[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0241588B2 - - Google Patents

Info

Publication number
JPH0241588B2
JPH0241588B2 JP60169219A JP16921985A JPH0241588B2 JP H0241588 B2 JPH0241588 B2 JP H0241588B2 JP 60169219 A JP60169219 A JP 60169219A JP 16921985 A JP16921985 A JP 16921985A JP H0241588 B2 JPH0241588 B2 JP H0241588B2
Authority
JP
Japan
Prior art keywords
composite material
primer layer
aluminum
material according
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60169219A
Other languages
Japanese (ja)
Other versions
JPS6230887A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60169219A priority Critical patent/JPS6230887A/en
Priority to GB08616738A priority patent/GB2179058A/en
Publication of JPS6230887A publication Critical patent/JPS6230887A/en
Publication of JPH0241588B2 publication Critical patent/JPH0241588B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は銅などの易半田性金属のメツキ層を有
するアルミニウム複合材に関する。さらに詳しく
は、プライマー層を介して易半田性金属のメツキ
層が設けられてなるアルミニウム複合材に関す
る。 [従来の技術] アルミニウムは半田付けし難い欠点を有する
が、銅などの易半田性金属のメツキ層を有するア
ルミニウム複合材は、アルミニウムの長所、すな
わち熱、電気の良伝導性、軽量、安価などがその
まま活用されるので、各種の構造材料として、あ
るいは電気、電子機器の部品材料として工業的に
有用である。 ところで、アルミニウム材の表面に銅などを直
接メツキしても密着性の良好な銅メツキ層を形成
することができないため、銅メツキに先立つてア
ルミニウム材表面をジンケート処理してた亜鉛の
層を形成し、ついで亜鉛層の上に銅メツキを施す
ことが従来より行なわれている。さらに亜鉛化合
物を主成分とする従来のジンケート処理液を用い
た処理によつては、えられた銅メツキ層が高温度
で剥離しやすいという問題があることから、最近
では鉄、ニツケルなどの耐熱性金属元素の化合物
を含む種々のジンケート処理液、ならびにジンケ
ート処理方法が開発され、その結果、JIS H
8504−1974、13.1項に規定する耐熱性試験に合格
する優れた耐高温剥離性を有する銅メツキ層の形
成が実現されるに至つている。 しかしながら、近時における電気、電子機器の
小型化ならびに電気回路の高密度化の趨勢から、
銅メツキ層の耐高温剥離性に関する要求がますま
す苛酷となり、このため従来耐熱グレードとして
市場で取扱われてきた銅メツキ−アルミニウム複
合材でも耐熱性が充分とはいえなくなつている。 たとえば、上記の複合材を高温使用ロボツトの
制御回路に用いるばあい、常圧下または高圧下で
数週間ないし数カ月もの長期間にわたつて100℃
以上の高温度にさらされることになるが、この長
期間の加熱により銅メツキ層の密着力が漸時低下
して銅メツキ層とアルミニウム材との界面の電気
抵抗が経時的に増大する問題がある。この界面抵
抗の増大は、該複合材の使用場所によつてはロボ
ツトの誤動作の原因となりうる。 メツキ層−アルミニウム複合材は、別の用途に
おいては、−50℃前後の極低温から100℃以上の高
温度の間でくり返し急速に加熱、冷却される状況
のもとで使用されるばあいがあるが、従来の耐熱
グレード品では、そうしたくり返される熱衝撃に
よつても銅メツキ層が剥離することもある。 さらにこの複合材は、多くのばあい、銅メツキ
層の上に他の電子機器の部品が半田付けされる
が、この半田付けの際の局部的な加熱により銅メ
ツキ層の密着力が低下し、やはり銅メツキ層が剥
離することもある。 アルミニウム材上に銅メツキ層を形成するばあ
い、通常、まず前処理によつてアルミニウム材表
面に付着している油脂分や酸化アルミニウム層を
除去して表面を清浄化し、ついでジンケート処理
によつて亜鉛層を形成し、最近に亜鉛プライマー
層上に銅が電解メツキ法または無電解メツキ法に
より施される。 ところで、本発明者らの研究から、前記前処理
が不充分であるとアルミニウムの表面、アルミニ
ウム材と亜鉛層との界面などに微量のガス分や水
分が残留し、これらが高温時において膨脹して銅
メツキ層とアルミニウム表面との間の密着力を
徐々に低下させることが判明した。また、前記の
とおり、JISの耐熱性試験に合格し、従来ボイド
レスと評価された来た市販の耐熱グレード品でさ
え、本発明者らが新たに確立したボイド検出方法
にて評価すれば、発現されるボイドの量に大きな
バラツキがあり、ある値以上の発現ボイド量を有
するものは明白な低耐熱性を示した。 また、従来種々のジンケート処理液ならびに処
理方法が提案され、実用されているが、処理液、
処理方法の選択を誤ると、該処理によつて形成さ
れる亜鉛プライマー層にピンホールが生じたり、
あるいは亜鉛が粗大粒子状で析出するために亜鉛
プライマー層の表面に粗くかつ大きな凹凸が生じ
る問題がある。 このピンホールはボイドを残留させやすくする
し、また表面の大きく粗い凹凸は、一般に小さく
細かい凹凸の表面と比較して表面積が小さく、し
たがつてその上に施された銅メツキ層との結合面
積が小さいためと結合力の点で不利であり、残留
膨脹性物質と高温との作用に基づく剥離力によつ
て徐々に両方間の結合力が低下し、ばあいによつ
ては剥離するに至る。 [発明が解決しようとする問題点] 本発明は、現在における苛酷な要求に応えるべ
く、長期間にわたる高温度や熱衝撃などに耐して
も高度に耐剥離性を示す易半田性金属のメツキ層
を有するアルミニウム複合材を提供することを目
的とする。 [問題点を解決するための手段] 本発明は、アルミニウム材上にプライマー層を
介して易半田性金属のメツキ層を有するアルミニ
ウム複合材であつて、該プライマー層が亜鉛と耐
熱性金属とから構成されており、かつ400℃での
ボイド検出試験においてメツキ層上に発見するボ
イドの個数が5個/10cm2以下であるアルミニウム
複合材に関する。 [作 用] 本発明のアルミニウム複合材は、まずプライマ
ー層に亜鉛のほかに耐熱性金属を含んでいなけれ
ばならない。かかる耐熱性金属の存在によつてジ
ンケート処理液から析出する亜鉛が微細化し、そ
の結果ピンホールがなく、しかも微細にしてかつ
多数の凹凸の表面を有する亜鉛プライマー層が形
成され、その結果、前記の理由から、その上に形
成される易半田性金属メツキ層との結合力も強く
なる。 また、本発明においてはアルミニウム複合材が
後述する400℃でのボイド検出試験においてメツ
キ層上に発現するボイドの個数が5個/10cm2以下
でなければならない。該ボイド検出試験によつ
て、従来見逃されていた微量の残留膨脹性物質の
検出が可能となり、また、該試験によつて発現す
るボイドの個数が5個/10cm2以下、好ましくは2
個/10cm2以下、とくに1個/10cm2以下であると、
亜鉛層が耐熱性金属を含有するばあいにおいて、
優れた耐熱性を示す。 本発明における400℃ボイド検出試験とは、本
発明者らがアルミニウム複合材の高温密着性を評
価するために新たに設定した試験方法であり、つ
ぎの手順および条件で行なう。 400℃ボイド検出試験: 10mm角の試料を400℃に設定したオーブン中に
入れて10分間保つたのち、常温の水中に投入して
急冷し、易半田性金属メツキ層にふくらみを生ぜ
しめる。生じた大小のふくらみのうち長径が0.2
mm以上のものをボイドと判定してその数を係数す
る。 [発明の一段と具体的かつ詳細な説明] 本発明において、プライマー層は緻密であれば
あるほど、またその表面が可及的微細でかつ可及
的多数の粒状突起を有することが好ましい。とく
に、倍率3000倍の走査型電子顕微鏡で観察したと
きにみられる粒状突起(これはジンケート処理の
際に析出する粒状の析出物である)の個数が少な
くとも1×106個/mm2、とくに少なくとも3×106
個/mm2であることが好ましい。なお、上記顕微鏡
倍率での観察において、平滑表面のごとく観察さ
れるほどに粒状突起が均一に超微細化しているば
あいもあるが、その状態はとくに好ましい。 プライマー層は、亜鉛と耐熱性金属とからな
る。耐熱性金属は、該プライマー層をピンホール
のない緻密構造とし、かつ前記した表面状態を実
現するうえで重要に働きをなす。 耐熱性金属としては融点が約800℃以上、好ま
しくは1000℃以上のもの、とくに、1200℃以上の
ものが採用され、たとえば鉄(Fe)、ニツケル
(Ni)、コバルト(Co)、銅(Cu)、クロム(Cr)
およびマンガン(Mn)よりなる群から選ばれた
少なくとも1種があげられる。好ましい組合せと
しては、たとえばZn−Fe−Ni系、Zn−Fe−Co
系、Zn−Fe−Ni−Co系などがあれられるが、他
の系のものも用途、要求される耐熱性などに応じ
て適宜使用できる。 耐熱性金属は合計量で0.1〜50%(重量%、以
下同様)、好ましくは3〜30%である。0.1%未満
のばあいはプライマー層を緻密化する効果がえら
れない。50%を超えるときはプライマー層とアル
ミニウム材との親和性が低下し、良好な密着性が
えられない。 なお、プライマー層の亜鉛および耐熱性金属の
組成(重量%)は、たとえば、X線マイクロアナ
ライザー(EPMA)により測定することができ
る。 亜鉛と各耐熱性金属との組成は、用途、要求さ
れる耐熱性、素地アルミニウムの材質などによつ
て異なり、それぞれの要求に合わせて適宜実験な
どによる選定すればよいが、各耐熱性金属につ
き、それが使用されるばあいの好ましい使用量を
述べればFeは0.5〜30%、好ましくは1〜15%、
Niは0.5〜40%、好ましくは1〜30%、Coは0.5〜
30%、好ましくは1〜20%、Cuは0.05〜20%、好
ましくは0.1〜15%、Crは0.05〜20%、好ましく
は0.1〜15%、Mnは0.01〜20%、好ましくは0.1〜
15%である。 アルミニウム材としては、各種アルミニウム、
たとえば純アルミニウム、再正アルミニウムある
いはアルミニウム合金などの軟材、硬材などが用
いられうる。アルミニウム合金としてはたとえば
2014、3003、5052、6063、6101などが好ましい。 アルミニウム材の形状はプライマー層および易
半田性金属メツキ層が形成できる形状であればと
くに限定されず、板状、線状、棒状、箔状、コイ
ル状、ブロツク状でも、打抜きや切削加工または
ダイカスト法などにより箱形などの種々の形状に
加工されたものでもよい。したがつてアルミニウ
ム材の厚さはとくに限定されない。 プライマー層上に形成される金属メツキ層の構
成金属としては、銅、銀、金、白金族元素などの
貴金属類、コモンソルダー、チンスミスソルダ
ー、プランバーソルダーなどの軟ロウ類、あるい
はニツケル、錫、鉛などその他の易半田性金属が
あげられる。 プライマー層およびメツキ層の厚さは、用途に
より適宜選定すればよいが、通常プライマー層の
厚さとしては0.005〜2μm、好ましくは0.01〜
0.1μmが採用され、メツキ層の厚さとして1〜
40μm、好ましくは3〜20μmが採用される。 また所望により、メツキ層上にメツキ層の金属
と異なる易半田性金属のメツキ層をさらに設けて
もよい。プライマー層の厚さは、たとえば後述す
る電解法により測定することができる。 つぎに、本発明のアルミニウム複合材の製造方
法について述べる。 本発明の好ましい製造方法については後述する
とおりであるが、本発明アルミニウム複合材は、
基本的には、従来から知られていたアルミニウム
材表面の前処理方法、耐熱性金属の塩を含むジン
ケート処理液および処理法ならびに易半田性金属
メツキ法をいずれもそのまま使用して製造するこ
とができる。ただし、従来の耐熱グレード品の製
造のばあいと根本的に異なり注意すべきことは、
各工程とくに前処理工程を基本に忠実にかつ丁寧
に行なうことである。 ちなみに、従来の耐熱性アルミニウム複合材が
前記の公知の前処理法、ジンケート処理法および
金属メツキ法を採用して製造されたものでありな
がら、本発明が目的とする耐熱性を有しない最大
の理由は、耐熱性評価基準に関する従来の認識が
充分でなかつたことに由来すると考えられる。な
ぜなら、アルミニウム複合材の製造者は経済性を
追及する立場から、評価基準に合格する限り、工
程の簡略化を最大限に推し進める姿勢を保持して
いるからである。その結果、たとえばジンケート
処理するアルミニウム材の表面洗浄は往々にして
必要最小限にとどめられ、洗浄後においても微量
の油脂分や酸化アルミニウムなどが残留するばあ
いがあり、これら残留分などがボイド発現の原因
となる。 本発明のアルミニウム複合材の製造には、前記
したとおり、各種のアルミニウム材を用いること
ができるが、表面に多数のキズやシミのあるも
の、不均一な酸化膜を有するものなどは、それら
がボイドの原因とつくりやすいので使用を避ける
か、または平滑に研磨してから使用することが望
ましい。 アルミニウム材をつぎに苛性アルカリ、たとえ
ば苛性ソーダ、苛性カリの水溶液にて洗浄する。
この洗浄により、アルミニウム材の表面に付着せ
るゴミ、油脂分が表面の酸化アルミニウム層の溶
解と同時に除去される。酸化アルミニウム層をよ
り確実に除去するためにやや高濃度、たとえば10
〜70g/の苛性アルカリ水溶液を用い、常温な
いし90℃の温度で処理することが好ましい。さら
に、苛性アルカリ水溶液中に少量の界面活性剤、
たとえばノニオン系の界面活性剤を添加しておく
とアルミニウム材表面上の微細な凹部の内部まで
良好に洗浄することができる。その洗浄のあと、
アルミニウム材表面に付着せる苛性アルカリ洗浄
液を硝酸水溶液にて洗浄し、ついで硝酸水溶液を
水洗除去する。 表面清浄化されたアルミニウム材はついでジン
ケート処理される。 ジンケート処理液は基本的には水溶性亜鉛化合
物、耐熱性金属の水溶性化合物、苛性アルカリお
よび水から構成される。 水溶性亜鉛化合物と耐熱性金属の水溶性化合物
はプライマー層の金属成分の供給源である。水溶
性亜鉛化合物としては、たとえば硫酸亜鉛、酸化
亜鉛、硝酸亜鉛、炭酸亜鉛、塩化亜鉛などがあげ
られる。 耐熱性金属の水溶性化合物としては種々のもの
があるが、鉄成分供給用としてはたとえば塩化第
1鉄、塩化第2鉄、硫酸鉄、硝酸鉄、酸化第1
鉄、酸化第2鉄など、ニツケル成分供給用として
はたとえば硫酸ニツケル、水酸化ニツケル、酸化
ニツケル、硝酸ニツケル、塩化ニツケルなど、ク
ロム成分供給用としてはたとえば硫酸クロム、酸
化クロム、硝酸クロム塩化クロムなど、コバルト
成分供給用としてはたとえば硫酸コバルト、酸化
コバルト、硝酸コバルト、水酸化コバルト、塩化
コバルトなど、銅成分供給用としてはたとえば硫
酸銅、酸化銅、塩化銅、炭酸銅、シアン化銅、水
酸化銅、硝酸銅など、マンガン成分供給用として
はたとえば酸化マンガン、硫酸マンガン、炭酸マ
ンガン、塩化マンガン、水酸化マンガン、硝酸マ
ンガンなどがあげられる。 水溶性亜鉛化合物と耐熱性金属の水溶性化合物
との配合割合および耐熱性金属の水溶性化合物同
士の配合割合は、目的とするプライマー層の組成
に応じて選定される。通常水溶性亜鉛化合物を2
〜200g/、耐熱性金属の水溶性化合物を合計
で0.05〜100g/とするのが好ましい。 以上の成分のほかに、通常苛性アルカリが配合
される。苛性アルカリは前記した表面清浄化の処
理ののちにアルミニウム材表面に形成された薄層
の酸化物皮膜を溶解し、アルミニウム材表面に安
定にプライマー層を形成させるために配合される
成分であり、NaOHまたはKOHがあげられる。
配合割合は、通常30〜500g/が好ましい。 プライマー層の緻密化を促進するためには、さ
らに錯化合物形成剤やシアン化アルカリ金属塩な
どの緻密化促進剤を添加するのが好ましい。 錯化合物形成剤は金属成分を錯イオン化して耐
熱性金属の沈澱を防止すると共に、形成した錯イ
オンと他の成分との相乗作用によりアルミニウム
材表面上に緻密なプライマー層を形成する作用を
有すると考えられる成分である。 緻密化促進剤の例をあげると、酒石酸、乳酸、
クエン酸などのオキシカルボン酸類、またはその
アルカリ金属塩;ニトリロ3酢酸、イミノ2酢
酸、EDTAなどのポリカルボン酸類またはその
アルカリ金属塩;モノエタノールアミン、エチレ
ンジアミン、トリエタノールアミンなどのアミン
類;KCN、NaCNなどのシアン化アリカリ金属
類;D−エリスロ−2−ケトペントース、D−ト
レオ−2−ケトペントース、L−エリスロ−2−
ケトペントース、D−フルクトース、D−タガト
ース、L−フルクトース、D−プシコース、L−
ピシコース、D−エリスロース、D−トレオー
ス、L−グルコース、D−ガラクトースなどの単
糖類、D−グルコン酸、糖酸などの単糖類の酸化
生成物、ソルビツトなどの単糖類の還元生成物な
どの炭化水素の金属塩たとえばアルカリ金属塩な
どがあげられる。緻密化促進剤の配合割合は、通
常1〜150g/が好ましい。 プライマー層の形成は、アルミニウム材を前記
処理液中に浸漬することにより行なわれる。処理
液の温度は、緻密化促進剤を使用するばあい0〜
66℃、好ましくは10〜40℃であり、浸漬時間は10
秒間〜5分間、好ましくは30秒間〜1分間であ
る。錯化合物形成剤などの緻密化促進剤を添加し
ないばあいは、比較的低い温度、通常5〜30℃、
好ましくは10〜20℃で行なう。 プライマー層の形成は以上の方法のほか、たと
えば蒸着法、スパツタ法、電気メツキ法などの方
法により行なつてもよい。 本発明のアルミニウム複合材はプライマー層上
に易半田性金属のメツキ層を形成してえられる。
易半田性金属のメツキ法としては、各易半田性金
属における通常のメツキ条件が採用できる。 つぎに本発明のアルミニウム複合材を実施例に
基づいて説明するが、本発明はかかる実施例のみ
に限定されるものではない。 実施例1〜16および比較例1〜8 縦50cm、横20cm、厚さ1.5mmのアルミニウム板
をアルカリ浴(NaOH:16g/、Na2CO3:27
g/)により第1表に示す条件で処理したの
ち、流水により同表に示す条件で水洗し、ついで
濃度40%の硝酸水溶液を用いて第1表に示す条件
で酸洗したのち同表に示す条件で流水中で水洗し
て前処理をした。 前処理したアルミニウム板を第2表に示す組成
のジンケート処理液(30℃)に1分間浸漬するこ
とにより、第3表に示す組成、厚さおよび粒状突
起数を有するプライマー層を形成した。 プライマー層の組成は、X線マイクロアナライ
ザー(日本電子(株)製のJXA−50A)を用いてつぎ
の条件により測定し、標準試料と比較することに
より決定した。 加速電圧:25KV 吸収電流:10-8A 分光結晶:LiF カウンタ:GFPC(ガスフロー比例計数管) GFPCの印加電圧:1.6KV 粒状突起の個数は、走査型電子顕微鏡(日本電
子(株)製のJXA−50A)により3000倍の倍率で1mm2
あたりの粒状突起の個数を計数した。 本発明におけるプライマー層は緻密かつ平坦な
表面を有している。たとえば、実施例10で形成さ
れたプライマー層の表面状態を第1図に示す。第
1図は走査型電子顕微鏡写真(倍率3000倍)であ
り、プライマーを構成している各成分は合金様の
緻密な構造であることが示されている。 一方、従来のプライマー層は第2図に示すごと
く、粒子が多数連つた状態でしかなく、このよう
な状態では高温度にボイドの多発は避けられな
い。なお、第2図は比較例3で形成されたプライ
マー層の表面の走査型電子顕微鏡写真(倍率3000
倍)である。 ついでプライマー層が形成されたアルミニウム
板につぎの条件で銅メツキ、ニツケルメツキ、コ
モンソルターメツキまたはスズメツキを施し、第
3表に示す厚さのメツキ層をプライマー層上に形
成した。 銅メツキ メツキ浴:CuCN(60g/)とNaCN (60g/) 温 度:80℃ 電流密度:3A/dm2 通電時間:8分間 コモンソルダーメツキ メツキ浴:Sn(BH42の47%水溶液(200
g/)とPb(BH42の50%水溶
液(50g/)とHBH4の42%水
溶液(100g/) 温 度:25℃ 電流密度:2A/dm2 通電時間:10分間 ニツケルメツキ メツキ浴:NiSO4(240g/)とNiCl2(45
g/)とH2BO3(30g/) 温 度:50℃ 電流密度:3A/4m2 通電時間:10分間 スズメツキ メツキ浴:Na2SnO3(150g/)とNaOH
(20g/) 温 度:60℃ 電流密度:2A/dm2 通電時間:21分間 ついで、各アルミニウム複合材についてつぎの
2つのボイド検出試験を行なつた。結果を第3表
に示す。 (1) JIS法 JIS H8504−1984、13.1項に記載された方法
(250℃で行なつた)。 (2) 本発明者らによつて開発された前記400℃で
のボイド検出試験であり、その条件は前記のと
おり。
[Industrial Application Field] The present invention relates to an aluminum composite material having a plating layer of an easily solderable metal such as copper. More specifically, the present invention relates to an aluminum composite material in which a plating layer of an easily solderable metal is provided with a primer layer interposed therebetween. [Prior Art] Aluminum has the disadvantage of being difficult to solder, but aluminum composite materials with a plating layer of easily solderable metals such as copper have the advantages of aluminum, such as good thermal and electrical conductivity, light weight, and low cost. Since it can be used as is, it is industrially useful as a variety of structural materials or as a component material for electrical and electronic equipment. By the way, since it is not possible to form a copper plating layer with good adhesion even if copper is directly plated on the surface of an aluminum material, a layer of zinc is formed by zincating the surface of the aluminum material prior to copper plating. Conventionally, however, copper plating is then applied on the zinc layer. Furthermore, due to the problem that the resulting copper plating layer tends to peel off at high temperatures when using conventional zincate treatment solutions containing zinc compounds as the main component, recently heat-resistant materials such as iron and nickel are being used. Various zincate treatment solutions and zincate treatment methods containing compounds of metal elements have been developed, and as a result, JIS H
8504-1974, the formation of a copper plating layer having excellent high temperature peeling resistance that passes the heat resistance test specified in Section 13.1 has been realized. However, due to the recent trend of miniaturization of electric and electronic devices and higher density of electric circuits,
The requirements regarding the high-temperature peeling resistance of the copper plating layer are becoming increasingly severe, and therefore even the copper plating-aluminum composite material, which has been sold in the market as a heat-resistant grade, is no longer said to have sufficient heat resistance. For example, when the above composite material is used in the control circuit of a robot that uses high temperatures, it may be exposed to temperatures of 100℃ for a long period of several weeks or months under normal pressure or high pressure.
However, due to this long-term heating, the adhesion of the copper plating layer gradually decreases, causing the problem that the electrical resistance at the interface between the copper plating layer and the aluminum material increases over time. be. This increase in interfacial resistance may cause robot malfunctions depending on where the composite material is used. In other applications, the plating layer-aluminum composite material is used under conditions where it is repeatedly and rapidly heated and cooled between extremely low temperatures of around -50°C and high temperatures of over 100°C. However, in conventional heat-resistant grade products, the copper plating layer may peel off due to such repeated thermal shocks. Furthermore, in many cases, parts of other electronic devices are soldered onto the copper plating layer of this composite material, but the adhesion of the copper plating layer decreases due to localized heating during soldering. However, the copper plating layer may also peel off. When forming a copper plating layer on an aluminum material, usually the surface is cleaned by pre-treatment to remove oil and fat and aluminum oxide layer adhering to the surface of the aluminum material, and then zincate treatment is performed to clean the surface. A zinc layer is formed and then copper is applied on the zinc primer layer by electroplating or electroless plating. By the way, the inventors' research has shown that if the above pretreatment is insufficient, trace amounts of gas and moisture remain on the surface of the aluminum, the interface between the aluminum material and the zinc layer, etc., and these expand at high temperatures. It was found that the adhesion between the copper plating layer and the aluminum surface gradually decreased. In addition, as mentioned above, even with commercially available heat-resistant grade products that have passed the JIS heat resistance test and have been evaluated as void-free, if evaluated using the void detection method newly established by the present inventors, it is possible to detect voids. There was a large variation in the amount of voids developed, and those with the amount of voids above a certain value showed clearly low heat resistance. In addition, various zincate treatment solutions and treatment methods have been proposed and put into practice, but the treatment solutions,
If the treatment method is selected incorrectly, pinholes may occur in the zinc primer layer formed by the treatment.
Alternatively, since zinc is precipitated in the form of coarse particles, there is a problem in that the surface of the zinc primer layer becomes rough and has large irregularities. These pinholes tend to cause voids to remain, and large, rough irregularities on the surface generally have a smaller surface area than surfaces with small, fine irregularities, and therefore the bonding area with the copper plating layer applied thereon. It is disadvantageous in terms of bonding strength because of its small size, and the bonding strength between the two gradually decreases due to the peeling force caused by the action of the residual expandable substance and high temperature, and in some cases, it may lead to peeling. . [Problems to be Solved by the Invention] In order to meet the severe demands of today, the present invention provides a plating made of easily solderable metal that exhibits high peeling resistance even after long periods of high temperature and thermal shock. The purpose is to provide an aluminum composite material having layers. [Means for Solving the Problems] The present invention is an aluminum composite material having a plating layer of an easily solderable metal on an aluminum material via a primer layer, wherein the primer layer is made of zinc and a heat-resistant metal. The present invention relates to an aluminum composite material in which the number of voids found on the plating layer is 5/10 cm 2 or less in a void detection test at 400°C. [Function] First, the aluminum composite material of the present invention must contain a heat-resistant metal in addition to zinc in the primer layer. Due to the presence of such a heat-resistant metal, the zinc precipitated from the zincate treatment solution becomes fine, and as a result, a zinc primer layer is formed that is free from pinholes and has a fine and many uneven surface. For this reason, the bonding force with the easily solderable metal plating layer formed thereon also becomes stronger. Furthermore, in the present invention, the number of voids that appear on the plating layer of the aluminum composite material in a void detection test at 400° C. described below must be 5 or less/10 cm 2 . This void detection test makes it possible to detect trace amounts of residual expandable substances that have been overlooked in the past, and also allows the number of voids developed by this test to be 5 or less/10 cm 2 , preferably 2.
If it is less than 1 piece/ 10cm2 , especially less than 1 piece/ 10cm2 ,
In cases where the zinc layer contains a heat-resistant metal,
Shows excellent heat resistance. The 400°C void detection test in the present invention is a test method newly established by the present inventors to evaluate the high-temperature adhesion of aluminum composite materials, and is conducted under the following procedure and conditions. 400℃ void detection test: A 10mm square sample is placed in an oven set at 400℃ and kept for 10 minutes, then placed in water at room temperature to rapidly cool it, causing a bulge in the easily solderable metal plating layer. Of the large and small bulges that occur, the major axis is 0.2
Items larger than mm are determined to be voids and the number is calculated as a coefficient. [More Specific and Detailed Description of the Invention] In the present invention, it is preferable that the primer layer is denser, and that its surface is as fine as possible and has as many granular protrusions as possible. In particular, the number of granular protrusions (this is a granular precipitate precipitated during zincate treatment) observed when observed with a scanning electron microscope at a magnification of 3000 times is at least 1 × 10 6 pieces/mm 2 , especially when at least 3 x 106
The number of particles/mm 2 is preferable. In addition, when observed at the above-mentioned microscope magnification, there are cases where the granular protrusions are so uniformly ultra-fine that they appear to be observed as a smooth surface, and this state is particularly preferable. The primer layer consists of zinc and a heat-resistant metal. The heat-resistant metal plays an important role in making the primer layer have a dense structure without pinholes and achieving the above-mentioned surface condition. Heat-resistant metals with melting points of approximately 800°C or higher, preferably 1000°C or higher, particularly 1200°C or higher, are used, such as iron (Fe), nickel (Ni), cobalt (Co), copper (Cu), etc. ), chromium (Cr)
and manganese (Mn). Preferred combinations include, for example, Zn-Fe-Ni and Zn-Fe-Co.
Examples include Zn-Fe-Ni-Co, Zn-Fe-Ni-Co, etc., but other types can also be used as appropriate depending on the application, required heat resistance, etc. The total amount of the heat-resistant metal is 0.1 to 50% (by weight, hereinafter the same), preferably 3 to 30%. If it is less than 0.1%, the effect of densifying the primer layer cannot be obtained. When it exceeds 50%, the affinity between the primer layer and the aluminum material decreases, and good adhesion cannot be obtained. Note that the composition (weight %) of zinc and heat-resistant metal in the primer layer can be measured using, for example, an X-ray microanalyzer (EPMA). The composition of zinc and each heat-resistant metal differs depending on the application, the required heat resistance, the material of the base aluminum, etc., and can be selected through experiments as appropriate according to each requirement. , the preferred amount of Fe used is 0.5 to 30%, preferably 1 to 15%,
Ni is 0.5-40%, preferably 1-30%, Co is 0.5-40%
30%, preferably 1-20%, Cu 0.05-20%, preferably 0.1-15%, Cr 0.05-20%, preferably 0.1-15%, Mn 0.01-20%, preferably 0.1-15%.
It is 15%. As aluminum materials, various types of aluminum,
For example, soft or hard materials such as pure aluminum, recast aluminum, or aluminum alloys may be used. For example, aluminum alloys include
2014, 3003, 5052, 6063, 6101, etc. are preferred. The shape of the aluminum material is not particularly limited as long as it can form a primer layer and an easily solderable metal plating layer, and it can be shaped into a plate, wire, rod, foil, coil, or block by punching, cutting, or die-casting. It may be processed into various shapes such as a box shape by a method or the like. Therefore, the thickness of the aluminum material is not particularly limited. The constituent metals of the metal plating layer formed on the primer layer include noble metals such as copper, silver, gold, and platinum group elements, soft waxes such as common solder, chinsmith solder, and plumber solder, or nickel and tin. , other easily solderable metals such as lead. The thickness of the primer layer and plating layer may be appropriately selected depending on the application, but the thickness of the primer layer is usually 0.005 to 2 μm, preferably 0.01 to 2 μm.
0.1μm is adopted, and the thickness of the plating layer is 1~
40 μm, preferably 3 to 20 μm is adopted. Further, if desired, a plating layer made of an easily solderable metal different from the metal of the plating layer may be further provided on the plating layer. The thickness of the primer layer can be measured, for example, by the electrolytic method described below. Next, the method for manufacturing the aluminum composite material of the present invention will be described. The preferred manufacturing method of the present invention will be described later, but the aluminum composite material of the present invention
Basically, it can be manufactured by using any of the previously known pre-treatment methods for the surface of aluminum materials, zincate treatment solutions and treatment methods containing salts of heat-resistant metals, and easy-to-solder metal plating methods. can. However, it is fundamentally different from the production of conventional heat-resistant grade products, and the following points should be noted:
Each process, especially the pretreatment process, must be carried out faithfully and carefully. Incidentally, although conventional heat-resistant aluminum composite materials are manufactured using the above-mentioned known pretreatment methods, zincate treatment methods, and metal plating methods, they do not have the heat resistance targeted by the present invention. The reason is thought to be that conventional recognition regarding heat resistance evaluation criteria was insufficient. This is because, from the standpoint of pursuing economic efficiency, manufacturers of aluminum composite materials maintain an attitude of maximizing process simplification as long as it passes the evaluation criteria. As a result, for example, surface cleaning of aluminum materials subjected to zincate treatment is often kept to the minimum necessary, and even after cleaning, trace amounts of oil, fat, aluminum oxide, etc. may remain, and these residuals can cause voids. It causes As mentioned above, various aluminum materials can be used to manufacture the aluminum composite material of the present invention, but those with many scratches and stains on the surface, or those with uneven oxide films, etc. It is preferable to avoid using it, or to polish it smooth before using it, as it tends to cause voids. The aluminum material is then washed with an aqueous solution of caustic alkali, such as caustic soda or caustic potash.
By this cleaning, dust and oil adhering to the surface of the aluminum material are removed at the same time as the aluminum oxide layer on the surface is dissolved. Slightly higher concentration, e.g. 10 to more reliably remove the aluminum oxide layer
It is preferable to use ~70g/aqueous caustic alkali solution at room temperature to 90°C. Furthermore, a small amount of surfactant in the caustic aqueous solution,
For example, by adding a nonionic surfactant, it is possible to effectively clean the inside of minute recesses on the surface of the aluminum material. After that washing,
The caustic alkaline cleaning solution adhering to the surface of the aluminum material is washed with an aqueous nitric acid solution, and then the aqueous nitric acid solution is removed by washing with water. The surface-cleaned aluminum material is then subjected to zincate treatment. The zincate treatment solution basically consists of a water-soluble zinc compound, a water-soluble compound of a heat-resistant metal, caustic alkali, and water. Water-soluble zinc compounds and water-soluble compounds of refractory metals are the sources of the metal components of the primer layer. Examples of water-soluble zinc compounds include zinc sulfate, zinc oxide, zinc nitrate, zinc carbonate, and zinc chloride. There are various water-soluble compounds of heat-resistant metals, but for supplying iron components, examples include ferrous chloride, ferric chloride, iron sulfate, iron nitrate, and ferrous oxide.
For supplying nickel components such as iron and ferric oxide, examples include nickel sulfate, nickel hydroxide, nickel oxide, nickel nitrate, and nickel chloride.For supplying chromium components, examples include chromium sulfate, chromium oxide, chromium nitrate, and chromium chloride. For supplying cobalt components, for example, cobalt sulfate, cobalt oxide, cobalt nitrate, cobalt hydroxide, cobalt chloride, etc. For supplying copper components, for example, copper sulfate, copper oxide, copper chloride, copper carbonate, copper cyanide, hydroxide, etc. Copper, copper nitrate, and other materials for supplying manganese components include manganese oxide, manganese sulfate, manganese carbonate, manganese chloride, manganese hydroxide, manganese nitrate, and the like. The blending ratio of the water-soluble zinc compound and the water-soluble heat-resistant metal compound and the blending ratio of the water-soluble heat-resistant metal compounds are selected depending on the intended composition of the primer layer. Normally water soluble zinc compound 2
It is preferable that the amount of the water-soluble compound of the heat-resistant metal be 0.05 to 100 g/in total. In addition to the above ingredients, caustic alkali is usually added. Caustic alkali is a component that is blended to dissolve the thin oxide film formed on the surface of the aluminum material after the surface cleaning treatment described above, and to form a stable primer layer on the surface of the aluminum material. Examples include NaOH or KOH.
The blending ratio is usually preferably 30 to 500 g/. In order to promote densification of the primer layer, it is preferable to further add a densification promoter such as a complex compound forming agent or an alkali metal cyanide salt. The complex compound forming agent has the effect of complex ionizing metal components to prevent precipitation of heat-resistant metals, and also forming a dense primer layer on the surface of the aluminum material through the synergistic effect of the formed complex ions and other components. This is a possible ingredient. Examples of densification accelerators include tartaric acid, lactic acid,
Oxycarboxylic acids such as citric acid, or alkali metal salts thereof; polycarboxylic acids such as nitrilotriacetic acid, iminodiacetic acid, EDTA, or alkali metal salts thereof; amines such as monoethanolamine, ethylenediamine, triethanolamine; KCN, Alkali metal cyanides such as NaCN; D-erythro-2-ketopentose, D-threo-2-ketopentose, L-erythro-2-
Ketopentose, D-fructose, D-tagatose, L-fructose, D-psicose, L-
Monosaccharides such as pisicose, D-erythrose, D-threose, L-glucose, D-galactose, oxidation products of monosaccharides such as D-gluconic acid and sugar acids, reduction products of monosaccharides such as sorbitol, etc. Metal salts of hydrocarbons include, for example, alkali metal salts. The blending ratio of the densification accelerator is usually preferably 1 to 150g/. The primer layer is formed by immersing the aluminum material in the treatment liquid. The temperature of the treatment liquid is 0 to 0 when using a densification accelerator.
66℃, preferably 10-40℃, soaking time is 10
The time period is from seconds to 5 minutes, preferably from 30 seconds to 1 minute. If a densification promoter such as a complex compound forming agent is not added, the temperature is relatively low, usually 5 to 30°C,
Preferably it is carried out at 10-20°C. In addition to the above methods, the primer layer may be formed by a method such as a vapor deposition method, a sputtering method, or an electroplating method. The aluminum composite material of the present invention is obtained by forming a plating layer of an easily solderable metal on a primer layer.
As a plating method for easily solderable metals, usual plating conditions for each easily solderable metal can be adopted. Next, the aluminum composite material of the present invention will be explained based on Examples, but the present invention is not limited to these Examples. Examples 1 to 16 and Comparative Examples 1 to 8 An aluminum plate measuring 50 cm long, 20 cm wide, and 1.5 mm thick was placed in an alkaline bath (NaOH: 16 g/, Na 2 CO 3 : 27
g/) under the conditions shown in Table 1, washed with running water under the conditions shown in Table 1, and then pickled with a 40% nitric acid aqueous solution under the conditions shown in Table 1. Pretreatment was performed by washing under running water under the conditions shown. The pretreated aluminum plate was immersed in a zincate treatment solution (30° C.) having the composition shown in Table 2 for 1 minute to form a primer layer having the composition, thickness, and number of granular protrusions shown in Table 3. The composition of the primer layer was determined by measuring using an X-ray microanalyzer (JXA-50A manufactured by JEOL Ltd.) under the following conditions and comparing it with a standard sample. Acceleration voltage: 25KV Absorption current: 10 -8 A Spectroscopic crystal: LiF Counter: GFPC (Gas flow proportional counter) Applied voltage of GFPC: 1.6KV JXA-50A) at 3000x magnification to 1 mm 2
The number of granular projections per area was counted. The primer layer in the present invention has a dense and flat surface. For example, the surface condition of the primer layer formed in Example 10 is shown in FIG. FIG. 1 is a scanning electron micrograph (3000x magnification), which shows that each component constituting the primer has a dense alloy-like structure. On the other hand, as shown in FIG. 2, the conventional primer layer is only in a state in which a large number of particles are connected, and in such a state, frequent occurrence of voids at high temperatures is unavoidable. Furthermore, Figure 2 is a scanning electron micrograph (magnification: 3000) of the surface of the primer layer formed in Comparative Example 3.
times). Next, the aluminum plate on which the primer layer was formed was subjected to copper plating, nickel plating, common salter plating, or tin plating under the following conditions to form a plating layer having the thickness shown in Table 3 on the primer layer. Copper plating Plating bath: CuCN (60 g/) and NaCN (60 g/) Temperature: 80°C Current density: 3 A/dm 2 Current application time: 8 minutes Common solder plating Plating bath: 47% aqueous solution of Sn (BH 4 ) 2 (200
g/), 50% aqueous solution of Pb(BH 4 ) 2 (50 g/) and 42% aqueous solution of HBH 4 (100 g/) Temperature: 25°C Current density: 2 A/dm 2 Current application time: 10 minutes Nickel plating Plating bath: NiSO 4 (240g/) and NiCl 2 (45
g/) and H 2 BO 3 (30 g/) Temperature: 50°C Current density: 3 A/4 m 2 Current application time: 10 minutes Sparrow plating Plating bath: Na 2 SnO 3 (150 g/) and NaOH
(20 g/) Temperature: 60° C. Current density: 2 A/dm 2 Current application time: 21 minutes Next, the following two void detection tests were conducted on each aluminum composite material. The results are shown in Table 3. (1) JIS method The method described in JIS H8504-1984, Section 13.1 (carried out at 250°C). (2) This is the void detection test at 400°C developed by the present inventors, and the conditions are as described above.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例1〜16および比較例1〜8でそれぞれえ
られたアルミニウム複合材について、つぎの試験
を行なつた。結果を第4表に示す。 (P.C.T.試験) 試験片を2気圧、121℃の水蒸気中で2000時間
加熱後乾燥し、室温において4端子法にて接触抵
抗(Ω)を測定し、初期値からの変化率(%)で
評価した。 (高温保存試験) 試験片を150℃にて1000時間空気中で加熱し、
ついてP.C.T.試験と同様にして接触抵抗の初期値
からの変化率(%)で評価した。 (熱衝撃試験) EIAJ、SD−121−1979に規定されている熱衝
撃試験に従つて行なつた。ただし、低温側は−40
℃のアルコール浴、高温側は100℃の湯浴とし、
両浴間を移動所要時間を5秒以内とする加熱、冷
却のサイクルを1000回行なつた。評価はP.C.T.試
験と同様に接触抵抗の初期値からの変化率(%)
で行なつた。 (半田付け試験) JIS H8504−1984、15.2項の半田付け試験に従
つて50回の半田付けを行ない、メツキ層が剥離し
た(不良)の度合(%)で評価した。
[Table] The following tests were conducted on the aluminum composite materials obtained in Examples 1 to 16 and Comparative Examples 1 to 8. The results are shown in Table 4. (PCT test) The test piece was heated in steam at 2 atm and 121°C for 2000 hours, then dried, and the contact resistance (Ω) was measured using the 4-terminal method at room temperature, and evaluated by the rate of change (%) from the initial value. did. (High temperature storage test) The test piece was heated in air at 150℃ for 1000 hours,
The contact resistance was evaluated by the rate of change (%) from the initial value in the same manner as the PCT test. (Thermal Shock Test) The thermal shock test was conducted in accordance with EIAJ, SD-121-1979. However, on the low temperature side -40
℃ alcohol bath, high temperature side 100℃ water bath,
A cycle of heating and cooling was performed 1000 times in which the time required for moving between both baths was within 5 seconds. Evaluation is the rate of change (%) from the initial value of contact resistance, similar to the PCT test.
I did it at (Soldering test) Soldering was performed 50 times according to the soldering test in JIS H8504-1984, Section 15.2, and the degree of peeling (defective) of the plating layer was evaluated (%).

【表】 [発明の効果] 本発明によるときは、長期間高温度にさらされ
たり熱衝撃が加えられてもすぐれた耐剥離性およ
び安定した接触抵抗を示し、半田付けが容易なア
ルミニウム複合材を提供することができる。ま
た、種々の形状のアルミニウム材に対して適用で
きるので、長尺のものでも異形のものでもニーズ
に応じて作製することができる。
[Table] [Effects of the Invention] The present invention provides an aluminum composite material that exhibits excellent peeling resistance and stable contact resistance even when exposed to high temperatures for long periods of time or is subjected to thermal shock, and is easy to solder. can be provided. Moreover, since it can be applied to aluminum materials of various shapes, it is possible to produce long ones or irregularly shaped ones according to needs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ実施例10およ
び比較例3で形成されたプライマー層の合金様組
織の表面の走査型電子顕微鏡写真(倍率3000倍)
である。
Figures 1 and 2 are scanning electron micrographs (3000x magnification) of the surfaces of the alloy-like structures of the primer layers formed in Example 10 and Comparative Example 3, respectively.
It is.

Claims (1)

【特許請求の範囲】 1 アルミニウム材上にプライマー層を介して易
半田性金属のメツキ層を有するアルミニウム複合
材であつて、該プライマー層が亜鉛と耐熱性金属
とから構成されており、かつ下記の400℃でのボ
イド検出試験においてメツキ層上に発現するボイ
ドの個数が5個/10cm2以下であるアルミニウム複
合材。 記 10mm角の試料を400℃に設定したオーブン中に
入れて10分間保つたのち、常温の水中に投入して
急冷し、易半田性金属メツキ層にふくらみを生ぜ
しめ、生じた大小のふくらみのうち長径が0.2mm
以上のものをボイドと判定してその数を係数す
る。 2 プライマー層の厚さが0.005〜2μmである特
許請求の範囲の第1項記載の複合材。 3 易半田性金属のメツキ層が施されるプライマ
ー層の表面に、倍率3000倍の走査型電子顕微鏡で
の観察において、少なくとも1×106個/mm2の粒
状突起数を有する特許請求の範囲第1項記載の複
合材。 4 耐熱性金属元素がFe、Ni、Co、Cu、Crおよ
びMnよりなる群から選ばれた少なくとも1種で
ある特許請求の範囲第1項、第2項または第3項
記載の複合材。 5 耐熱性金属元素の合計含有量が0.1〜50重量
%である特許請求の範囲第4項記載の複合材。 6 易半田性金属が、Cu、Ni、Snおよび軟ロウ
よりなる群から選ばれた1種である特許請求の範
囲第1項記載の複合材。 7 プライマー層がZn−Fe−Co系である特許請
求の範囲第1項、第2項または第3項記載の複合
材。 8 プライマー層がZn−Fe−Ni系である特許請
求の範囲第1項、第2項または第3項記載の複合
材。 9 プライマー層がZn−Fe−Ni−Co系である特
許請求の範囲第1項、第2項または第3項記載の
複合材。
[Scope of Claims] 1. An aluminum composite material having a plating layer of an easily solderable metal on an aluminum material via a primer layer, wherein the primer layer is composed of zinc and a heat-resistant metal, and the following: An aluminum composite material in which the number of voids that appear on the plating layer in a void detection test at 400°C is 5 or less/10 cm 2 . Note: A 10 mm square sample was placed in an oven set at 400°C and kept for 10 minutes, then placed in water at room temperature and rapidly cooled to create a bulge in the easily solderable metal plating layer. Of which, the major diameter is 0.2mm
The above items are determined to be voids and the number is calculated as a coefficient. 2. The composite material according to claim 1, wherein the primer layer has a thickness of 0.005 to 2 μm. 3 Claims in which the surface of the primer layer to which the plating layer of easily solderable metal is applied has a number of granular projections of at least 1×10 6 /mm 2 when observed with a scanning electron microscope at a magnification of 3000 times. Composite material according to item 1. 4. The composite material according to claim 1, 2, or 3, wherein the heat-resistant metal element is at least one selected from the group consisting of Fe, Ni, Co, Cu, Cr, and Mn. 5. The composite material according to claim 4, wherein the total content of heat-resistant metal elements is 0.1 to 50% by weight. 6. The composite material according to claim 1, wherein the easily solderable metal is one selected from the group consisting of Cu, Ni, Sn, and soft wax. 7. The composite material according to claim 1, 2 or 3, wherein the primer layer is Zn-Fe-Co based. 8. The composite material according to claim 1, 2 or 3, wherein the primer layer is Zn-Fe-Ni based. 9. The composite material according to claim 1, 2 or 3, wherein the primer layer is Zn-Fe-Ni-Co based.
JP60169219A 1985-07-31 1985-07-31 Composite aluminum material Granted JPS6230887A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60169219A JPS6230887A (en) 1985-07-31 1985-07-31 Composite aluminum material
GB08616738A GB2179058A (en) 1985-07-31 1986-07-09 Aluminium composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60169219A JPS6230887A (en) 1985-07-31 1985-07-31 Composite aluminum material

Publications (2)

Publication Number Publication Date
JPS6230887A JPS6230887A (en) 1987-02-09
JPH0241588B2 true JPH0241588B2 (en) 1990-09-18

Family

ID=15882420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60169219A Granted JPS6230887A (en) 1985-07-31 1985-07-31 Composite aluminum material

Country Status (2)

Country Link
JP (1) JPS6230887A (en)
GB (1) GB2179058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993002225A1 (en) * 1991-07-22 1993-02-04 Kawasaki Steel Corporation Aluminum alloy plate with excellent formability and production thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220307A (en) * 1988-07-08 1990-01-23 Plast Kogaku Kenkyusho:Kk Pelletizer for thermoplastic material
DE69226974T2 (en) * 1991-02-18 1999-05-12 Sumitomo Light Metal Industries Ltd., Tokio/Tokyo Use of clad aluminum sheet with improved spot weldability
US5356723A (en) * 1991-12-18 1994-10-18 Sumitomo Metal Industries, Ltd. Multilayer plated aluminum sheets
JPH11181593A (en) * 1997-12-16 1999-07-06 Totoku Electric Co Ltd Production of copper-coated aluminum wire
US6790265B2 (en) * 2002-10-07 2004-09-14 Atotech Deutschland Gmbh Aqueous alkaline zincate solutions and methods
CN100451171C (en) * 2005-09-27 2009-01-14 北京东方新材科技有限公司 Surface treatment for improving metal welding performance and work pieces therefrom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950194A (en) * 1982-09-17 1984-03-23 Tokyo Mekki:Kk Method for plating aluminum, aluminum alloy, magnesium, magnesium alloy, zinc or zinc alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957452A (en) * 1974-12-12 1976-05-18 General Cable Corporation Procedure for copper plating aluminium wire and product thereof
GB1601057A (en) * 1977-06-03 1981-10-21 Ford Motor Co Plating processes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950194A (en) * 1982-09-17 1984-03-23 Tokyo Mekki:Kk Method for plating aluminum, aluminum alloy, magnesium, magnesium alloy, zinc or zinc alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993002225A1 (en) * 1991-07-22 1993-02-04 Kawasaki Steel Corporation Aluminum alloy plate with excellent formability and production thereof

Also Published As

Publication number Publication date
GB8616738D0 (en) 1986-08-13
JPS6230887A (en) 1987-02-09
GB2179058A (en) 1987-02-25

Similar Documents

Publication Publication Date Title
Christie et al. Gold electrodeposition within the electronics industry
CN101283119B (en) Method of surface treatment for the inhibition of whiskers
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
JP2010111951A (en) Chromium-free antitarnish adhesion-promoting treatment composition
EP0055481B1 (en) Chromium-plated steel strip having excellent weldability and resistance to corrosion and method for producing the same
US5730853A (en) Method for plating metal matrix composite materials with nickel and gold
JP2004263210A (en) SURFACE TREATED Al SHEET SUPERIOR IN SOLDERABILITY, HEAT SINK USING IT, AND METHOD FOR MANUFACTURING SURFACE TREATED Al SHEET SUPERIOR IN SOLDERABILITY
JPH0148355B2 (en)
JPH0241588B2 (en)
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
JP2717910B2 (en) Copper foil for printed circuit and manufacturing method thereof
JP3247517B2 (en) Plating method of titanium material
JP3276765B2 (en) Method of forming electrode terminals of chip fixed resistor
CN116083890A (en) Substrate surface treatment method and application thereof
JP3833493B2 (en) Copper foil used for TAB tape carrier, TAB carrier tape and TAB tape carrier using this copper foil
JPH02145794A (en) Copper or copper alloy material plated with tin or solder reflowed and excellent in thermal peeling resistance
JP2942476B2 (en) Multi-layer plating lead wire and lead frame
CN115175466B (en) Welding method for improving electroplated tin-nickel alloy on surface of ceramic copper-clad substrate
JP3709142B2 (en) Copper foil for printed wiring board and method for producing the same
JP2684164B2 (en) Surface treatment method for copper foil for printed circuits
JPS61151914A (en) Contactor
JP4888992B2 (en) Method for producing surface-treated Al plate
WO1994018350A1 (en) Alloy to be plated, its plating method and plating solution
JPS5836071B2 (en) Manufacturing method for silver-plated iron and iron alloys
JP2013144835A (en) ELECTROLESS Ni-P-Sn PLATING SOLUTION