示す記録再生装置にて、ディスクを90Orpm
で回転させ、高パワー10mW、低パワー5mWで信号
周波数IMHzを記録した。
Example 3 The magneto-optical disk shown in Example 1 was magnetized in advance by strobe irradiation from the substrate side in a magnetic field of 5 koe, so that the first magnetic layer was magnetized so that the substrate side was the north pole. Thereafter, the disc was heated to 90 Orpm using the recording and reproducing apparatus shown in the example.
The signal frequency IMHz was recorded at a high power of 10 mW and a low power of 5 mW.

その後、再生パワー3.0mWにて再生した結果、C/
N 45dBを得た。
After that, as a result of reproduction with a reproduction power of 3.0 mW, C/
N 45dB was obtained.

実施例4 実施例3を行った後、引きつづきいわゆる消去過程を経
ずに、信号周波数を1.2MHzにしたことを除いて、
実施例4と同様の方法にて記録を行った。その後、同様
に再生を行った結果、C/845dBを得た。またIM
Hzの消残りは全く確認できなかった。
Example 4 After carrying out Example 3, the signal frequency was changed to 1.2 MHz without subsequently going through the so-called erasure process.
Recording was performed in the same manner as in Example 4. Thereafter, as a result of similar reproduction, C/845 dB was obtained. Also IM
No trace of Hz was observed.

実施例5 第2の磁界付与手段を設けなかったことを除いて、実施
例2と同様の記録再生装置と、実施例1と同様の光磁気
ディスクを用い、実施例3と同様の記録再生を行った結
果、C/N 35dBを得た。
Example 5 The same recording and reproducing apparatus as in Example 2 and the same magneto-optical disk as in Example 1 were used, except that the second magnetic field applying means was not provided, and the same recording and reproducing as in Example 3 was carried out. As a result, a C/N of 35 dB was obtained.

さらに実施例4と同様の記録を行った結果、やはりC/
N 35dBを得ると同時に、IMHz信号の消残りは
全く確認できなかった。
Furthermore, as a result of recording in the same manner as in Example 4, it was found that C/
While obtaining an N of 35 dB, no residual IMHz signal was observed.

なお、本実施例では磁界付与手段として記録再生装置に
永久磁石を装着する構成としたが、ディスクのカートリ
ッジケースに装着する方法も可能である。
In this embodiment, a permanent magnet is attached to the recording and reproducing apparatus as the magnetic field applying means, but a method of attaching it to the cartridge case of the disk is also possible.

発明の効果 以上述べた通り、本発明の構成による光熱磁気記録媒体
と、それを記録再生するための記録再生装置を用い、共
に磁性膜の温度をキュリー点以上にならしめる2つの異
なるパワーの切替により記録を行うことによって、前に
記録された情報を消すことなく重ね書きすることが可能
となる。また、本発明は、貼合わせディスクにも適用で
きるもので、さらに第2の磁界を省略するか、あるいは
光学ヘッドからの漏れ磁界を利用すると、光熱磁気記録
媒体を挟んで光学ヘッドと反対の側には−斉何も配置す
る必要がなく、記録再生機を薄型とできるなどの効果も
併せて有する。
Effects of the Invention As described above, by using a photothermal magnetic recording medium according to the structure of the present invention and a recording/reproducing device for recording and reproducing the same, two different powers can be switched to bring the temperature of the magnetic film to the Curie point or higher. By recording with , it becomes possible to overwrite previously recorded information without erasing it. Furthermore, the present invention can be applied to a laminated disk, and if the second magnetic field is omitted or the leakage magnetic field from the optical head is used, the side opposite to the optical head with the photothermal magnetic recording medium in between can be used. There is also the advantage that there is no need to arrange anything at the same time, and the recording/reproducing device can be made thinner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明における光熱磁気記録媒体の構成図、
第2図は上記光熱磁気記録媒体の記録装置の構成図であ
る。 11・・・・・・基板、12・・・・・・誘電体膜、1
3・・・・・・第1の磁性層、14・・・・・・第2の
磁性層、21・・・・・・光磁気ディスク、22・・・
・・・光学ヘッド、23・・・・・・第1の磁界付与手
段、24・・・・・・第2の磁界付与手段。
FIG. 1 is a configuration diagram of a photothermal magnetic recording medium in the present invention,
FIG. 2 is a block diagram of a recording apparatus for the photothermal magnetic recording medium. 11...Substrate, 12...Dielectric film, 1
3...First magnetic layer, 14...Second magnetic layer, 21...Magneto-optical disk, 22...
...Optical head, 23...First magnetic field applying means, 24...Second magnetic field applying means.

Claims (6)

【特許請求の範囲】[Claims] (1)それぞれ垂直磁化容易軸を有する2層の磁性層か
ら成り、光投入面から順に第1の磁性層、第2の磁性層
が形成され、 [1]第1の磁性層の常温における保磁力は、第2の磁
性層の常温における保磁力よりも大きく[2]第1の磁
性層のキュリー点は、第2の磁性層のキュリー点と比較
して等しいか大きく [3]第2の磁性層の磁化方向は常温からキュリー点に
至るまでの温度範囲に於いて変化せず[4]記録の光ビ
ーム照射時において、第1の磁性層の記録部位に対し、
第2の磁性層により誘発される反磁界の大きさが、第1
の磁性層により誘発される反磁界の大きさよりも大きい ことを特徴とする光熱磁気記録媒体。
(1) Consisting of two magnetic layers each having a perpendicular easy axis of magnetization, a first magnetic layer and a second magnetic layer are formed in order from the light incident surface, [1] Storage of the first magnetic layer at room temperature The magnetic force is larger than the coercive force of the second magnetic layer at room temperature [2] The Curie point of the first magnetic layer is equal to or larger than the Curie point of the second magnetic layer. The magnetization direction of the magnetic layer does not change in the temperature range from room temperature to the Curie point [4] When irradiating the recording light beam, the recording region of the first magnetic layer
The magnitude of the demagnetizing field induced by the second magnetic layer is
A photothermal magnetic recording medium characterized in that the magnitude of the demagnetizing field induced by the magnetic layer is larger than that of the magnetic layer.
(2)請求項1記載の光熱磁気記録媒体の記録時のレー
ザー照射部以外の部位に対し、第1の磁界を付与する手
段を有し、且つ前記第1の磁界を付与する手段により前
記光熱磁気記録媒体に印加される磁界が [1]第1項記載の第1の磁性層の常温における保磁力
より小さく、 [2]第1項記載の第2の磁性層の常温における保磁力
より大きい ことを特徴とする光熱磁気記録媒体の記録装置。
(2) The photothermal magnetic recording medium according to claim 1, further comprising means for applying a first magnetic field to a portion other than the laser irradiated portion during recording, and the means for applying the first magnetic field causes the photothermal The magnetic field applied to the magnetic recording medium is [1] smaller than the coercive force at room temperature of the first magnetic layer described in item 1, and [2] larger than the coercive force at room temperature of the second magnetic layer described in item 1. A recording device for a photothermal magnetic recording medium, characterized in that:
(3)請求項2記載の第1の磁界を付与する手段と共に
、記録時のレーザー照射部位に、第2の磁界を付与する
手段を有し、且つ前記第2の磁界を付与する手段により
請求項1記載の光熱磁気記録媒体に印加される磁界が [1]第1の磁界を付与する手段により前記光熱磁気記
録媒体に印加される磁界と同方向であり、 [2]請求項1記載の第2の磁性層の常温における保磁
力より小さい ことを特徴とする光熱磁気記録媒体の記録装置。
(3) In addition to the means for applying the first magnetic field according to claim 2, the method further comprises means for applying a second magnetic field to the laser irradiated area during recording, and the means for applying the second magnetic field as claimed in claim 2. The magnetic field applied to the photothermal magnetic recording medium according to claim 1 is [1] in the same direction as the magnetic field applied to the photothermal magnetic recording medium by means for applying a first magnetic field, and [2] according to claim 1. A recording device for a photothermal magnetic recording medium, characterized in that the coercive force of the second magnetic layer is smaller than that at room temperature.
(4)第1の磁性層が、第2項記載の第1の磁界を付与
する手段により印加される磁界と逆方向に初期着磁され
たことを特徴とする第1項記載の光熱磁気記録媒体。
(4) The photothermal magnetic recording according to item 1, wherein the first magnetic layer is initially magnetized in a direction opposite to the magnetic field applied by the means for applying the first magnetic field described in item 2. Medium.
(5)第1項記載の光熱磁気記録媒体と、第2項記載の
記録装置を用いて、第1の磁性層、第2の磁性層共にキ
ュリー点以上にならしめる2つの異なるパワーの切替に
より、記録を行うことを特徴とする光熱磁気記録方式。
(5) By using the photothermal magnetic recording medium described in item 1 and the recording device described in item 2, by switching two different powers to make both the first magnetic layer and the second magnetic layer equal to or higher than the Curie point. , a photothermal magnetic recording method characterized by recording.
(6)第1項記載の光熱磁気記録媒体と、第3項記載の
記録装置を用いて、第1の磁性層、第2の磁性層共にキ
ュリー点以上にならしめる2つの異なるパワーの切替に
より、記録を行うことを特徴とする光熱磁気記録方式。
(6) By using the photothermal magnetic recording medium described in item 1 and the recording device described in item 3, by switching two different powers to make both the first magnetic layer and the second magnetic layer equal to or higher than the Curie point. , a photothermal magnetic recording method characterized by recording.
JP19250588A 1988-08-01 1988-08-01 Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them Pending JPH0242664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19250588A JPH0242664A (en) 1988-08-01 1988-08-01 Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19250588A JPH0242664A (en) 1988-08-01 1988-08-01 Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them

Publications (1)

Publication Number Publication Date
JPH0242664A true JPH0242664A (en) 1990-02-13

Family

ID=16292411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19250588A Pending JPH0242664A (en) 1988-08-01 1988-08-01 Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them

Country Status (1)

Country Link
JP (1) JPH0242664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472377A2 (en) * 1990-08-17 1992-02-26 Seiko Epson Corporation Magneto-optical method and apparatus for recording/reproducing data
US5202862A (en) * 1990-06-13 1993-04-13 Sharp Kabushiki Kaisha Magneto-optical recording and reproducing device having integrally formed recording and reproducing magnetic heads

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202862A (en) * 1990-06-13 1993-04-13 Sharp Kabushiki Kaisha Magneto-optical recording and reproducing device having integrally formed recording and reproducing magnetic heads
US5325344A (en) * 1990-06-13 1994-06-28 Sharp Kabushiki Kaisha Magneto-optical recording and reproducing device having integrally formed recording and reproducing magnetic heads
EP0472377A2 (en) * 1990-08-17 1992-02-26 Seiko Epson Corporation Magneto-optical method and apparatus for recording/reproducing data

Similar Documents

Publication Publication Date Title
US6020079A (en) Magneto-optical recording medium and reproducing method for information recorded on the medium
JP2938284B2 (en) Magneto-optical recording medium and recording / reproducing method using the same
EP0225141B1 (en) Magneto-optical recording media
US6248439B1 (en) Magneto-optical recording medium and reproducing method for information recorder on the medium
JP3538727B2 (en) Magneto-optical recording medium
JP3460947B2 (en) Magneto-optical recording medium and magneto-optical recording device
JP3185932B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording / reproducing apparatus
JPH0242664A (en) Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them
JPH09212927A (en) Magneto-optic recording medium and method for recording and reproducing by using the medium
JP3763930B2 (en) Method for reproducing magneto-optical recording medium and magneto-optical recording medium
JP2746313B2 (en) Information recording method
JPS63302444A (en) Magneto-optical recording medium
JPH03266243A (en) Magneto-optical recording method
JP2815122B2 (en) Information recording device
JPH0226281B2 (en)
JP3146614B2 (en) Recording method and recording apparatus for magneto-optical recording medium
JPH04313833A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method using this medium
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPH02306445A (en) Magneto-optical recording medium
JPH0273547A (en) Thermomagneto-optical recording medium
JPH10340491A (en) Magneto-optical recording medium and method for reproducing information recorded in medium
JPH01245448A (en) Thermomagneto-optical recording medium
JPH0536147A (en) Magneto-optical recording method
JPH07240039A (en) Overwritable magneto-optical recording medium
JPH0363950A (en) Magneto-optical recording system